Prepared for

Canadian Energy Partnership for Environmental Innovation Petroleum Technology Alliance Canada BC Oil and Gas Research and Innovation Society

Prepared by Ramboll Environ, Irvine, California

Document type Final (Revision 0.2)

Date

8 July, 2016 (revised September 15, 2016)

CEPEI PM2.5 EMISSION FACTOR DEVELOPMENT

UPDATE: ALTERNATIVE PM2.5 EMISSION FACTORS FOR NATURAL GAS-FIRED ENGINES

REVISION HISTORY

Revision No.	Date	Approved By	Comment
Draft A	16 February 2016	Glenn England	For review
Draft B	4 March 2016	Glenn England	Revised – for review
Revision 0	8 July 2016	Glenn England	Final. Revised in response to CEPEI comments and final test data. Misc. corrections and revisions.
Revision 0.2	15 September 2016	Glenn England	Updated cover page

Distribution

Jasmine Urisk (CEPEI)

Glenn England (Ramboll Environ)

CONTENTS

		Page
1.	EXECUTIVE SUMMARY	1
2.	INTRODUCTION	5
2.1	CEPEI Project Description	6
3.	DATA SOURCES	7
3.1	CEPEI Test Program Results (2015)	7
3.2	U.S. Collaborative Test Program (1998-2003)	10
3.3	API Reciprocating Engine Tests (2003)	11
3.4	GE Energy Gas Turbine Combined Cycle Unit Tests (2008)	13
3.5	Refinery Boiler and Process Heater Tests (2014)	15
4.	PM2.5 EMISSION FACTORS	17
4.1	Gas Turbines and Gas Turbine Combined Cycle/Cogeneration Units	19
4.2	RICE Data Set	21
5.	PM2.5 SPECIES PROFILES	25
5.1	Gas Turbine PM2.5 Species	25
5.2	Reciprocating Engine PM2.5 Species	25
6.	DISCUSSION	28
6.1	PM2.5 Emission Factor Comparison – EPA AP-42	28
6.1.1	AP-42: Gas Turbines	28
6.1.2 6.2	AP-42: Reciprocating Engines PM2.5 Emission Factor Uses and Implications	28 30
0.2	The Emilian Factor of the Emphagement	30
LIST C	OF FIGURES	
Figure 4	I-1: Q-Q plot for PM2.5 emission factors from gas-fired boilers, process heater	rs,
	gas turbines and reciprocating engines, measured with dilution sampling	
-: 4	methods.	17
Figure 4	I-2: Normal Q-Q plot of PM2.5 emission factors for gas-fired boilers, process	18
Figure 4	heaters and gas turbines, measured with dilution sampling methods. I-3: Q-Q plot and goodness of fit statistics for gas turbine PM2.5 emission fact	
rigure -	data set – natural gas and refinery gas fuels	.01 20
Figure 4	I-4: Q-Q plot and goodness of fit statistics for gas turbine PM2.5 emission fact	
3 -	data set – natural gas fuel only	21
Figure 4	1-5: Q-Q plot and goodness of fit statistics for four-stroke reciprocating engine	9
	PM2.5 emission factor data set – natural gas fuel	23
Figure 6	5-1: Comparison of EPA AP-42 and CEPEI emission factor data sets for filterab	le
	and condensable particulate matter – gas-fired gas turbines and combined	
	cycle/cogeneration units.	30

32

Figure 6-2: Comparison of EPA AP-42 and CEPEI PM2.5 emission factor data sets for filterable and condensable particulate matter– four-stroke reciprocating engines.

LIST OF TABLES

Contents iv Ramboll Environ

LIST OF APPENDICES

Appendix A: CEPEI PM2.5 Test Results Summary

Appendix B: U.S. EPA AP-42 Emission Factor Data Summaries

Appendix C: GE Energy Gas Turbine Test Data Summary

Appendix D: API RICE Test Data Summary

Appendix E: CEPEI 2012 Technical Memorandum

T5EmissionFactorReport-R0.docx

ACRONYMS AND ABBREVIATIONS

% percent

%vol percent volume

°C degrees Centigrade

°F degrees Fahrenheit

°R degrees Rankine

μg microgram

2SLB two-stroke lean burn
4SLB four-stroke lean burn
4SRB four-stroke rich burn

A/F air-fuel ratio controller

Ag silver

Al aluminum

API American Petroleum Institute

Au gold Ba barium

BC British Columbia

Br bromine

Btu British thermal unit

Btu/scf British thermal units per standard cubic foot

Ca calcium
Cd cadmium
Ce cerium

CEPEI Canadian Energy Partnership for Environmental Innovation

cfm cubic feet per minute

Cl chlorine
Cl chloride ion

CO Cat CO oxidation catalyst

CO carbon monoxide

Co cobalt

CO₂ carbon dioxide

cPM condensable particulate matter

Cr chromium

Cs cesium

CTM 39 U.S. EPA Conditional Test Method 039

Cu copper

DB duct burner
DR dilution ratio

dscf dry standard cubic foot (unless otherwise noted, standard reference conditions

are 528°R, 29.92 in. Hg)

dscfm dry standard cubic feet per minute

dscm dry standard cubic meter

EC elemental carbon

Eu europium

Fe iron

fPM filterable particulate matter

g gram

GJ/hr gigajoules per hour

gr grain (= 1/7000 pound)

GTCC/C gas turbine combined cycle cogeneration unit

Hg mercury

HHV higher (gross) heating value

hp horsepower

hr hour
In indium

K potassium

kg/GJ kilograms per gigajoule kg/s kilograms per second

La lanthanum

lb pound

LPC lean premix combustor

Mg magnesium mg milligram

MMBtu million British thermal units

MMBtu/hr million British thermal units per hour

Mn manganese
Mo molybdenum

MW megawatt

Na sodium

Na+ sodium ion

NH₄+ ammonium ion

Ni nickel

NO₃ nitrate ion

NO_X nitrogen oxides

NSCR non-selective catalytic reduction

O₂ oxygen (molecular)

OC organic carbon
P phosphorus

PAH polycyclic aromatic hydrocarbons

Pb lead

PCC pre-combustion chamber

PM particulate matter

PM10 particulate matter with aerodynamic diameter of 10 micrometers and smaller
PM2.5 particulate matter with aerodynamic diameter of 2.5 micrometers and smaller

psia pound per square inch absolute

Q-Q quantile-quantile (graph)

Rb rubidium

RICE reciprocating internal combustion engine

RPM revolutions per minute

S sulfur

Sb antimony

scf standard cubic foot

scfd standard cubic feet per day
SCR selective catalytic reduction

Si silicon

Sm samarium

Sn tin

 SO_2 sulfur dioxide SO_4^{2-} sulfate ion $SO_4^{=}$ sulfate ion Sr strontium STP standard temperature and pressure

SVOC semivolatile organic compounds

Tb terbium
Ti titanium
TI thallium

TMF Teflon® membrane filter

U uranium

UPL upper prediction limit

U.S. EPA U.S. Environmental Protection Agency

U.S. United StatesV vanadiumW tungstenY yttrium

Zn zinc

Zr zirconium

1. EXECUTIVE SUMMARY

In 2012, the Canadian Energy Partnership for Environmental Innovation (CEPEI) published a technical memorandum¹ providing alternative PM2.5 (particles with aerodynamic diameter of 2.5 micrometers and smaller) air emission factors and species profiles for natural gas-fired boilers, process heaters, a diesel engine and gas turbine combined cycle/cogeneration power plants. This document provides updated emission factors for natural gas-fired gas turbines/combined cycle/cogeneration units and new emission factors for natural gas-fired spark-ignited reciprocating engines.

Previously reported PM2.5 emission factors and species profiles² are based on tests conducted in the United States (U.S.) from 1998 to 2003 during an industry-government collaboration led by GE Energy and Environmental Research Corporation (GE EER) using a dilution sampling methodology. Dilution sampling is thought to provide more accurate measurements of PM2.5 from gas combustion than traditional hot filter/cooled impinger test methods. The California Energy Commission, New York State Energy and Research Development Authority and U.S. Department of Energy co-sponsored the work along with the American Petroleum Institute (API) and Gas Research Institute. The U.S. Environmental Protection Agency (U.S. EPA) served as external peer reviewers during the study, contributing to the study design and results review, eventually adopting PM2.5 and PM10 emission factors for natural gas combustion derived from the results for use in its tri-annual air pollutant National Emission Inventories (NEIs). Those tests included two natural gas-fired heavy duty gas turbine combined cycle power generation units with lean premix combustors and a refinery gas-fired aeroderivative gas turbine cogeneration system, all three with supplementary firing capability and with post-combustion emission controls (oxidation catalyst and selective catalytic reduction, SCR). No natural gas-fired reciprocating engines were included in those collaborative tests. API separately sponsored tests of three natural gas-fired spark-ignited reciprocating engines operating as natural gas production compressor drives in 2003³. In 2008, GE Energy subsequently conducted method evaluation tests on a natural gas-fired combined cycle power generation unit with SCR using a similar dilution methodology based on modified U.S. EPA Conditional Test Method 39 (CTM 39), with external peer review participation from U.S. EPA, California Air Resources Board and the South Coast Air Quality Management District. In 2014, the Utah Department of Environmental Quality (in consultation with U.S. EPA) approved PM10 tests using modified CTM 39 to demonstrate compliance with PM10 emission limits based on U.S. EPA's NEI PM10 emission factor. Thus, modified CTM 39 has been applied with consent of regulatory agencies for PM2.5/10 emission factor development and for regulatory compliance demonstration.

In 2015, CEPEI and the Petroleum Technology Alliance of Canada (PTAC), including the British Columbia Oil and Gas Research and Innovation Society (BC OGRIS), sponsored new tests on two natural gas-fired engines in Canada: a gas turbine engine and a spark-ignited reciprocating engine, both operating as natural gas pipeline compressor drives and with no post-combustion controls. The engines are typical of Canadian natural gas pipeline engines in terms of size, configuration, emission controls and operation. The objective of the tests was to provide data for developing updated PM2.5

Executive Summary 1 Ramboll Environ

¹ Fine Particulate Emissions from Natural Gas-Fired Combustion Sources: Alternative PM2.5 Emission Factors, Technical Memorandum, Innovative Environmental Solutions Inc., for Canadian Energy Partnership for Environmental Innovation, October, 2012.

² England, G.C. Development of Fine Particulate Emission Factors and Speciation Profiles for Oil and Gas-fired Combustion Systems, Final Report, 2004, prepared for U.S. Department of Energy, Gas Research Institute, American Petroleum Institute, California Energy Commission and New York State Energy Research and Development Authority, http://www.nyserda.org/environment/emepreports.html.

³ England, G.C., K.R. Loos, K. Ritter. Measurements of PM2.5 Mass and Species Emissions from Natural Gas-Fired Reciprocating Internal Combustion Engines, SPE-94201-PP, Exploration & Production Environmental Conference, Society of Petroleum Engineers, Galveston, TX. March 2005.

emission factors and species profiles representative of engines in Canada without post-combustion controls applicable to upstream and downstream oil and gas operations and natural gas end users. The tests were conducted using a stationary source dilution sampling method combined with ambient air sample collection and analysis methods to determine both the mass and chemical speciation of combined filterable plus condensable PM2.5 emissions. The methodology is similar to that used for the earlier GE EER test program. The chemical composition of the collected aerosols also was determined (elements, selected ions and organic and elemental carbon). Detailed test results obtained in this study are provided in a separate Test Report.

Updated PM2.5 emission factors and species profiles were derived from the CEPEI test results and data from the earlier tests noted above. PM2.5 mass emission factors for gas turbines, gas turbine combined cycle/cogeneration units and for four-stroke reciprocating internal combustion engines, expressed as kilograms of PM2.5 per gigajoule of fuel heat input (kg/GJ), are provided in Table E-1. The maximum and 95% confidence upper bound provide an indication of the upper limits of the data set. The 99% confidence upper prediction limit provides an indication of an upper limit for the average for the <u>next</u> unit tested.

U.S. EPA's Compilation of Air Pollutant Emission Factors ("AP-42") is a widely-referenced source of emission factors. The published AP-42 filterable and condensable particulate matter emission factors for natural gas-fired gas turbine and four-stroke reciprocating engines, also shown in Table E-1, are based on tests of three gas turbines⁴, two four-stroke lean burn and three four-stroke rich burn reciprocating engines.

The average CEPEI PM2.5 emission factor of 0.000101 kg/GJ for gas-fired gas turbines and cogeneration/combined cycle units based on dilution sampling methods is 1/28 (3.5%) of the combined AP-42 gas turbine emission factor for filterable and condensable particulate matter (0.00285 kg/GJ).

The average emission factor of 0.00150 kg/GJ for four-stroke reciprocating engines is 1/6 (16%) of the combined filterable and condensable particulate matter emission factor for all four-stroke engines derived from the AP-42 data set (0.00673 kg/GJ). Further, there are no condensable particulate matter test data for four-stroke rich burn engines in the AP-42 data set; the condensable particulate matter emission factor reported in AP-42 for four-stroke rich burn engines is based on two four-stroke lean burn engine tests.

Although AP-42 does not report uncertainty associated with the emission factors, the total particulate matter emission factor uncertainty calculated from the underlying data is 85% for the gas turbine and 270% and 438% for four-stroke rich burn and lean burn engines, respectively. The very large uncertainties for the AP-42 four-stroke engine emission factors are due to both the wide range of emissions among the units and the small number of units tested. Although the CEPEI and AP-42 data sets are similar in size, the improved precision of measurements in CEPEI's data set results in lower uncertainties. Although the data sets are small in both cases, we consider the CEPEI emission factors more robust than the AP-42 factors because of much lower uncertainty (in terms of both relative percent and absolute magnitude).

-

⁴ Two of the three units were tested with and without power augmentation. EPA treated each test as a separate unit for emission factor calculation. See discussion in Section 6.

Table E-1: Comparison of CEPEI and EPA AP-42 PM emission factors for gas-fired gas turbines, combined cycle/cogeneration units and four-stroke reciprocating engines

Parameter	Gas-fired gas turbines, gas turbine cogeneration & combined cycle units (kg/GJ)	Natural gas-fired spark- ignited reciprocating engines (four-stroke) (kg/GJ)			
CEPEI Emission Factors (PM2.5, d	ilution sampling methods)				
Number of units tested	6 (5*)	3			
Average	0.000101	0.00150			
Uncertainty (95% confidence)	80%	116%			
maximum	0.000236	0.00216			
95% confidence upper bound	0.000148	0.00226			
99% confidence upper prediction limit	0.000380	0.00710			
U.S. EPA AP-42 Emission Factors	U.S. EPA AP-42 Emission Factors (hot filter/cooled impinger sampling methods)				
Number of units tested	5 (3**)	3 (four-stroke rich burn) 2 (four-stroke lean burn)			
Total particulate matter (filterable + condensable)	0.00285 (uncertainty 85%)	0.00835 (four-stroke rich burn) (uncertainty 270%) 0.00430 (four-stroke lean burn) (uncertainty 438%) 0.00673 (four-stroke all) (uncertainty 446%)***			

^{*}Five units were actually tested. One natural gas combined cycle unit at gas turbine was tested at full load with and without duct burners. Each test was treated as a separate unit, representing emissions for units with and without duct burner (supplementary firing) capability.

Average PM2.5 chemical species are measured primarily as organic carbon, with minor amounts of sulfate, ammonium, elemental carbon, chloride, nitrate and other elements. Iron and silica were more prevalent in PM2.5 from the reciprocating engines than the gas turbines and combined cycle/cogeneration units. Sulfate and ammonium were not detected in the samples from the CEPEI 2015 test program. This likely reflects low natural gas sulfur content and the absence of post-combustion catalysts (e.g., selective catalytic reduction⁵ or CO oxidation catalysts) on this unit, as

Executive Summary 3 Ramboll Environ

^{**}Three units were actually tested. Two units were tested with and without power augmentation. Each test was treated as a separate unit.

^{***}AP-42 does not report an aggregate emission factor for four-stroke engines. This value was calculated for comparison purposes by aggregating the unit average values used to calculate emission factors for rich burn and lean burn engines.

⁵ Catalysts are known to promote oxidation of SO₂ to SO₃, a precursor to particulate sulfate emissions.

compared with the refinery gas and natural gas-fired units tested previously in the U.S which did have post-combustion catalysts.

The CEPEI PM2.5 emission factor for gas turbines and combined cycle/cogeneration units is based on six tests of five units 6 including one unit firing refinery gas and four units firing natural gas. This includes simple and combined cycle/cogeneration units with and without post-combustion catalysts for NO_X and CO emissions reduction. In contrast, the AP-42 PM emission factors include data for five tests of three natural gas-fired gas turbines with water injection (for NO_X emissions control) but without post-combustion catalysts.

The CEPEI PM2.5 emission factor for four-stroke reciprocating engines is based on tests of three units: one four-stroke rich burn engine with non-selective catalytic NO_X reduction and two four-stroke lean burn engines with no post-combustion emission controls. The number of units tested is comparable with the number of units included in the AP-42 data sets. The PM2.5 emission data in the CEPEI data set for the rich burn engine is approximately four times greater than the PM2.5 emission data for the two lean burn engines. The small number of units and range of PM2.5 emissions contribute to large relative uncertainty – 186% - in the average CEPEI PM2.5 emission factor. Nevertheless, the uncertainty associated with the CEPEI PM2.5 emission factor is considerably lower than the uncertainties for the AP-42 filterable and condensable particulate matter (and by summation, total PM) emission factors, as noted above. Previous studies showed that the dilution sampling test methodology on which the CEPEI PM2.5 emission factor is based is more accurate and precise than the hot filter/cooled impinger test methods used for the AP-42 filterable and condensable particulate matter emission factors. Therefore, the CEPEI PM2.5 emission factor for natural gas-fired four-stroke engines is considered more robust than the respective AP-42 emission factors.

As a general precaution, an average or median emission factor should not be used to establish emissions limits or standards because emissions from half of the units will be higher than the average and half will be lower (assuming a normal distribution). However, an average or median emission factor is appropriate to estimate average emissions from a population of similar units. Additional testing of natural gas-fired gas turbines and/or combined cycle/cogeneration units over time could further reduce uncertainty and improve emission factor quality.

Executive Summary 4 Ramboll Environ

⁶ One combined cycle unit was tested with and without duct burners firing. Each test was treated as a separate unit for emission factor analysis purposes.

2. INTRODUCTION

Atmospheric particles with aerodynamic diameter less than or equal to 2.5 micrometers (PM2.5) contribute to adverse human health, regional haze (visibility) and ecosystem effects. Most airborne PM2.5 derives from gaseous emissions that react slowly in the atmosphere to form fine particles ("secondary" PM2.5). The contribution of directly emitted ("primary") PM2.5 varies among different source types, but is relatively small for engines, boilers and other combustion equipment burning gaseous fuels. Nevertheless, PM2.5 emissions from natural gas-burning engines often receive exceptional scrutiny in populated urban areas.

Widely published PM2.5 emission factors, such as those given in the *Compilation of Air Pollutant Emission Factors* (AP-42)⁷ published by the U.S. Environmental Protection Agency (U.S. EPA), are based on traditional emissions test methods for filterable and condensable PM2.5 use using hot filter/cooled impinger techniques. Previous studies showed that these methods lack sufficient sensitivity to accurately and precisely measure the very low PM2.5 concentrations typical of gas-fired combustion sources. Also, PM2.5 results from such methods often are biased high due to substances formed from gases in the samples after collection (a chemical measurement artifact, often in the form of sulfates). Although the degree of high bias due to insufficient sensitivity and chemical artifacts may be small relative to higher PM2.5 concentrations for other source types, typically it is significant relative the low PM2.5 concentrations characteristic of gas-fired combustion sources⁸. Current PM2.5 emission factors for natural gas-fired engines therefore exaggerate estimated human health and environmental impacts and often unnecessarily aggravate concerns during plant siting and licensing.

Dilution sampling methods offer greater sensitivity and precision than traditional hot filter/cooled impinger PM2.5 test methods, leading to more accurate PM2.5 emission factors. The Canadian Energy Partnership for Environmental Innovation (CEPEI) recently published recommended alternative PM2.5 emission factors for natural gas-fired gas turbine engines, gas turbine combined cycle or cogeneration units, boilers and process heaters that are based on tests conducted in the U.S. under a collaborative, multi-stakeholder government-industry research program. That program applied dilution sampling with proven ambient air sample collection and analysis methods. The PM2.5 emission factors resulting from that program are less than 1/10 of the combined filterable plus condensable particulate matter emission factors for natural gas external combustion (boilers and process heaters) and gas turbines published in AP-42. Subsequent tests sponsored by the American Petroleum Institute using the same test methodology produced PM2.5 emission factors for natural gas-fired reciprocating engines that are considerably lower than their respective AP-42 emission factors. More recently, the test methodology was further refined as a modification of a U.S. EPA dilution sampling test method and applied in tests of a natural gas-fired gas turbine combined cycle unit and several gas-fired refinery boilers and process heaters, yielding PM2.5 emission factor results of magnitude similar to those in the earlier tests. Thus, there is a growing body of test results useful for developing improved, more accurate PM2.5 emission factors for gas-fired combustion sources and an emerging test protocol for a standardized PM2.5 dilution sampling test methodology that is capable of reliable measurements at these low levels.

Introduction 5 Ramboll Environ

⁷ Compilation of Air Pollutant Emission Factors, AP-42, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina. https://www3.epa.gov/ttnchie1/ap42/.

Wien, S., G.C. England, K.R. Loos, and K. Ritter. Investigation of Artifacts in Condensable Particulate Measurements for Stationary Combustion Sources, 94th Air &Waste Manage Association Annual Conference and Exhibition, Orlando, Florida. June 2001.

The gas turbine and reciprocating engines in the U.S. program employed catalytic emissions controls that are not widely used in Canada. Catalytic emission controls such as selective catalytic NO_X reduction can both reduce and contribute to PM2.5 emissions, depending on site-specific parameters. Therefore, there is a need for improved PM2.5 emission factors representative of units in Canada.

2.1 CEPEI Project Description

The primary goal of the project is to update PM2.5 emission factors and chemical speciation profiles that will be used for federal and provincial/territorial air quality permitting/licensing applicable to engines used in upstream/downstream oil and gas operations in Canada. A key objective is to gain acceptance for using the new emission factors among industry, government, consultants and the community. The project was sponsored by CEPEI and several of its member companies (ATCO Gas, Enbridge Gas Distribution Inc., FortisBC, Manitoba Hydro, SaskEnergy TransGas, TransCanada PipeLines Ltd., and Union Gas Limited) and by the Petroleum Technology Alliance Canada (PTAC), including funding from the BC Oil and Gas Research and Innovation society (OGRIS).

This project generated new test data and updated PM2.5 emission factors for natural gas-fired engines applicable to upstream and downstream oil and gas operations as well as end user engine applications. The tests were conducted using a proven dilution sampling method combined with ambient air sample collection and analysis methods to determine both the mass and chemical speciation of PM2.5 emissions. A modified version of U.S. EPA Conditional Test Method 039 (CTM 39) that has been recently applied to tests of several gas-fired sources was used. The modified method combines key elements of the scientifically proven research dilution sampling method used in the U.S. program within the general framework and equipment of the published U.S. EPA method.

The chemical composition of the collected aerosols also was determined (51 elements by x-ray fluorescence; sulfate, nitrate, chloride & other ions by ion chromatography and organic and elemental carbon by thermal optical reflectance). These results help clarify the true contribution of sulfates to PM2.5 emissions. Chemically speciated PM2.5 profiles will be applicable to source apportionment and health risk analysis.

Tests were conducted on two units: one is a natural gas-fired combustion turbine employing lean premix low- NO_X combustors; the other site is a natural gas-fired lean burn reciprocating engine. The host site units are representative of engine size and configurations for Canadian upstream and downstream oil and gas applications (such as compressor drives). Neither of the units employed post-combustion catalysts for additional emissions control, which distinguishes them from units previously tested in the U.S. They also may be representative of power generation and cogeneration applications. The goal in selecting these units is to assure that the data can be extrapolated to the widest range of gas-burning engines.

3. DATA SOURCES

3.1 CEPEI Test Program Results (2015)

The primary objectives were:

- Measure PM2.5 mass concentrations and selected species (elements, ions, organic and elemental carbon) in the stack gas using a dilution sampler combined with ambient air sample collection and analysis methods;
- Measure O₂ and CO₂ concentrations in the stack gas and fuel composition to enable calculation of PM2.5 emission factors via the use of fuel factors ("F factors") following U.S. EPA Method 19;

The secondary objectives were:

- Collect data needed to evaluate CTM 39 method performance and optimize future test protocols, including collection and analysis of replicate sample and sample train blanks and replicate reagent blanks;
- Compare samples and blanks to determine significance of differences;
- Evaluate replicate blanks to determine overall method sensitivity and reporting limits.

The tests were conducted using a version of CTM 39, a stationary source PM10/2.5 dilution sampling method, modified by adding ambient air sample collection and analysis methods to determine both the mass and chemical speciation of PM2.5 emissions. The method combines key elements of the scientifically proven dilution sampling method used in previous U.S. research programs within the general framework and equipment of a published U.S. EPA test method. The method also reflects several elements of ISO 25597-13, another more recently published stationary source PM10/2.5 dilution sampling method, with respect to splitting the diluted sample and sample collection on 47-mm Teflon® membrane filters and quartz fiber filters.

The chemical composition of the collected aerosols was determined (51 elements by x-ray fluorescence; sulfate, nitrate, chloride, ammonium & other ions by ion chromatography and colorimetry, and organic and elemental carbon by thermal optical absorbance/reflectance). These results help to clarify the contribution of sulfates to air emissions from these types of engines. PM2.5 chemical species profiles developed from the results also will be useful for source apportionment and health risk analysis.

Tests were conducted on two units at different natural gas pipeline compressor stations (Table 3-1): one is a natural gas-fired combustion (gas) turbine engine employing lean premix low- NO_X combustors; the other is a natural gas-fired four-stroke lean burn reciprocating engine. Neither site employs post-combustion emission controls. The engines are considered representative of engine sizes and configurations used in Canadian upstream and downstream oil and gas applications (such as compressor drives). They also may be representative of power generation and cogeneration applications. The tests were designed to assure that the data can be extrapolated to the widest range of gas-burning engines.

A detailed summary of the CEPEI test results is provided in Appendix A.

Table 3-1: Process and air pollution control descriptions.

Unit ID	Process Description	Air Pollution Controls
Site Alfa	Natural gas-fired reciprocating internal combustion engine, four-stroke, lean burn, turbocharged, Waukesha Model 12VAT27GL, 3130 horsepower (2.3 MW), commissioned circa 1997. The engine was nearing the end of its major scheduled maintenance cycle at the time of the tests.	Pre-combustion chambers, air/fuel ratio controller
Site Buick	Natural gas-fired gas turbine engine, Rolls Royce model RB211 24DLE, 27.5 MW mechanical power output capacity, in service as a natural gas compressor drive.	Dry low emissions (lean premix) combustion system, short can version

The engines were operated on natural gas fuel at approximately constant power output, with an engine load of 80% of rated capacity or higher. Process operating conditions for each test run indicate stable operation within the target operating range for each test (Tables 3-2 and 3-3).

Table 3-2: Site Alfa reciprocating engine average operating conditions during PM2.5 tests.

Parameter	Units	Run 1	Run 2	Run 3
Date		20 Oct 2015	20 Oct 2015	21 Oct 2015
Fuel heat input (gross)	GJ/hr	20.8	20.5	20.5
Engine speed	RPM	950	950	949

Table 3-3. Site Buick gas turbine average operating conditions during PM2.5 tests.

Parameter	Units	Run 1	Run 2	Run 3
Date		15 Oct 2015	16 Oct 2015	17 Oct 2015
Power output	kW	21,000*	23,000*	23,072
Turbine speed	RPM	*	*	4,307
Fuel gas flow rate	kg/s	1.29*	1.39*	1.39

^{*}Data not available due to data recorder error. Power and fuel flow rates for Runs 1 and 2 estimated from Run 3 data based on measured stack gas flow rates and O_2 concentrations.

Average PM2.5 mass emission rates in kg/GJ are summarized in Table 3-4. Reconstructed mass (i.e., the sum of individual species adjusted for oxides and organic carbon artifact) and measured mass agree well (within $\pm 6\%$) for the reciprocating engine tests. The measured PM2.5 mass for gas turbine engine Run 1 is very high relative to Runs 2 and 3. This is accounted for primarily by silicon (as silicon dioxide). This strongly suggests sample contamination for Run 1, which may have been introduced during sample train operation troubleshooting prior to starting the run. The measured mass is much lower than the reconstructed mass for gas turbine Runs 2 and 3. Because the reconstructed masses are more consistent from run to run when excluding silicon in Run 1, the reconstructed masses from each of the three test runs (excluding silicon in Run 1) were used to calculate the average gas turbine PM2.5 mass emission rate shown in Table 3-4. Perhaps fortuitously, the averages of the measured and reconstructed masses for all three runs are nearly the same (2.42E-04 and 2.36 E-04 kg/GJ, respectively).

Table 3-4: Average PM2.5 mass emission factors for natural gas-fired reciprocating engine and gas turbine.

Unit	PM2.5, kg/GJ
Reciprocating Engine (Site Alfa)	0.00150
Gas Turbine Engine (Site Buick)	0.000236

31 elements and ions were not detected in any runs on the reciprocating engine. Twenty species that were detected in at least one reciprocating engine run account for 99.69% of total reconstructed mass (Table 3-5). Ninety-four percent of total mass is accounted for by organic carbon (OC), followed by sulfur (S), elemental carbon (EC) and calcium (Ca) which account for 4.5 percent of total mass. Nitrate ion accounted for 0.33%.

Table 3-5: PM2.5 species profile – Site Alfa reciprocating engine (detected in at least one test run, as fraction of reconstructed mass).

Species	Mass Fraction	Species	Mass Fraction
ОС	0.94	Eu	0.00064
S	0.018	Na ⁺	0.00050
EC	0.017	Ва	0.00031
Ca	0.011	Fe	0.00028
NO ₃ -	0.0033	Ti	0.00024
Zn	0.0015	W	0.00021
Cl	0.0014	Ce	0.00022
Si	0.0013	K	0.00021
Р	0.0012	Cs	0.00018
Al	0.00060	La	0.00012

36 elements and ions were not detected in any runs on the gas turbine engine. Twenty species account for 98.9 percent of reconstructed mass (Table 3-6). OC accounts for 80 percent of total reconstructed mass, followed by sodium (Na), EC and magnesium (Mg).

The trace element concentrations with mass fractions less than 0.001 generally are near to the analytical minimum reporting limits and or field blank levels (less than 5 times higher than), and Na results should be considered qualitative due to limitations of the analytical technique.

Table 3-6: PM2.5 species profile – Site Buick gas turbine engine (detected in at least one test run, as fraction of reconstructed mass).

Species	Mass Fraction	Species	Mass Fraction
ОС	0.80	NO ₃ -	0.0018
Na	0.089	W	0.0012
EC	0.042	Br	0.0015
Mg	0.023	Cs	0.00049
Р	0.0076	Cl	0.00050
Sm	0.0053	K	0.00054
Eu	0.0046	Cd	0.00045
Si	0.0041	Ва	0.00041
Tb	0.0033	Sb	0.00033
Ce	0.0023	Sn	0.00028

A detailed test report includes a full description of the test methodology and results⁹ and a detailed summary of the test results is provided in Appendix A.

3.2 U.S. Collaborative Test Program (1998-2003)

A collaboration between industry (American Petroleum Institute, Gas Research Institute) and U.S. government agencies (California Energy Commission, U.S. Department of Energy, New York Energy Research and Development Authority) from 1998 to 2004 conducted PM2.5 tests using a dilution sampling methodology on nine natural gas- and refinery gas-fired boilers, process heaters, gas turbine combined cycle/cogeneration units, one oil-fired boiler and one diesel engine. The American Petroleum Institute sponsored tests on a boiler and a process heater at U.S. refineries in 1998¹⁰ and 1999¹¹ using a research dilution sampling methodology and a traditional hot filter/cooled impinger method to characterize PM2.5 mass and chemical species. A laboratory test¹⁰ also was conducted with simulated combustion gases to evaluate "pseudoparticulate" formation in the cooled impingers, used for determining condensable particulate matter (cPM), due to conversion of sulfur dioxide (SO₂) gas to solid residues within the measurement process that contribute to reported cPM ("SO₂ artifact"). These tests first identified that traditional hot filter/cooled impinger method results for gas-fired combustion sources may be significantly biased high due to sulfate artifacts. Gas Research Institute (GRI) subsequently co-sponsored a test with API on a U.S. natural gas-fired steam generator¹² with similar findings. Subsequent tests co-sponsored by API, GRI and the U.S. government agencies listed above collected PM2.5 mass and chemical species data from six additional gas-fired sources: three gas

Data Sources 10 Ramboll Environ

⁹ England, G.C., CEPEI PM2.5 Emission Factor Development Test Report, Natural Gas-Fired Reciprocating and Gas Turbine Engines, Ramboll Environ, Irvine California, prepared for Canadian Energy Partnership for Environmental Innovation, Guelph, Ontario.

¹⁰ England, G.C. and S. Wien. Gas Fired Boiler – Test Report Refinery Site A, Characterization of fine Particulate emission factors and Speciation Profiles from Stationary Petroleum Industry Combustion Sources. Publication 4702, GE Energy and Environmental Research Corporation, Irvine, California, prepared for American Petroleum Institute, Washington, D.C. 2001.

¹¹ England, G.C. and S. Wien. Gas Fired Heater – Test Report Site B – Characterization of Fine Particulate Emission Factors and Speciation Profiles from Stationary Petroleum Industry Combustion Sources. Publication 4704, GE Energy and Environmental Research Corporation, Irvine, California, prepared for American Petroleum Institute, Washington, D.C. 2001.

¹² England, G.C. and S. Wien. Gas-Fired Steam Generator – Test Report Site C: Characterization of Fine Particulate emission factors and Speciation Profiles from Stationary Combustion Sources. Publication 4712, GE Energy and Environmental Research Corporation, Irvine, California, prepared for American Petroleum Institute, Washington, D.C. 2001.

turbine combined cycle/cogeneration units¹³,¹⁴,¹⁵ one boiler¹⁶, and two process heaters¹⁷,¹⁸. In these tests, measurements were made using both a research dilution sampler used in the earlier tests and a compact dilution sampler developed during the program. All tests used the same ambient air sample collection and analysis methods, except that the laboratory analytical protocol for semivolatile organic compounds (SVOC) was changed to focus on determination of polycyclic aromatic hydrocarbons (PAH) rather than total SVOC mass speciation after Site Bravo tests in 2001. CEPEI's 2012 technical memorandum (Appendix E to this report) summarized these tests and developed recommended PM2.5 emission factors and species profiles from the results.

3.3 API Reciprocating Engine Tests (2003)

In 2003, API sponsored tests of three natural gas-fired spark-ignited reciprocating internal combustion engines (RICE) used as compressor drives at a natural gas production facility^{19,20}. A two-stroke engine, a four-stroke rich burn engine and a four-stroke lean burn engine were tested (Table 3-7). The four-stroke rich burn engine was equipped with non-selective catalytic reduction for nitrogen oxides (NO_X)

Data Sources 11 Ramboll Environ

Wien, S., England, G.C. and Chang, M.C., Development of Fine Particulate Emission Factors and Speciation Profiles for Oil and Gas-fired Combustion Systems, Topical Report: Test Results for a Combined Cycle Power Plant with Supplementary Firing, Oxidation Catalyst and SCR at Site Bravo, GE Energy and Environmental Research Corporation, Irvine, California, prepared for U.S. Department of Energy, Gas Research Institute, American Petroleum Institute, California Energy Commission and New York State Energy Research and Development Authority, 2004. http://www.energy.ca.gov/pier/project_reports/CEC-500-2005-032_to_44.html.

¹⁴ England, G.C., Wien, S., McGrath, T.P., and Hernandez, D., Development of Fine Particulate Emission Factors and Speciation Profiles for Oil and Gas-fired Combustion Systems, Topical Report: Test Results for a Combined Cycle Power Plant with Oxidation Catalyst and SCR at Site Echo. GE Energy and Environmental Research Corporation, Irvine, California, prepared for U.S. Department of Energy, Gas Research Institute, American Petroleum Institute, California Energy Commission and New York State Energy Research and Development Authority, 2004. http://www.energy.ca.gov/pier/project_reports/CEC-500-2005-032_to_44.html.

¹⁵ England, G.C. and T. McGrath, "Development of Fine Particulate Emission Factors and Speciation Profiles for Oil and Gas-fired Combustion Systems, Topical Report: Test Results for A Cogeneration Plant with Supplementary Firing, Oxidation Catalyst and SCR at Site Golf. GE Energy and Environmental Research Corporation, Irvine, California, prepared for U.S. Department of Energy, Gas Research Institute, American Petroleum Institute, California Energy Commission and New York State Energy Research and Development Authority, 2004. http://www.energy.ca.gov/pier/project_reports/CEC-500-2005-032_to_44.html.

Wien, S., McGrath, T.P., England, G.C. and Chang, O.M.C., Development of Fine Particulate Emission Factors and Speciation Profiles for Oil and Gas-fired Combustion Systems, Topical Report: Test Results for a Dual Fuel-Fired Commercial Boiler (Site Delta). GE Energy and Environmental Research Corporation, Irvine, California, prepared for U.S. Department of Energy, Gas Research Institute, American Petroleum Institute, California Energy Commission and New York State Energy Research and Development Authority, 2004. http://www.energy.ca.gov/pier/project_reports/CEC-500-2005-032_to_44.html.

Wien, S., England, G.C. and Chang, O.M.C., Development of Fine Particulate Emission Factors and Speciation Profiles for Oil and Gas-fired Combustion Systems, Topical Report: Test Results for a Gas-Fired Process Heater (Site Alpha), GE Energy and Environmental Research Corporation, Irvine, California, prepared for U.S. Department of Energy, Gas Research Institute, American Petroleum Institute, California Energy Commission and New York State Energy Research and Development Authority, 2003. http://www.energy.ca.gov/pier/project_reports/CEC-500-2005-032_to_44.html.

Wien, S., England, G.C. and Chang, O.M.C., "Development of Fine Particulate Emission Factors and Speciation Profiles for Oil and Gas-fired Combustion Systems, Topical Report: Test Results for a Gas-Fired Process Heater with Selective Catalytic Reduction (Site Charlie). GE Energy and Environmental Research Corporation, Irvine, California, prepared for U.S. Department of Energy, Gas Research Institute, American Petroleum Institute, California Energy Commission and New York State Energy Research and Development Authority, 2003. http://www.energy.ca.gov/pier/project_reports/CEC-500-2005-032 to 44.html.

¹⁹ England, G.C., K.R. Loos, K. Ritter. Measurements of PM2.5 Mass and Species Emissions from Natural Gas-Fired Reciprocating Internal Combustion Engines, SPE-94201-PP, Exploration & Production Environmental Conference, Society of Petroleum Engineers, Galveston, TX. March 2005.

²⁰ England, G.C., McGrath, T.P., Hernandez, D. PM2.5, PM2.5 Precursor and Hazardous Air Pollutant Emissions from Natural Gas-Fired Reciprocating Engines: Final Report (Draft). GE Energy and Environmental Research Corporation, Irvine, California, prepared for American Petroleum Institute, Washington, D.C. 2004.

emissions control. The two-stroke engine had precombustion chambers and no post-combustion emission controls and the four-stroke lean burn engine had no post-combustion emission controls.

Table 3-7: Reciprocating engines tested in 2003 API test program.

Туре	Make/Model	Size	Emission Controls
four-stroke lean burn	Caterpillar G3606TA	1665 hp	None
four-stroke rich burn	Ingersoll Rand 48 KVSA (turbocharged)	1626 hp	NSCR
two-stroke lean burn	Cooper Bessemer GMVH-12C (turbocharged)	2700 hp	Precombustion chambers

PM2.5 and chemical species were measured using the GE compact dilution sampler and the same ambient air sample collection and analysis methods as used in the earlier tests discussed above. Operating conditions, PM2.5 mass, OC/EC, particulate carbon, elements and ions results for each test run and for each engine are summarized in Appendix D. Volumetric parameters are given at 20 °C reference temperature unless otherwise noted. The average PM2.5 emission factor for each engine type ranged from 0.000774 for the four-stroke rich burn engine to 0.00859 kg/GW for the two-stroke lean burn engine (Table 3-8). The species profiles for all engines are dominated by organic carbon, which accounts for 80 to 98 percent of the PM2.5 mass (Table 3-9).

Table 3-8: PM2.5 emission factors for reciprocating engines tested in 2003 API test program

Туре	PM2.5 (kg/GW)
four-stroke lean burn	2.16E-03
four-stroke rich burn	7.74E-04
two-stroke lean burn	8.59E-03

Table 3-9: PM2.5 species profile for reciprocating engines tested in 2003 API test program (percent)

Species	4SRB	4SLB	2SLB
Organic Carbon (OC)	80	90	98
Si	6.0	1.4	0.18
Fe	3.9	5.8	
SO ₄ =	3.2	0.66	0.24
Elemental Carbon (EC)	2.5		0.75
Ca	1.2	0.53	0.28
NH ₄ ⁺	0.89		0.07
Zn	0.57	0.55	0.08
NO ₃ -	0.47	0.25	0.19
CI-	0.38	0.15	0.05
Мо	0.14	0.07	0.03
Р	0.14		0.03
Soluble Na ⁺	0.06	0.05	0.06
Cu	0.05	0.06	0.01
Со	0.03	0.02	
К	0.03	0.04	0.01
Cr	0.02	0.01	
Sn	0.02		
Ва		0.02	0.01
Ni		0.01	

3.4 GE Energy Gas Turbine Combined Cycle Unit Tests (2008)

In 2008, GE Energy developed a modified version of CTM 39 for measuring low concentrations in stack gases from natural gas-fired gas turbines and combined cycle/cogeneration units. U.S. EPA, California Air Resources Board, the South Coast Air Quality Management District, the Sacramento Metropolitan Air Quality Management District, and the San Juaquin Valley Air Pollution Control District participated in test planning and results review. The modifications to CTM 39 included addition of ambient air sample collection and analysis methods similar to those used in the U.S. collaborative program. To evaluate method performance, nine test runs with paired modified CTM 39 sampling trains were

conducted on one 170 MW gas turbine unit of a 500 MW a natural gas-fired combined cycle power plant equipped with lean premix combustors and SCR²¹. The unit did not have duct burners.

CTM 39 specifies recovery of particles deposited on the sampler surfaces by quantitatively rinsing the surfaces with acetone and water after each test. The results showed that PM2.5 masses reported in the acetone and water recovery rinses for samples and for six replicate sample train field blanks are indistinguishable. This indicates that the levels measured in the samples are below the minimum reporting limit of the recovery rinse procedure; i.e., the true mass of PM2.5 in the samples is below the "noise" level of the recovery rinse procedure. Further, the reporting limit of the recovery rinse procedure is much greater than measured PM2.5 masses on the 47-mm TMFs²². Particles emitted from natural gas combustion are smaller than 1 micrometer and primarily smaller than 0.1 micrometers^{23,24}. An earlier study of particle deposition in a dilution sampler showed that deposition of particles smaller than 1 micrometer on surfaces of the sampler prior to the filter is expected to be less than 7% and probably less than 1% for particles smaller than 0.1 micrometer²⁵. Thus, there is very little, if any, PM2.5 from natural gas combustion expected to be present on the sampler surfaces.

Measured PM2.5 masses on the TMFs are greater than the minimum reporting limit for the TMFs and are thus reliable measurements. Therefore, PM2.5 emission factors derived from the 2008 GE Energy test results are based on TMF results only. PM2.5 mass (TMFs) and chemical species results (Tables 3-10 and 3-11) agree reasonably well in magnitude with results for similar units tested during the U.S. collaborative program. A detailed summary of test results is provided in Appendix C.

Table 3-10: Average PM2.5 emission factor from 2008 GE Energy natural gas-fired gas turbine combined cycle unit tests – TMF results.

	PM2.5 (kg/GJ)
Sample Train A	2.55E-05
Sample Train B	1.76E-05
Average Sample Trains A & B	2.15E-05

Data Sources

Matis, C., England, G.C., Crosby, K., Rubenstein, G., Tong, C. Evaluation Report, Evaluation of CTM-039 Dilution Method for Measuring PM10/PM2.5 Emissions from Gas-Fired Combustion Turbines, GE Energy, Schenectady, New York, 2009.

²² Matis, C., G.C. England, K. Crosby and G. Rubenstein. Field Demonstration of a Dilution-Based Particulate Measurement System, Symposium on Air Quality Measurement Methods and Technology, Air & Waste Management Association, Chapel Hill, NC. November 2008.

²³ Chapter 4, Section 1.4 – Natural Gas Combustion, in *Compilation of Air Pollutant Emission Factors* AP-42, U.S. Environmental Protection Agency, 2000.

²⁴ Spang, B., S. Yoshimura, R. Hack, V. McDonell, S. Samuelsen (2013). Evaluation of the Level of Gaseous Fuel-Bound Sulfur on Fine Particulate Emission From a Low Emission Gas Turbine Engine, *J. Eng. Gas Turbines & Power*, 135:03501.1-03501.8.

²⁵ Hildemann, L. M., G. R. Cass & G. R. Markowski (1989). A Dilution Stack Sampler for Collection of Organic Aerosol Emissions: Design, Characterization and Field Tests, *Aerosol Science and Technology*, 10:1, 193-204, DOI: 10.1080/02786828908959234

Table 3-11: Average PM2.5 species profile from 2008 GE Energy natural gas-fired gas turbine combined cycle unit tests – TMF results.

Species	%	Species	%
ОС	85	Sr	0.018
EC	7.34	Ti	0.016
SO ₄ =	1.89	Υ	0.01
CI ⁻	1.67	Ni	0.0066
Si	1.56	Мо	0.0056
NH ₄ ⁺	0.94	Cr	0.0052
NO ₃ -	0.64	Pb	0.0049
Al	0.23	Se	0.0047
Fe	0.21	Cu	0.0041
Ca	0.18	Br	0.003
CI	0.13	Sm	0.0023
Zn	0.041	Rb	0.0016
S	0.03	V	0.001
К	0.025		

Note, the run-to-run variability of the 47-mm TMF results is greater in the GE Energy 2008 tests than was generally observed in the U.S. collaborative program – this was attributed to defects in the filter holders which resulted in adhesive contamination and filter tearing for some of the samples. As a result, some of the TMF net weights are less than zero and there are two very high outliers in the data set. The data were examined excluding the negative values and two high outliers; however, this changed the mean emission factor by only -11%. Since the high outliers could not be attributed to a definitive measurement defect, and since the negative values and outliers provide information regarding measurement uncertainty in these tests, the mean emission factor of the full data set is considered the most representative statistic for these tests.

3.5 Refinery Boiler and Process Heater Tests (2014)

Although the primary focus of this emission factor update is on reciprocating engines and gas turbines, PM10 (expressed as total PM) tests were conducted on six refinery gas-fired boilers and process heaters in 2014^{26} using a modified version of U.S. EPA CTM 39 similar to that used in the 2015 CEPEI tests. The refinery gas contained 7 to 9 ppm hydrogen sulfide. The three boilers were equipped with SCR, and one boiler also had low-NO $_X$ burners. The three process heaters were equipped with low-NO $_X$ burners but no post-combustion emissions controls. The results (Table 3-12) are generally consistent in magnitude with earlier results obtained during the U.S. collaborative program. Boiler A was tested

Data Sources 15 Ramboll Environ

²⁶ Astin, M.S., Benson, E., England, G.C., Croghan, S. PM10/2.5 Emissions from Gas-Fired Refinery Boilers and Heaters: Test Methods, Results and Better Emission Factors for Air Quality Impact Assessment, 2015 Environmental Conference, American Fuels & Petrochemicals Manufacturers, Salt Lake City, Utah, 2015.

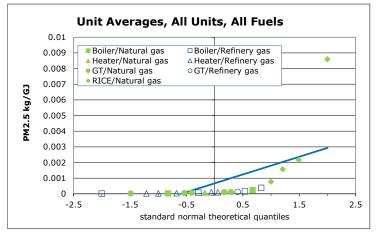
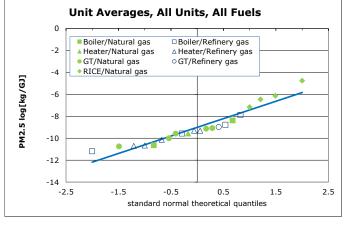

both before (Runs 1-3) and after (Runs 4-6) tuning the SCR ammonia flow rate, and the difference in results likely illustrates the contribution of ammonium sulfate/bisulfate to PM emissions.

Table 3-12: PM2.5 test results for refinery boilers and process heaters (2014).

	Run ID	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Average
Boiler A	mg/dscm	1.76E+00	1.40E+00	1.69E+00	6.53E-01	7.05E-01	5.62E-01	1.13E+00
Boiler A	kg/GJ	5.93E-04	4.73E-04	4.64E-04	2.52E-04	2.74E-04	2.15E-04	3.79E-04
Boiler B	mg/dscm	1.76E-01	1.90E-01	1.80E-01				1.82E-01
Boiler B	kg/GJ	6.71E-05	7.27E-05	6.88E-05				6.95E-05
Boiler C	mg/dscm	2.93E-02	3.62E-02	3.56E-02				3.37E-02
Boiler C	kg/GJ	1.20E-05	1.48E-05	1.46E-05				1.38E-05
Heater A	mg/dscm	2.93E-01	4.12E-01	1.60E-01				2.88E-01
Heater A	kg/GJ	9.24E-05	1.28E-04	4.99E-05				9.01E-05
Heater B	mg/dscm	2.67E-01	3.89E-01	2.44E-01				3.00E-01
Heater B	kg/GJ	7.35E-05	1.26E-04	7.01E-05				9.00E-05
Heater C	mg/dscm	1.51E-01	1.50E-01	1.48E-01				1.50E-01
Heater C	kg/GJ	3.97E-05	3.94E-05	3.90E-05				3.94E-05


4. PM2.5 EMISSION FACTORS

The average emission factors for each unit including the U.S. collaborative program, 2015 CEPEI, 2014 refinery and 2008 GE Energy test results were compared to determine if data should be aggregated or separated by fuel, unit type or configuration. The ranked data (low to high) were examined on theoretical normal quantile-quantile (Q-Q) plots to both compare the magnitude, data trends, fit to a normal distribution and central tendency of the data (Figure 4-1). Data fitting a normal distribution will fall on a straight line on a Q-Q plot. Inflection points in the ranked data indicate subsets of data with different distributions – this may suggest natural divisions within the data where it makes sense to subdivide emission factors. Comparing the entire data set to a fitted normal distribution correlation (blue line in Figure 4-1a) shows the data do not fit a normal distribution – the RICE data which constitute the high end of the data range, particularly the two-stroke engine result, heavily skew the distribution. Environmental data often are skewed high and fit a lognormal distribution (i.e., the log-transformed data fit a normal distribution). A similar evaluation also shows the data do fit an approximate lognormal distribution with a geometric mean PM2.5 emission factor of 0.000122 kg/GJ (Figure 4-1b).

Raw Statistics	
Number of Valid Observations	22
Number of Distinct Observations	21
Minimum	0.000013814
Maximum	0.00859
Mean of Raw Data	0.0006717
Standard Deviation of Raw Data	0.00185
Khat	0.388
Theta hat	0.00173
Kstar	0.366
Theta star	0.00184
Mean of Log Transformed Data	-9.009
Standard Deviation of Log Transformed Data	1.654
Normal GOF Test Results	
Correlation Coefficient R	0.601
Shapiro Wilk Test Statistic	0.388
Shapiro Wilk Critical (0.05) Value	0.911
Approximate Shapiro Wilk P Value	6.42E-10
Lilliefors Test Statistic	0.381
Lilliefors Critical (0.05) Value	0.189
Data not Normal at (0.05) Significance Level	

Raw Statistics	
Number of Valid Observations	22
Number of Distinct Observations	21
Minimum	0.000013814
Maximum	0.00859
Mean of Raw Data	0.0006717
Standard Deviation of Raw Data	0.00185
Khat	0.388
Theta hat	0.00173
Kstar	0.366
Theta star	0.00184
Mean of Log Transformed Data	-9.009
Geometric Mean of Raw Data	0.000122
Standard Deviation of Log Transformed Data	1.654
Lognormal GOF Test Results	
Correlation Coefficient R	0.954
Shapiro Wilk Test Statistic	0.909
Shapiro Wilk Critical (0.05) Value	0.911
Approximate Shapiro Wilk P Value	0.043
Lilliefors Test Statistic	0.174
Lilliefors Critical (0.05) Value	0.189
Data appear Approximate_Lognormal at (0.05) Significand	e Level

(b)

Figure 4-1: Q-Q plot for PM2.5 emission factors from gas-fired boilers, process heaters, gas turbines and reciprocating engines, measured with dilution sampling methods.

If the RICE data are excluded, the remaining data approximately fit a normal distribution (Figure 4-2). Goodness of fit to a normal distribution was confirmed using ProUCL²⁷, a statistical analysis application developed by U.S. EPA for environmental data analysis. Thus, it is reasonable to consider the data set excluding RICE for an aggregate PM2.5 emission factor.

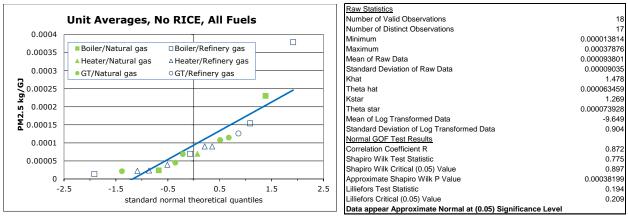


Figure 4-2: Normal Q-Q plot of PM2.5 emission factors for gas-fired boilers, process heaters and gas turbines, measured with dilution sampling methods.

The average emission factor for all gas-fired units excluding the RICE data may be expressed as the mean (average) of the unit average emission factors for 16 units using refinery gas or natural gas as fuels. Tests for one gas turbine combined cycle unit, Site Echo from the U.S. collaborative tests, tested at high load with duct burners on and reduced load with duct burners off are included as separate data points to represent emissions from similar units with and without duct burners). The data are skewed high due to a single data point at the high end of the range, resulting in a mean emission factor of $0.00010 \text{ kg/GJ} \pm 48\%$ (mean \pm uncertainty) which is 45% greater than the median (Table 4-1). However, the high data point is not a statistical outlier (Dixon's test) so there is no reason to exclude it.

The high data point is Boiler A from the 2014 refinery tests, which exhibited higher emissions attributed to ammonium sulfate/bisulfate produced by ammonia slip from the SCR. Although the data are considered valid, results for two other boilers with SCRs at the same facility are lower indicating this unit may not be representative of most such units. Removing the Boiler A data point reduces the mean and uncertainty to 0.000084 kg/GJ $\pm 43\%$. Considering only the natural gas-fired units results in a mean emission factor that is the same as for the full data set but with greater uncertainty, 0.00010 kg/GJ $\pm 72\%$. Because the full data set remains small in statistical terms (fewer than 25 data points), we recommend using the full data set including the Boiler A data point as a general emission factor for all gas-fired units. However, we recommend using the median emission factor rather than the mean when applying emission factors in situations where the central data characteristic is indicated. For example, the median value may be appropriate when estimating emissions from a population of many similar units such as in regional air quality analysis.

The maximum and 95% confidence upper bound (95% CUB) provide measures of the upper limits of the data set. The 99% confidence upper prediction limit (99% UPL) provides a measure of an upper limit of the mean value for the <u>next</u> unit that is tested. In this data set, the maximum is the highest value, followed by the 99% UPL and the 95% CUB in descending order. An upper limit or maximum may be appropriate in situations where a conservative estimate of emissions is necessary. For

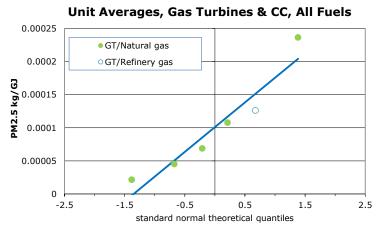
²⁷ http://www.epa.gov/land-research/proucl-software.

example, an upper limit may be appropriate when evaluating emissions from one unit within a larger population of units or when establishing emissions limits or standards.

Table 4-1: Aggregate PM2.5 emission factor statistics for boilers, process heaters, gas turbines and gas turbine combined cycle/cogeneration units.

Parameter	Units	Value	Value	Value
Data set		NG+RG	NG+RG (exclude outlier)	NG
Number of units		17	16	6
Number of data points		18	17	8
Mean	kg/GJ	1.01E-04	8.42E-05	1.00E-04
Median	kg/GJ	6.95E-05	6.95E-05	6.91E-05
Geometric mean	kg/GJ	6.71E-05	6.06E-05	7.11E-05
Minimum	kg/GJ	1.38E-05	1.38E-05	2.15E-05
Maximum	kg/GJ	3.79E-04	2.36E-04	2.36E-04
Standard deviation	kg/GJ	9.64E-05	6.89E-05	8.66E-05
cov	%	96	82	86
Confidence level	%	95%	95%	95%
Measurement bias	%	6.5	6.5	6.5
t factor (2 tail)		2.11	2.12	2.36
t factor (1 tail)		1.33	1.34	1.41
Total uncertainty	%	48	43	72
Total uncertainty	kg/GJ	4.84E-05	3.58E-05	7.27E-05
95% confidence upper bound	kg/GJ	1.32E-04	1.07E-04	1.44E-04
Data distribution		normal	normal	normal
99% confidence upper prediction limit	kg/GJ	3.55E-04	2.67E-04	3.76E-04

4.1 Gas Turbines and Gas Turbine Combined Cycle/Cogeneration Units


The current data set includes test results for five units utilizing gas turbines. Three units (Bravo, Echo, GE 2008) are natural gas-fired gas turbine combined cycle units (GTCC) employing large heavy-duty frame gas turbines with lean premix combustors (LPC) with SCR for NO_X emissions control. Two of these (Bravo and Echo) employ duct burners for supplementary steam generation and CO oxidation catalysts for additional emissions control. One (Golf) is a refinery cogeneration unit employing an aeroderivative gas turbine with diffusion flame combustors employing water injection (WI) and SCR for NO_X emissions control and CO oxidation catalyst. The CEPEI Buick unit is an aeroderivative gas turbine with lean premix combustors but no post-combustion controls applied as a natural gas pipeline compressor drive. One unit (Echo) was tested at base gas turbine load with duct burners on and at near base gas turbine load with duct burners off. The two conditions are treated as separate units in

this analysis since the tests with duct burners off may also represent emissions from similar units without duct burner (supplementary firing) capability.

PM2.5 mass emission factors determined by dilution sampling methods are within the same order of magnitude, spanning a 11:1 range (Table 4-2) and the data are normally distributed (Figure 4-3). The 2015 CEPEI gas turbine test produced the highest PM2.5 emission factor in the data set. A natural gas-fired combined cycle unit (Site Echo, duct burners on) has the lowest PM2.5 mass emission factor. The refinery gas-fired unit has the second highest PM2.5 emission factor. The refinery gas contained an average of 27 ppm total sulfur, which is higher than the sulfur content of the natural gas-fired units and 2 to 20 times higher than typical natural gas sulfur content. The PM2.5 sulfate concentration for Site Golf is 3 to more than 10 times higher than that for the natural gas-fired units, which accounts for much of the difference in PM2.5 emission factor. Data for the natural gas-fired units only also are normally distributed (Figure 4-4).

Table 4-2: PM2.5 emission factor data set for gas-fired gas turbines (dilution test methods)

Facility ID	Unit ID	Fuel	Controls	Test Date	kg/GJ
Bravo	GTCC/C (2xDB on + 1x DB off), 159 MW	Natural gas	LPC+CO Cat+SCR	2001	1.08E-04
Echo	GTCC/C (High load, DB on), 170	Natural gas	LPC+CO Cat+SCR	2003	4.51E-05
Echo	GTCC/C (Reduced load DB off), 170	Natural gas	LPC+CO Cat+SCR	2003	6.88E-05
Golf	GT-Cogen (DB on), 48 MW	Refinery gas	WI+CO Cat+SCR	2003	1.26E-04
GE 2008	GTCC (no DB), 170 MW	Natural gas	LPC+SCR	2008	2.15E-05
CEPEI Buick	Gas turbine, 27.5 MW	Natural gas	LPC	2015	2.36E-04

Raw Statistics	
Number of Valid Observations	6
Number of Distinct Observations	6
Minimum	2.15E-05
Maximum	2.36E-04
Mean of Raw Data	1.01E-04
Standard Deviation of Raw Data	7.68E-05
Khat	2.03
Theta hat	4.97E-05
Kstar	1.126
Theta star	8.97E-05
Mean of Log Transformed Data	-9.467
Standard Deviation of Log Transformed Data	0.841
Normal GOF Test Results	
Correlation Coefficient R	0.954
Shapiro Wilk Test Statistic	0.916
Shapiro Wilk Critical (0.05) Value	0.788
Approximate Shapiro Wilk P Value	N/A
Lilliefors Test Statistic	0.205
Lilliefors Critical (0.05) Value	0.362
Data appear Normal at (0.05) Significance Lev	el

Figure 4-3: Q-Q plot and goodness of fit statistics for gas turbine PM2.5 emission factor data set – natural gas and refinery gas fuels

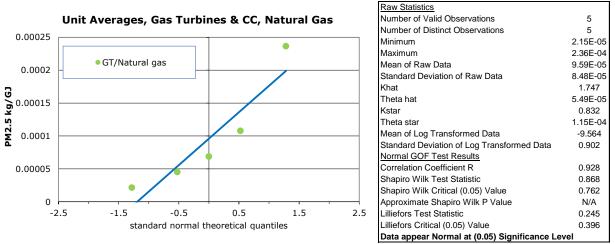


Figure 4-4: Q-Q plot and goodness of fit statistics for gas turbine PM2.5 emission factor data set – natural gas fuel only

The mean and median for both data sets are similar, reflecting a good data fit to a normal distribution (Table 4-3). The mean PM2.5 emission factor and uncertainty are $0.000096 \text{ kg/GJ} \pm 110\%$ for natural gas-fired units alone and $0.00010 \text{ kg/GJ} \pm 80\%$ for all units firing natural gas or refinery gas. Because the uncertainty is lower for the emission factor including the refinery gas-fired unit, we recommend the latter emission factors for estimating emissions from gas-fired gas turbines and combined cycle units.

4.2 RICE Data Set

The PM2.5 emission factor data set (Table 4-4) includes results for four natural gas-fired engines encompassing three different engine types and different emission controls ranging from precombustion chambers (PCC) and air/fuel ratio controllers (A/F) to non-selective catalytic reduction (NSCR). The data set includes one four-stroke rich burn (4SRB) engine and two four-stroke lean burn (4SLB) engines. PM2.5 emission factor for the two-stroke lean burn (2SLB) engine is 4 to 11 times higher than the other units. Since two-stroke engines are different in many respects from four-stroke engines and generally exhibit higher emissions of organic combustion byproducts from fuel gas and lubrication oil blow-by, PM2.5 emission factors are evaluated for the four-stroke engines alone in this analysis. The four-stroke engine data set fit a normal distribution (Figure 4-5).

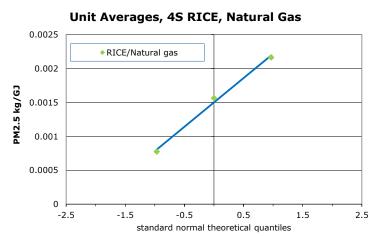

Because the data set is very small -3 units - an aggregate PM2.5 emission factor for both lean burn and rich burn four-stroke engines combined, so that it can be expressed with an associated uncertainty. The mean PM2.5 emission factor and uncertainty is $0.00150 \text{ kg/GJ} \pm 116\%$ (Table 4-5). The mean and the median are nearly the same. Therefore, the mean is an appropriate statistic for emission factor use.

Table 4-3: PM2.5 emission factor statistics for gas-fired gas turbine and gas turbine combined cycle/cogeneration units.

Parameter	Units	Value	Value
Fuel		Natural gas	Natural gas & refinery gas
Number of units tested		4	5
Number of unit averages		5	6
Mean	kg/GJ	9.59E-05	1.01E-04
Median	kg/GJ	6.88E-05	8.83E-05
Geometric mean	kg/GJ	7.02E-05	7.74E-05
Minimum	kg/GJ	2.15E-05	2.15E-05
Maximum	kg/GJ	2.36E-04	2.36E-04
Standard deviation	kg/GJ	8.48E-05	7.68E-05
Coefficient of variation	%	88	76
Confidence level	%	95%	95%
Measurement bias	%	6.5	6.5
t factor (2 tail)		2.78	2.57
t factor (1 tail)		1.53	1.48
Total uncertainty	%	110	80
Total uncertainty	kg/GJ	1.05E-04	8.09E-05
95% confidence upper bound	kg/GJ	1.54E-04	1.48E-04
Data distribution		normal	normal
99% confidence upper prediction limit	kg/GJ	4.44E-04	3.80E-04

Table 4-4: PM2.5 emission factor data set for natural gas-fired reciprocating engines.

Source	Unit ID	Fuel	Controls	Test Date	PM2.5 kg/GJ
API RICE	RICE 2SLB	Natural gas	PCC	2004	0.00859
API RICE	RICE 4SRB	Natural gas	NSCR	2004	0.000774
API RICE	RICE 4SLB	Natural gas	None	2004	0.00216
CEPEI RICE	Alfa 4SLB	Natural gas	PCC, A/F	2015	0.00156

Raw Statistics	
Number of Valid Observations	3
Number of Distinct Observations	3
Minimum	7.74E-04
Maximum	0.00216
Mean of Raw Data	0.0015
Standard Deviation of Raw Data	6.97E-04
Khat	6.059
Theta hat	2.48E-04
Kstar	N/A
Theta star	N/A
Mean of Log Transformed Data	-6.587
Standard Deviation of Log Transformed Data	0.525
Normal GOF Test Results	
Correlation Coefficient R	0.997
Shapiro Wilk Test Statistic	0.994
Shapiro Wilk Critical (0.05) Value	0.767
Approximate Shapiro Wilk P Value	N/A
Lilliefors Test Statistic	0.203
Lilliefors Critical (0.05) Value	0.512
Data appear Normal at (0.05) Significance Level	

Figure 4-5: Q-Q plot and goodness of fit statistics for four-stroke reciprocating engine PM2.5 emission factor data set – natural gas fuel

Table 4-5: PM2.5 emission factor statistics for four-stroke reciprocating engines.

Parameter	Units	Value	
Number of units tested		3	
Mean	kg/GJ	1.50E-03	
Median	kg/GJ	1.56E-03	
Geometric mean	kg/GJ	1.38E-03	
Minimum	kg/GJ	7.74E-04	
Maximum	kg/GJ	2.16E-03	
Standard deviation	kg/GJ	6.97E-04	
Coefficient of variation	%	46	
Confidence level	%	95%	
Measurement bias	%	6.5	
t factor (2 tail)		4.30	
t factor (1 tail)		1.89	
Total uncertainty	%	116	
Total uncertainty	kg/GJ	1.73E-03	
95% confidence upper bound	kg/GJ	/GJ 2.26E-03	
Data distribution		normal	
99% confidence upper prediction limit	kg/GJ	7.10E-03	

5. PM2.5 SPECIES PROFILES

Species profiles were calculated as a percentage of reconstructed mass concentration. Reconstructed mass concentration is the sum of species concentrations assuming that ions and anions are balanced and excess ions and elements are present as higher stable oxides.

It is important to note that these species profiles should be applied only to PM2.5 mass measured by dilution methods similar to those used in the underlying data. They should not be applied to PM2.5 mass measured by hot filter/cooled impinger or other test methods because of measurement artifacts that may alter mass and species in those results.

5.1 Gas Turbine PM2.5 Species

Organic carbon (OC) is the predominant component of PM2.5 for the gas-fired gas turbine and combined cycle/cogeneration units (Table 5-1) regardless of fuel. Sulfate and ammonium ions comprise a minor fraction of PM2.5, except for the gas turbine ("Site Buick") tested in the CEPEI 2015 test program where none was detected. This may be a reflection of low natural gas sulfur content and absence of post-combustion catalysts at Site Buick, as post-combustion catalysts used at the other sites are known to partially oxidize sulfur dioxide gas (SO_2) to sulfur trioxide (SO_3) , a particulate sulfate precursor. Ammonium likely results from ammonia used in the SCR systems present on all of the units tested except for Buick. Elemental carbon (EC), chloride and nitrate comprise the majority of the remaining mass.

5.2 Reciprocating Engine PM2.5 Species

Organic carbon is the predominant component of PM2.5 mass from reciprocating engines, accounting for 88% of PM2.5 mass for four-stroke engines on average and 98% of PM2.5 mass for the two-stroke engine (Table 5-2).

Table 5-1: PM2.5 species profiles for gas-fired gas turbines and combined cycle/cogeneration units (% of reconstructed mass)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Average Nat. Gas 76 5.6 2.8 3.3 2.5 1.9 1.6 1.2 0.69 0.37
Buick Bravo Echo Hi Echo Lo GE 2008 Golf all N OC 80 73 68 73 83 50 72 7 SO₄⁻ 4.4 13 8.7 1.8 27 9.2 5 NH₄⁺ 7.0 5.9 0.92 9.6 3.9 2 EC 4.2 2.9 1.8 7.2 5.4 3.6 3 Cl' 3.8 2.1 5.1 1.6 0.74 2.2 2 NO₃⁻ 0.18 5.2 2.1 1.2 0.62 2.4 2.0 1 Si 0.41 3.5 1.2 0.72 2.3 2.0 1.7 1 Na⁺ 0.57 2.9 2.7 1.3 1.3 1.3 1 Fe 0.023 2.7 0.25 0.16 0.29 0.57 0.67 0 Ca 0.029 1.0 0.23 0.	Nat. Gas 76 5.6 2.8 3.3 2.5 1.9 1.6 1.2 0.69
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	76 5.6 2.8 3.3 2.5 1.9 1.6 1.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.6 2.8 3.3 2.5 1.9 1.6 1.2
NH ₄ + 4.2 2.9 1.8 7.0 5.9 0.92 9.6 3.9 2 CC 3.8 2.1 5.1 1.6 0.74 2.2 2 NO ₃ - 0.18 5.2 2.1 1.2 0.62 2.4 2.0 1 Si 0.41 3.5 1.2 0.72 2.3 2.0 1.7 1 Na+ 0.57 2.9 2.7 1.3 1.3 1.3 1 Fe 0.023 2.7 0.25 0.16 0.29 0.57 0.67 0 Ca 0.029 1.0 0.23 0.22 0.35 0.30 0.36 0 Al 0.054 0.45 0.35 0.23 0.11 0.30 0.25 0 Zn 0.019 0.27 0.078 0.018 0.096 0.055 0.090 0 Cu 0.050 0.015 0.004 0.014 0.036 0.040	2.8 3.3 2.5 1.9 1.6 1.2 0.69
NH4+ EC 4.2 2.9 1.8 7.0 5.9 0.92 9.6 3.9 2 CC 3.8 2.1 5.1 1.6 0.74 2.2 2 NO3- O.18 5.2 2.1 1.2 0.62 2.4 2.0 1 Si O.41 3.5 1.2 0.72 2.3 2.0 1.7 1 Na+ O.57 2.9 2.7 1.3 1.3 1.3 1 Fe O.023 2.7 0.25 0.16 0.29 0.57 0.67 0 Ca O.029 1.0 0.23 0.22 0.35 0.30 0.36 0 Al O.054 0.45 0.35 0.23 0.11 0.30 0.25 0 Zn O.019 0.27 0.078 0.018 0.096 0.055 0.090 0 Cu O.050 0.022 0.18 0.04 0.04 0.015 0.040 0 Ni O.0040 0.10 0.023 0.014 0.023 0.013 0.024 0 No O.0056 0.041 0.0061	2.8 3.3 2.5 1.9 1.6 1.2 0.69
EC 4.2 2.9 1.8 7.2 5.4 3.6 3 Cl' 3.8 2.1 5.1 1.6 0.74 2.2 2 NO3 ⁻ 0.18 5.2 2.1 1.2 0.62 2.4 2.0 1 Si 0.41 3.5 1.2 0.72 2.3 2.0 1.7 1 Na ⁺ 0.57 2.9 2.7 1.3 1.3 1.3 1 Fe 0.023 2.7 0.25 0.16 0.29 0.57 0.67 0 Ca 0.029 1.0 0.23 0.22 0.35 0.30 0.36 0 Al 0.78 0.41 0.53 0.22 0.33 0 0.22 0.33 0 0.22 0.33 0 0.22 0.33 0 0.22 0.33 0 0.28 0.055 0.090 0 0 0.055 0 0.090 0 0.055 0	2.5 1.9 1.6 1.2 0.69
Cl ⁻ 3.8 2.1 5.1 1.6 0.74 2.2 2 NO3 ⁻ 0.18 5.2 2.1 1.2 0.62 2.4 2.0 1 Si 0.41 3.5 1.2 0.72 2.3 2.0 1.7 1 Na ⁺ 0.57 2.9 2.7 1.3 1.3 1.3 1 Fe 0.023 2.7 0.25 0.16 0.29 0.57 0.67 0 Ca 0.029 1.0 0.23 0.22 0.35 0.30 0.36 0 Al 0.054 0.45 0.35 0.23 0.11 0.30 0.25 0 Zn 0.019 0.27 0.078 0.018 0.096 0.055 0.090 0 Cu 0.022 0.18 0.014 0.059 0.015 0.040 0 Ni 0.0040 0.10 0.059 0.04 0.014 0.059 0.017 <td< td=""><td>2.5 1.9 1.6 1.2 0.69</td></td<>	2.5 1.9 1.6 1.2 0.69
NO3- Si 0.18 5.2 2.1 1.2 0.62 2.4 2.0 1 Si 0.41 3.5 1.2 0.72 2.3 2.0 1.7 1 Na+ 0.57 2.9 2.7 1.3 1.3 1.3 1 Fe 0.023 2.7 0.25 0.16 0.29 0.57 0.67 0 Ca 0.029 1.0 0.23 0.22 0.35 0.30 0.36 0 Al 0.054 0.45 0.35 0.23 0.11 0.30 0.25 0 Zn 0.019 0.27 0.078 0.018 0.096 0.055 0.090 0 Cl 0.050 0.022 0.18 0.028 0.038 0.040 0 Br 0.15 0.014 0.059 0.04 0.014 0.036 0 Ni 0.0040 0.10 0.059 0.0073 0.017 0.025 0 <td>1.9 1.6 1.2 0.69</td>	1.9 1.6 1.2 0.69
Si 0.41 3.5 1.2 0.72 2.3 2.0 1.7 1 Na+ 0.57 2.9 2.7 1.3 1.3 1.3 1 Fe 0.023 2.7 0.25 0.16 0.29 0.57 0.67 0 Ca 0.029 1.0 0.23 0.22 0.35 0.30 0.36 0 Al 0.054 0.45 0.41 0.53 0.22 0.33 0 K 0.054 0.45 0.35 0.23 0.11 0.30 0.25 0 Zn 0.019 0.27 0.078 0.018 0.096 0.055 0.090 0 Cu 0.050 0.022 0.18 0.028 0.038 0.040 0 Br 0.15 0.014 0.059 0.04 0.014 0.036 0 Ni 0.0040 0.10 0.023 0.013 0.024 0 Nn 0.056 0.073 0.059 0.0061 0.0086 0.014 0 N	1.6 1.2 0.69
Na ⁺ 0.57 2.9 2.7 1.3 1.3 1 Fe 0.023 2.7 0.25 0.16 0.29 0.57 0.67 0 Ca 0.029 1.0 0.23 0.22 0.35 0.30 0.36 0 Al 0.78 0.41 0.53 0.22 0.33 0 K 0.054 0.45 0.35 0.23 0.11 0.30 0.25 0 Zn 0.019 0.27 0.078 0.018 0.096 0.055 0.090 0 Cl 0.050 0.022 0.18 0.028 0.038 0.040 0 Br 0.15 0.014 0.059 0.04 0.015 0.040 0 Ni 0.0040 0.10 0.023 0.013 0.024 0 Nr 0.0082 0.073 0.059 0.0061 0.0086 0.014 0 Nr 0.0036 0.0036 0.002	1.2 0.69
Fe 0.023 2.7 0.25 0.16 0.29 0.57 0.67 0 Ca 0.029 1.0 0.23 0.22 0.35 0.30 0.36 0 Al 0.78 0.41 0.53 0.22 0.33 0 K 0.054 0.45 0.35 0.23 0.11 0.30 0.25 0 Zn 0.019 0.27 0.078 0.018 0.096 0.055 0.090 0 Cl 0.050 0.022 0.18 0.028 0.038 0.040 0 Br 0.15 0.014 0.059 0.04 0.015 0.040 0 Ni 0.0040 0.10 0.023 0.013 0.024 0 Ni 0.0040 0.073 0.0059 0.0061 0.0086 0.014 0 Nr 0.0082 0.059 0.059 0.0061 0.0086 0.014 0 0.0036 0.0036	0.69
Ca 0.029 1.0 0.23 0.22 0.35 0.30 0.36 0 Al 0.78 0.41 0.53 0.22 0.33 0 K 0.054 0.45 0.35 0.23 0.11 0.30 0.25 0 Zn 0.019 0.27 0.078 0.018 0.096 0.055 0.090 0 Cl 0.050 0.022 0.18 0.028 0.038 0.040 0 Br 0.15 0.014 0.059 0.04 0.015 0.040 0 Ni 0.0040 0.10 0.023 0.013 0.024 0 Ni 0.0040 0.010 0.0059 0.0017 0.0059 0.017 0 V 0.0082 0.059 0.059 0.0061 0.0086 0.014 0 Sr 0.0036 0.0036 0.012 0.0023 0.012 0	
Al 0.78 0.41 0.53 0.22 0.33 0 K 0.054 0.45 0.35 0.23 0.11 0.30 0.25 0 Zn 0.019 0.27 0.078 0.018 0.096 0.055 0.090 0 Cl 0.050 0.022 0.18 0.028 0.038 0.040 0 Br 0.15 0.014 0.059 0.015 0.040 0 Ni 0.0022 0.14 0.004 0.014 0.036 0 Ni 0.0040 0.10 0.023 0.013 0.024 0 Ba 0.041 0.059 0.0061 0.0086 0.014 0 V 0.0082 0.059 0.0061 0.0086 0.014 0 Sr 0.0036 0.0036 0.0023 0.0023 0.012 0	0.07
K 0.054 0.45 0.35 0.23 0.11 0.30 0.25 0 Zn 0.019 0.27 0.078 0.018 0.096 0.055 0.090 0 Cl 0.050 0.022 0.18 0.038 0.040 0 Br 0.15 0.014 0.059 0.04 0.015 0.040 0 Ti 0.022 0.14 0.004 0.014 0.023 0.013 0.024 0 Ni 0.0040 0.10 0.059 0.013 0.024 0 Ba 0.041 0.059 0.017 0.0059 0.017 0 V 0.0082 0.059 0.059 0.0061 0.0086 0.014 0 Sr 0.0036 0.0036 0.012 0	0.35
Zn 0.019 0.27 0.078 0.018 0.096 0.055 0.090 0 Cl 0.050 0.018 0.028 0.038 0.040 0 Br 0.15 0.014 0.059 0.04 0.015 0.040 0 Ti 0.022 0.14 0.04 0.014 0.036 0 Ni 0.0040 0.10 0.023 0.013 0.024 0 Ba 0.041 0.059 0.017 0.059 0.017 0 V 0.0082 0.059 0.059 0.0061 0.0086 0.014 0 Sr 0.0036 0.0023 0.012 0 0 0 0 0	0.24
CI 0.050 0.18 Cu 0.022 0.18 Br 0.15 0.014 Ti 0.022 0.14 Ni 0.0040 0.10 Ba 0.041 Mn 0.056 0.073 V 0.0082 0.059 Sr 0.0036	0.097
Cu 0.022 0.18 Br 0.15 0.014 Ti 0.022 0.14 Ni 0.0040 0.10 Ba 0.041 Mn 0.056 0.073 V 0.0082 0.059 Sr 0.0036 0.059 0.0061 0.0086 0.014 0.0063 0.0023 0.012	0.067
Br 0.15 0.014 0.059 0.015 0.040 0 Ti 0.022 0.14 0.04 0.014 0.036 0 Ni 0.0040 0.10 0.023 0.013 0.024 0 Ba 0.041 0.059 0.017 0 0.017 0.025 0 V 0.0082 0.059 0.0061 0.0086 0.014 0 Sr 0.0036 0.0023 0.012 0	0.007
Ti 0.022 0.14 0.04 0.014 0.036 0 Ni 0.0040 0.10 0.023 0.013 0.024 0 Ba 0.041 0.059 0.017 0 Mn 0.056 0.073 0.0061 0.0086 0.014 0 Sr 0.0036 0.0036 0.0023 0.012 0	0.045
Ni 0.0040 0.10 Ba 0.041 Mn 0.056 0.073 V 0.0082 0.059 Sr 0.0036 0.0023 0.013 0.024 0 0.017 0.025 0 0.0061 0.0086 0.014 0 0.0063 0.0023 0.012 0	0.043
Ba 0.041 Mn 0.056 V 0.0082 Sr 0.0036 0.073 0.0061 0.0086 0.0023 0.012 0 0.0036	0.041
Mn 0.056 0.073 V 0.0082 0.059 Sr 0.0036 0.0061 0.0086 0.0023 0.012 0 0 0	0.028
V 0.0082 0.059 Sr 0.0036 0.0036 0.0023 0.0023 0.012	
Sr 0.0036 0.063 0.0023 0.012 0	0.026
	0.015
	0.013
	0.013
	0.011
	0.0089
	0.0036
	1.8
	0.46
	0.15
	0.11
	0.093
	0.067
	0.046
	0.024
La 0.086 0.014	
	0.0091
	0.0099
Mo 0.038 0.0064	
	0.0067
Sn 0.028 0.0047 0	0.0057
Hg 0.016 0.0027 0	0.0032
U 0.015 0.0025 0	0.003
Se 0.010 0.0017 0	0.0020
Zr 0.0097 0.0016 0	0.0020
	0.0016
	0.0011
	0.00026

Shaded area indicates species detected only for one unit. Results may not be representative of other units.

Table 5-2: PM2.5 species profiles for natural gas-fired reciprocating engines

	CEPEI 2015 Alfa 4SLB	ADT ACDD	API 4SLB	Avorago 45*	API 2SLB
		API 4SRB		Average 4S*	
OC	94	80	90	88	98
Fe	0.028	3.9	5.8	3.2	0.0041
Si	0.13	6.0	1.4	2.5	0.18
EC	1.7	2.5	0.16	1.5	0.75
SO42-	1.0	3.2	0.66	1.6	0.24
Ca	1.1	1.2	0.53	0.94	0.28
Zn	0.15	0.57	0.55	0.42	0.076
NO3-	0.33	0.47	0.25	0.35	0.19
NH4+		0.89	0.090	0.33	0.068
CI-		0.38	0.15	0.18	0.049
Р	0.12	0.14	0.032	0.097	0.03
Al	0.06	0.03	0.13	0.073	0.0014
Мо		0.14	0.073	0.071	0.028
Na+	0.050	0.057	0.049	0.052	0.063
Cu	0.00094	0.051	0.057	0.036	0.010
K	0.021	0.029	0.036	0.029	0.0078
Ва	0.031	0.022	0.020	0.024	0.0057
Со		0.029	0.021	0.017	
Mn	0.0033	0.018	0.022	0.014	
Cr	0.0060	0.022	0.0099	0.013	0.00080
La	0.012	0.010	0.011	0.011	
Sn	0.0081	0.015	0.0019	0.0083	
Ni	0.00060	0.0042	0.0061	0.0036	
Br	0.0042	0.00092	0.0013	0.0021	0.0010
V		0.0026	0.0032	0.0019	
Cd	0.0045		0.00086	0.0018	
Sr	0.0024	0.00034	0.00064	0.0011	0.00018
Ag	0.0022		0.00060	0.00093	
Υ	0.0017		0.00044	0.00071	0.00019
Rb	0.0014	0.00020	0.00048	0.00069	0.00016
Se		0.0011	0.00060	0.00057	
S	1.8			0.60	
Cl	0.14			0.047	
Eu	0.064			0.021	
Ti	0.024			0.0080	
Ce	0.022			0.0073	
W	0.021			0.0070	
Cs	0.018			0.0060	
Sm	0.0084			0.0028	
Sb	0.0047			0.0016	
U	0.0043			0.0014	0.00013
Pb	0.0042			0.0014	
Au	0.0033			0.0011	
Zr			0.00024	0.000080	0.00026

Shaded area indicates species detected for only one unit. Results may not be representative of other units.

^{*}Some species were not detected in all tests. To calculate the average species profile, the species percentage for undetected results is treated as zero. This results in an average species profile that sums to 100%.

6. DISCUSSION

6.1 PM2.5 Emission Factor Comparison – EPA AP-42

AP-42 is a widely referenced resource for emission factors when site- or industry-specific emission factors are not available. AP-42 Chapters 3.1 and 3.2 include emission factors for filterable particulate matter (fPM) - total and/or PM10 - and cPM for natural gas-fired gas turbines and natural gas-fired reciprocating internal combustion engines (RICE), respectively. The data sets on which the emission factors are based are available as Microsoft Access files that can be downloaded from U.S. EPA's website⁷. Summaries of the data sets used for these published AP-42 emission factors are provided in Appendix B.

6.1.1 AP-42: Gas Turbines

The AP-42 gas turbine data set for fPM and cPM consists of five tests on three different 86 MW units of the same make and model between 1994 and 1996. Two of the units were tested with and without water injection for gas turbine power augmentation and NO_X control (Table 6-1). The emission factors are based on U.S. EPA hot filter/cooled impinger PM test methods (U.S. EPA Methods 201, 201A or 5 for fPM and EPA Method 202 or modified Method 5 back half for cPM). EPA rates the data quality as high, but the quality of the emission factor is rated only "C" (on EPA's scale of "A" to "E", "A" being the highest quality and "E" being the lowest – refer to Appendix E for definition of EPA's quality rating system).

The limited nature of the AP-42 gas turbine data set and large degree of variability are striking for both fPM and cPM (Figure 6-1). Variability among the data sets contributes to large uncertainty in the reported emission factor, especially for cPM.

The CEPEI PM2.5 emission factor based on dilution sampling test methods, which includes fPM and cPM together from six tests of five different units, is far lower than either the AP-42 fPM or cPM emission factors alone and the uncertainty in the average emission factor is very small in comparison to that for either the fPM or cPM AP-42 factor. The large difference in the average emission factor is believed to be due to bias in the hot filter/cooled impinger measurement methods used in the AP-42 data set, related to sensitivity limitations of the gravimetric procedures used for both fPM and cPM and SO₂ artifacts in the cPM measurement procedure⁸.

6.1.2 AP-42: Reciprocating Engines

The AP-42 four-stroke reciprocating engine PM emission factors (Table 6-2) are based on very limited data sets:

- Three four-stroke rich burn engine tests: fPM was measured in tests conducted in 1993
 of three engines equipped with pre-combustion chambers (no post-combustion catalysts)
 using hot filter methods. cPM was not measured in any of these tests;
- Two four-stroke lean burn engine tests: Both fPM and cPM were measured in tests conducted in 1994 of two engines with no emission controls using hot filter/cooled impinger methods.

Although the actual measurements are of total fPM (without any size classification), AP-42 provides emission factors for filterable PM10 and filterable PM2.5 assuming that all particles are smaller than 2.5 micrometers (a reasonable assumption). The wide range of values among the data sets

Table 6-1: Average PM emission factors for natural gas-fired gas turbines.

Engine Type	Emission Controls	Pollutant	Emission Factor	Emission Factor Quality	Number of Units Tested (Test Dates)
U.S. EPA AP-42 emi	ssion factors (hot f	ilter/cooled impir	nger test methods)		
Gas turbine (natural gas-fired)	None (water- steam injection for power	PM (filterable)	1.9 E-03 lb/MMBtu (8.17 E-04 kg/GJ)	С	3 (1994- 1996)
	augmentation) ²⁸	PM (condensable)	4.7 E-03 lb/MMBtu (2.03 E-03 kg/GJ)	С	
		PM (total)	6.6 E-03 lb/MMBtu (2.85 E-03 kg/GJ)	С	
CEPEI Emission Fact	tor (dilution test m	ethods)			
Gas turbine simple cycle and combined cycle/cogeneration units	Lean premixed combustors, with and without post-combustion catalysts	PM2.5 (filterable + condensable)	1.01 E-04 kg/GJ		5 (2002- 2015)

 $^{^{28}}$ EPA cites water-steam injection as emission controls; however, comments in EPA database suggest this was for turbine power augmentation. This may be co-beneficial in reducing NO_X emissions. Some runs were conducted with power augmentation on and some with power augmentation off.

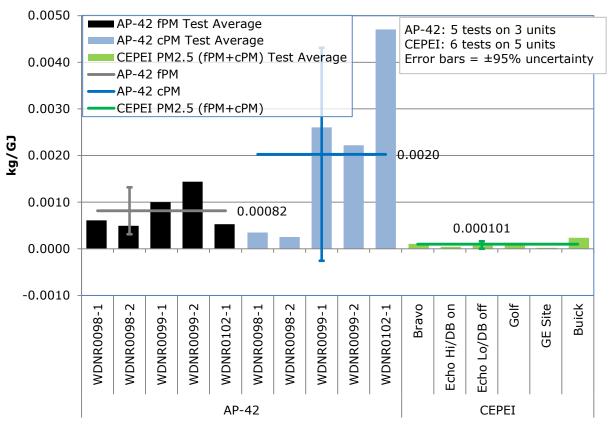


Figure 6-1: Comparison of EPA AP-42 and CEPEI emission factor data sets for filterable and condensable particulate matter – gas-fired gas turbines and combined cycle/cogeneration units.

contributing to large uncertainty in the average values for rich burn engine fPM and lean burn engine cPM is apparent, (Figure 6-2). AP-42 reports the same cPM emission factor for both 4SLB and 4SRB engines, although cPM measurements were made only for the 4SLB engines. The AP-42 lean burn engine fPM emission factor is much lower than the fPM emission factor for rich burn engines. The CEPEI PM2.5 emission factor for all four-stroke reciprocating engines is lower than the average fPM emission factor for rich burn engines and higher than the fPM emission factor for lean burn engines, and much lower than the cPM emission factor for all engines; thus, the CEPEI PM2.5 emission factor is much lower than the combined fPM + cPM AP-42 emission factors for either type of engine.

6.2 PM2.5 Emission Factor Uses and Implications

The emission factors used in this study will be useful for a variety of applications. Regional air quality models are often used to assess emissions management strategies to achieve an air quality goal. Estimated PM10/2.5 emissions from natural gas-fired combustion equipment typically comprise a very minor part of emission inventories in areas with a mix of stationary and mobile sources burning a variety of fuels and other sources of PM2.5 and PM2.5 precursor emissions. For example, PM2.5 from commercial fuel combustion (some of which is natural gas), natural gas use in power generation, natural gas transmission and natural gas distribution is reported to be less than 0.2% of total PM2.5 emissions in Canada²⁹. PM2.5 emissions from natural gas combustion in power generation,

Discussion 30 Ramboll Environ

²⁹ Air Pollutant Emission Inventory Report 1990-2014, Environment and Climate Change Canada, Gatineau, Quebec, 2016.

Table 6-2: Average PM emission factors for natural gas-fired four-stroke reciprocating engines.

	gilles.	T	T		1
Engine Type	Emission Controls	Pollutant	Emission Factor	Emission Factor Quality	Number of Units Tested (Test Dates)
U.S. EPA AP-42	2 emission facto	rs (as published, ho	t filter/cooled impinger t	est method	s)
Four-Stroke Rich Burn RICE	Pre- combustion chambers	PM10 & PM2.5 (filterable)	9.50 E-03 lb/MMBtu (4.08 E-03 kg/GJ)	E	3 (1993)
MCL		PM (condensable)	9.91 E-03 lb/MMBtu (4.26 E-03 kg/GJ)	E	none (cPM factor for 4SLB engines)
		PM 10 & PM2.5 (total)	19.41 E-03 lb/MMBtu (8.35 E-03 kg/GJ)		Sum
Four-Stroke Lean Burn RICE	No controls	PM10 & PM2.5 (filterable)	7.71 E-05 lb/MMBtu (3.31 E-05 kg/GJ)	D	2 (1994)
1402		PM (condensable)	9.91 E-03 lb/MMBtu (4.26 E-03 kg/GJ)	D	
		PM10 & PM2.5 (total)	9.99 E-03 lb/MMBtu (4.30 E-03 kg/GJ)		Sum
Four-Stroke RICE*	All	PM10 & PM2.5 (filterable)	2.46 E-03 kg/GJ uncertainty=124%		5
		PM (condensable)	4.26 E-03 kg/GJ uncertainty=428%		2
		PM10 & PM2.5 (total)	6.73 E-03 kg/GJ uncertainty=446%		Sum
CEPEI emission	n factors (dilutio	on test methods)			
four-stroke rich burn and lean burn engines	Lean burn: no controls Rich burn: non- selective catalytic reduction	PM2.5 (filterable + condensable)	1.50 E-03 kg/GJ		3 (2003- 2015)
<u> </u>	l	l	<u> </u>	l	I

^{*}AP-42 does not report aggregate emission factors for four-stroke engines. Mean values derived from unit average test results used for AP-42 rich burn and lean burn reciprocating engine emission factors.

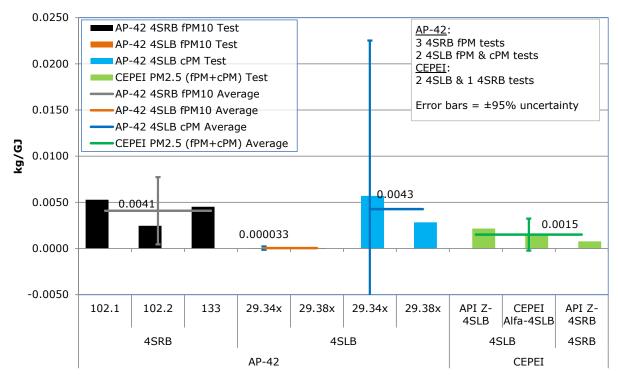


Figure 6-2: Comparison of EPA AP-42 and CEPEI PM2.5 emission factor data sets for filterable and condensable particulate matter- four-stroke reciprocating engines.

commercial, institutional and industrial boilers, internal combustion engines and residential sources comprise approximately 1% of PM2.5 emissions from all sources across the U.S. according to U.S. EPA's 2011 National Emissions Inventory³⁰. Nonetheless, estimated PM2.5 emissions impacts from specific sources can generate apparent air quality impacts and human health risk concerns when using AP-42 and similar emission factors. Estimated PM2.5 emissions using the CEPEI emission factors will likely reduce the projected air quality impact of natural gas-fired engines, boilers and process heaters even further and perhaps to "de minimus" levels compared with other sources that have higher air quality impact. With application of appropriate caution considering the uncertainty and variability of the data and the small size of the data sets, the results may be used to evaluate the impact of potential PM2.5 emission limits on air quality. An average emission factor should not be used as an emission limit for a specific unit since emissions from some units are above the average and some are below. Other statistics such as the maximum, 95% confidence upper bound or 99% confidence upper prediction limit may be more appropriate metrics to consider as potential emissions limits.

As an example, using the AP-42 total particulate matter emission factor of 0.0032 kg/GJ, estimated annual PM10/2.5 emissions total 80 metric tons per year for a typical 500-MW natural gas-fired combined cycle plant with two large heavy duty gas turbines and one steam turbine operating at full load for 8760 hours. This would decrease to just 2 metric tons per year using the average CEPEI PM2.5 emission factor.

A lower estimate of PM2.5 emissions and updated PM2.5 chemical species profiles also have implications for evaluating human health risk impacts surrounding new or existing natural gas-fired

³⁰ 2011 National Emission Inventory Data, U.S. Environmental Protection Agency, 2016. https://www.epa.gov/airemissions-inventories/2011-national-emissions-inventory-nei-data.

combustion equipment. For example, estimated PM2.5 emissions from a 20 MW gas turbine pipeline compressor drive operating 8760 hours per year at full load are 0.5 metric tons/year using the AP-42 emission factor and 0.02 metric tons per year using the CEPEI 99% UPL PM2.5 emission factor, a 28-fold decrease. Health risk associated with particulate matter is often based on diesel engine studies. CEPEI PM2.5 species profiles show that PM2.5 emissions from natural gas-fired engines at these very low levels is primarily organic carbon with very low levels of elemental carbon and only very minor amounts of sulfate, nitrate and other ions and elements. The chemical species profiles along with lower PM2.5 emission factors provide useful information for estimating the health risk associated from natural gas PM2.5 emissions.

It should be noted that PM2.5 measurements made during short operating periods represent a snapshot of emissions and may not represent emissions at all times. The emission factors derived in this study may not represent emissions from all similar units due to differences in unit design, fuels, operating conditions, emission controls, seasonal influences, and many other factors that influence emissions. Emission factors do not necessarily represent emissions from any particular unit. An average emission factor should not be used to establish emissions limits or standards because the emissions from half of the units will be higher than the average and half will be lower (assuming a normal distribution). The particular statistic (mean, median, maximum, etc.) associated with each emission factor data set should be carefully chosen as appropriate for a specific end use.

APPENDIX A CEPEI PM2.5 EMISSION TEST SUMMARY

A	ВС	D E F G	Н І Ј К	L M N O	P Q R S
1 Modified CTM 39,	Site Alfa	Run 1	Run 2	Run 3	Average
2 <u>Parameter</u>	<u>Type</u> <u>Units</u>	<u>Value</u>	<u>Value</u>	<u>Value</u>	<u>Value</u>
3 k1	Calibration	0.8517	0.8517	0.8517	0.8517
4 n1	Calibration	0.5	0.5	0.5	0.5
5 k2	Calibration	10.545	10.545	10.545	10.545
6 n2	Calibration	0.5	0.5	0.5	0.5
7 Cdmfm1	Calibration	1.018	1.018	1.018	1.018
8 Csmfm1 9 Csmfm2	Calibration Calibration	1.01 1.012	1.01 1.012	1.01 1.012	1.01 1.012
10 T1m	Measured F	308.26	302.18	319.26	309.90
11 T1	Calculated R	768.26	762.18	779.26	769.90
12 T2m	Measured F	69.61	76.61	66.01	70.74
13 T2	Calculated R	529.61	536.61	526.01	530.74
14 Stack T	Measured F	749	751	751	750
15 Filter T	Measured F	77.75	73.72	85.29	78.92
16 T3m	Measured F	54.18	54.88	56.47	55.17
17 T3	Calculated R	514.18	514.88	516.47	515.17
18 Pbar	Measured in. Hg	27.83	27.83	27.69	27.78
19 Ps	Measured iwc	1.690	1.637	1.689	1.672
20 Pst	Calculated in Hg	27.96	27.95	27.81	27.90
21 Cyclone dP	Measured iwc	-5.59	-3.16	-5.74	-4.83
22 P1	Calculated in Hg	27.54	27.71	27.39	27.55
23 Sample venturi dP 24 Dil venturi dP		0.538	0.539	0.537	0.538
25 P2	Measured iwc Calculated in. Hg	0.76 27.59	1.05 27.77	0.70 27.43	0.84 27.59
26 Exhaust Vac	Measured iwc	29.78	30.07	27.43 27.97	27.3 9 29.27
27 P3	Calculated in. Hg	25.64	25.61	25.63	25.63
28 %02	Measured %vd	11.31	11.22	11.09	11.21
29 %CO2	Measured %vd	5.53	5.74	5.56	5.61
30 Ms	Calculated lb/lb-mole		29.37	29.33	29.35
31 Mws	Calculated lb/lb-mol		28.69	28.65	28.67
32 Mwdil	Calculated lb/lb-mol	e 28.92	28.92	28.91	28.91
33 Q1	Calculated wacf/min	0.616	0.612	0.622	0.617
34 Q2	Calculated wacf/min	7.49	8.83	7.18	7.84
35 RHdil	Measured %	18.88	14.10	23.25	18.74
36 RH mix	Measured %	47.55	42.40	47.80	45.92
37 Bwdil	Calculated v/v	0.00500	0.00469	0.00546	0.00505
38 Bwds	Calculated v/v	0.00785	0.00719	0.00858	0.00787
39 Qmix,std	Calculated wacf/min		8.46	7.00	7.58
40 Bws	Calculated v/v	0.0595	0.0594	0.0602	0.0597
42 PM2.5 Concentrat					
43 Run duration	Measured minutes	238.89	239.40	239.40	239.23
44 mf47ds	Measured mg	ADL 0.700	ADL 0.604	ADL 0.746	ADL 0.683
45 mf47dab 46 mf47ds-stfb1	Measured mg Measured mg	ADL 0.008 ADL 0.004	ADL 0.011 ADL 0.004	ADL 0.013 ADL 0.004	ADL 0.011 ADL 0.004
47 mf47dab-stfb1	Measured mg	ADL 0.004 ADL 0.022	ADL 0.004 ADL 0.022	ADL 0.004 ADL 0.022	ADL 0.004 ADL 0.022
48 mf47ds-stfb2	Measured mg	ADL 0.022 ADL 0.003	ADL 0.022 ADL 0.003	ADL 0.022 ADL 0.003	ADL 0.022 ADL 0.003
49 mf47dab-stfb2	Measured mg	ADL 0.003	ADL 0.003	ADL 0.003	ADL 0.003
50 qf47ds,tq	Calculated wacm/mi		0.03666	0.03706	0.03693
51 Vf47ds,tq(std)	Calculated dscm	8.79	8.71	8.80	8.77
52 qf47ds,q	Calculated wacm/mi		0.03702	0.03705	0.03707
53 Vf47ds,q(std)	Calculated dscm	8.80	8.80	8.79	8.80
54 qf47dab	Calculated wacm/mi	n 0.03738	0.03727	0.03732	0.03732
55 Vf47dab(std)	Calculated dscm	8.89	8.88	8.89	8.88
57 Vdv(std)	Calculated dscm	45.84	54.10	44.11	48.02
58 Vd(std)	Calculated dscm	36.95	45.22	35.23	39.13
59 Vs(std)	Calculated dscm	2.51	2.51	2.45	2.49
60 Vds(std)	Calculated dscm	39.46	47.73	37.68	41.62
61 DR	Calculated v/v	15.74	19.05	15.36	16.72
62 Cpm2.5	Calculated mg/dscm	ADL 1.24	ADL 1.30	ADL 1.28	ADL 1.273
64					

	Α	В	С	D	Ε	F	G	ΗΙ	J	K	L M	N	0	Р (Q R	S
1	Modified CTM 39,	Site Alfa					Run 1			Run 2			Run 3			Average
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>				<u>Value</u>			<u>Value</u>			<u>Value</u>			<u>Value</u>
65	PM2.5 Emission Fa	ctor														
66	Fd	Input	dscf/MME	3tu			8618.8			8618.8			8618.8			8618.8
67	Epm2.5	Calculated	lb/MMBt		,	ADL	1.46E-03		ADL	1.51E-03	<i> </i>	٩DL	1.47E-03			1.48E-03
68	Epm2.5	Calculated	kg/GJ		,	ADL	6.26E-04		ADL	6.49E-04	<i> </i>	٩DL	6.31E-04			6.35E-04
69																
70	Stack gas flow rate															
71	Qfuel(15C)	Input	lb/hr				9.11E+02			8.97E+02			8.92E+02			9.00E+02
72	HHV(15C)	Input	Btu/lb				2.17E+04			2.17E+04			2.18E+04			2.17E+04
73	Qstk,dry(25C)	Calculated	dscf/hr				3.77E+05			3.68E+05			3.63E+05			3.69E+05
74	Qstk,dry(25C)	Calculated	dscfm				6.28E+03			6.13E+03			6.05E+03			6.16E+03
75	PM2.5 Mass Flow I	Rate_														
76	Mpm2.5	Calculated	lb/hr		,	ADL	2.92E+01		ADL	2.98E+01	<i> </i>	٩DL	2.90E+01		ADL	. 2.94E+01
70																

А	ВС	D E F	G	H I J	K	L M N	0	P Q R	S
1 Modified CTM			Run 1		Run 2		Run 3		Average
2 <u>Parameter</u>	<u>Type</u> <u>Units</u>		<u>Value</u>		<u>Value</u>		<u>Value</u>		<u>Value</u>
79 Species Lab R	esults - Samples								
80 <u>Carbon</u> 81 OC	Measured µg	ADL	6.36E+02	ADL	6.27E+02	ADL	7.07E+02	ADL	6.57E+02
82 EC	Measured µg	ADL	6.65E+00	ADL	1.30E+01	ADL	1.21E+01	ADL	1.06E+01
83 Total C	Measured µg	ADL	6.43E+02	ADL	6.40E+02	ADL	7.19E+02	ADL	6.67E+02
84 OC Backup	Measured µg	ADL	1.22E+02	ADL	1.24E+02	ADL	1.13E+02	ADL	1.19E+02
85 EC Backup	Measured µg	ADL	3.21E+00	BDL	7.63E-01	ADL	1.43E+00	DLL	1.80E+00
86 Total C Backup	o Measured µg	ADL	1.25E+02	ADL	1.24E+02	ADL	1.14E+02	ADL	1.21E+02
88 <u>Elements</u>									
89 Ag	Measured µg	ADL	3.24E-02	BDL	3.34E-02	BDL	3.34E-02	DLL	3.31E-02
90 AI	Measured µg	BDL	4.61E-01	ADL	6.50E-03	BDL	4.61E-01	DLL	3.09E-01
91 As	Measured µg	BDL	1.33E-02	BDL	1.33E-02	BDL	1.33E-02	BDL	1.33E-02
92 Au 93 Ba	Measured µg Measured µg	BDL BDL	3.66E-02 1.21E-01	ADL ADL	2.71E-02 5.21E-01	ADL BDL	2.24E-02 1.22E-01	DLL DLL	2.87E-02 2.55E-01
94 Br	Measured µg	ADL	3.24E-02	ADL	1.95E-02	ADL	8.90E-03	ADL	2.03E-02
95 Ca	Measured µg	ADL	4.46E+00	ADL	4.10E+00	ADL	3.44E+00	ADL	4.00E+00
96 Cd	Measured µg	BDL	6.66E-02	ADL	5.07E-02	BDL	6.66E-02	DLL	6.13E-02
97 Ce	Measured µg	ADL	1.87E-01	BDL	4.66E-01	BDL	4.69E-01	DLL	3.74E-01
98 CI	Measured µg	ADL	3.23E-01	ADL	6.51E-01	ADL	3.95E-02	ADL	3.38E-01
99 Co	Measured µg	BDL	3.40E-03	BDL	3.40E-03	BDL	3.40E-03	BDL	3.40E-03
100 Cr	Measured µg	ADL	4.84E-02	BDL	1.33E-02	ADL	6.00E-03	DLL	2.26E-02
101 Cs 102 Cu	Measured µg Measured µg	ADL ADL	4.24E-02	ADL BDL	1.65E-01	BDL	1.69E-01	DLL	1.25E-01 9.33E-03
103 Eu	Measured µg	BDL	4.80E-03 9.80E-01	ADL	1.16E-02 8.72E-01	BDL BDL	1.16E-02 9.88E-01	DLL DLL	9.33E-03 9.47E-01
104 Fe	Measured µg	ADL	2.57E-01	ADL	7.42E-02	ADL	1.04E-01	ADL	1.45E-01
105 Ga	Measured µg	BDL	1.16E-02	BDL	1.16E-02	BDL	1.16E-02	BDL	1.16E-02
106 Hf	Measured µg	BDL	1.67E-01	BDL	1.67E-01	BDL	1.67E-01	BDL	1.67E-01
107 Hg	Measured µg	BDL	2.50E-02	BDL	2.50E-02	BDL	2.50E-02	BDL	2.50E-02
108 In	Measured µg	BDL	3.17E-02	BDL	3.17E-02	BDL	3.17E-02	BDL	3.17E-02
109 lr	Measured µg	BDL	3.66E-02	BDL	3.66E-02	BDL	3.66E-02	BDL	3.66E-02
110 K 111 La	Measured µg Measured µg	ADL ADL	1.59E-01	ADL	8.13E-02		3.30E-02	ADL	9.11E-02
111 La 112 Mg	Measured µg	BDL	3.54E-02 1.86E+00	ADL BDL	1.45E-01 1.85E+00	BDL BDL	1.99E-01 1.85E+00	DLL BDL	1.27E-01 1.85E+00
113 Mn	Measured µg	BDL	3.34E-02	BDL	3.34E-02	ADL	5.90E-03	DLL	2.42E-02
114 Mo	Measured µg	BDL	1.84E-02	BDL	1.84E-02	BDL	1.84E-02	BDL	1.84E-02
115 Na	Measured µg	BDL	7.79E+00	BDL	7.60E+00	BDL	7.94E+00	BDL	7.78E+00
116 Nb	Measured µg	BDL	1.00E-02	BDL	1.00E-02	BDL	1.00E-02	BDL	1.00E-02
117 Ni	Measured µg	ADL	1.42E-02	BDL	6.60E-03	BDL	6.60E-03	DLL	9.13E-03
118 Pb	Measured µg	ADL	1.77E-02	ADL	4.13E-02	ADL	2.12E-02	ADL	2.67E-02
119 Pd 120 P	Measured µg Measured µg	BDL ADL	6.00E-02 2.56E-01	BDL ADL	6.00E-02 3.23E-01	BDL ADL	6.00E-02 4.95E-01	BDL ADL	6.00E-02 3.58E-01
121 Rb	Measured µg	BDL	3.40E-03	ADL	5.90E-03	ADL	1.20E-03	DLL	3.50E-01
122 S	Measured µg	ADL	6.08E+00	ADL	2.92E+00	ADL	2.76E+00	ADL	3.92E+00
123 Sb	Measured µg	BDL	8.33E-02	ADL	3.71E-02	ADL	3.13E-02	DLL	5.06E-02
124 Sc	Measured µg	BDL	3.57E-01	BDL	3.58E-01	BDL	3.57E-01	BDL	3.57E-01
125 Se	Measured µg	BDL	1.50E-02	BDL	1.50E-02	BDL	1.50E-02	BDL	1.50E-02
126 Si	Measured µg	ADL	4.61E-01	ADL	1.96E-01	ADL	9.75E-01	ADL	5.44E-01
127 Sm	Measured Hg	ADL	2.44E-01	BDL	6.61E-01	BDL	6.60E-01	DLL	5.21E-01
128 Sn 129 Sr	Measured µg Measured µg	ADL ADL	4.95E-02 2.00E-02	ADL ADL	1.30E-03 1.88E-02	BDL ADL	6.00E-02 2.00E-02	DLL ADL	3.69E-02 1.96E-02
130 Ta	Measured µg	BDL	1.67E-01	BDL	1.67E-01	BDL	1.67E-01	BDL	1.96E-02 1.67E-01
131 Tb	Measured µg	BDL	4.76E-01	BDL	4.83E-01	BDL	4.79E-01	BDL	4.79E-01
132 Ti	Measured µg	ADL	1.18E-01	ADL	1.21E-01	ADL	4.54E-02	ADL	9.49E-02
133 TI	Measured µg	ADL	1.01E-02	ADL	1.01E-02	ADL	5.40E-03	ADL	8.53E-03
134 U	Measured µg	BDL	3.49E-02	ADL	2.13E-02	ADL	1.00E-04	DLL	1.88E-02
135 V	Measured µg	BDL	3.40E-03	BDL	3.40E-03	BDL	3.40E-03	BDL	3.40E-03
136 W	Measured Us	ADL	1.21E-01	ADL	9.31E-02	ADL	2.13E-02	ADL	7.86E-02
137 Y 138 Zn	Measured µg Measured µg	ADL ADL	2.13E-02 7.33E-01	ADL ADL	2.40E-03 6.75E-01	BDL ADL	1.16E-02 5.12E-01	DLL ADL	1.18E-02 6.40E-01
138 Zr	Measured µg	BDL	1.50E-02	BDL	1.50E-02	BDL	1.50E-02	BDL	1.50E-01
140			1.302 02	551	1.502 02	222	50_ 02	222	
		1							

	Α	В	С	D	Ε	F	G	Н	I	J	K	LN	/I N	٧	0	Р	Q	R	S
1	Modified CTM 39,	Site Alfa					Run 1				Run 2				Run 3				Average
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>				<u>Value</u>				<u>Value</u>				<u>Value</u>				<u>Value</u>
141	<u>lons</u>																		
142	NH4+	Measured	μg		Е	3DL	1.67E-02			BDL	1.67E-02		В	DL	1.67E-02			BDL	1.67E-02
143	CI-	Measured	μg		Е	3DL	1.67E-02			BDL	1.67E-02		В	DL	1.67E-02			BDL	1.67E-02
144	NO3-	Measured	μg		P	ADL	2.05E+00			ADL	2.78E+00		Αľ	DL	1.26E+00			ADL	2.03E+00
145	K+	Measured	μg		Е	3DL	5.01E-01			BDL	5.01E-01		В	DL	5.01E-01			BDL	5.01E-01
146	Na+	Measured	μg		P	ADL	3.42E-01			ADL	6.19E-02		В	DL	1.67E-02			DLL	1.40E-01
147	SO42-	Measured	μg		P	ADL	3.99E+00			ADL	3.93E+00		Αľ	DL	3.56E+00			ADL	3.82E+00
								ı								ı			

А	В	С	D E F	G	H I J	K	L M N	0	P Q R	S
1 Modified CTM 39,				Run 1		Run 2		Run 3		Average
2 <u>Parameter</u>	<u>Type</u>	<u>Units</u>	1	<u>Value</u>		<u>Value</u>		<u>Value</u>		<u>Value</u>
149 Species Lab Result	s - Run Dilu	tion Air								ļ
150 <u>Carbon</u> 151 OC	Measured	Πα								
152 EC	Measured	-								
153 Total C	Measured	-								
154 OC Backup	Measured		ADL	2.42E+01	ADL	1.91E+01	ADL	1.28E+01	ADL	1.87E+01
155 EC Backup	Measured		ADL	3.21E+00	BDL	7.63E-01	ADL	1.43E+00	DLL	1.80E+00
156 Total C Backup	Measured	-	ADL	1.25E+02	ADL	1.24E+02	ADL	1.14E+02	ADL	1.21E+02
157										
158 Elements										
159 Ag	Measured	μg	BDL	3.34E-02	BDL	3.34E-02	BDL	3.34E-02	BDL	3.34E-02
160 Al	Measured	-	ADL	2.81E-01	BDL	4.62E-01	BDL	4.62E-01	DLL	4.02E-01
161 As	Measured		BDL	1.33E-02	BDL	1.33E-02	BDL	1.33E-02	BDL	1.33E-02
162 Au	Measured		BDL	3.66E-02	BDL	3.66E-02	ADL	5.90E-03	DLL	2.64E-02
163 Ba	Measured		BDL	1.18E-01	BDL	1.18E-01	BDL	1.19E-01	BDL	1.18E-01
164 Br	Measured		ADL	1.80E-03	BDL	1.16E-02	ADL	2.18E-02	DLL	1.17E-02
165 Ca 166 Cd	Measured Measured		BDL	1.33E-02	BDL	1.25E-02	BDL	1.33E-02	BDL	1.30E-02
167 Ce	Measured		BDL ADL	6.66E-02 2.10E-01	BDL ADL	6.66E-02 2.50E-01	BDL BDL	6.66E-02 4.66E-01	BDL DLL	6.66E-02 3.09E-01
168 Cl	Measured	-	ADL	2.10L-01 2.54E-02	ADL	1.24E-02	ADL	1.36E-02	ADL	1.71E-02
169 Co	Measured	-	BDL	3.40E-03	BDL	3.40E-03	BDL	3.40E-03	BDL	3.40E-03
170 Cr	Measured		ADL	8.30E-03	ADL	9.50E-03	ADL	2.13E-02	ADL	1.30E-02
171 Cs	Measured		BDL	1.68E-01	ADL	4.59E-02	ADL	1.07E-01	DLL	1.07E-01
172 Cu	Measured		ADL	1.54E-02	BDL	1.16E-02	BDL	1.16E-02	DLL	1.29E-02
173 Eu	Measured		ADL	4.89E-01	ADL	2.23E-01	BDL	9.79E-01	DLL	5.63E-01
174 Fe	Measured	μg	ADL	1.20E-03	ADL	7.77E-02	BDL	5.50E-02	DLL	4.46E-02
175 Ga	Measured	μg	BDL	1.16E-02	BDL	1.16E-02	BDL	1.16E-02	BDL	1.16E-02
176 Hf	Measured	μg	BDL	1.67E-01	BDL	1.67E-01	BDL	1.67E-01	BDL	1.67E-01
177 Hg	Measured	μg	ADL	1.00E-04	BDL	2.58E-02	BDL	2.50E-02	DLL	1.70E-02
178 In	Measured		BDL	3.17E-02	ADL	4.20E-03	BDL	3.17E-02	DLL	2.25E-02
179 Ir	Measured		BDL	3.66E-02	BDL	3.66E-02	BDL	3.66E-02	BDL	3.66E-02
180 K	Measured	-	ADL	2.71E-02	BDL	2.16E-02	ADL	7.10E-03	DLL	1.86E-02
181 La	Measured		ADL	3.66E-02	ADL	3.60E-03	BDL	1.97E-01	DLL	7.92E-02
182 Mg 183 Mn	Measured Measured		ADL	1.69E-01	BDL	1.86E+00	BDL	1.86E+00	DLL	1.30E+00
184 Mo	Measured		BDL BDL	3.34E-02 1.84E-02	BDL BDL	3.34E-02 1.84E-02	BDL BDL	3.34E-02 1.84E-02	BDL BDL	3.34E-02 1.84E-02
185 Na	Measured		BDL	7.47E+00	BDL	7.60E+00	BDL	7.56E+00	BDL	7.55E+00
186 Nb	Measured		ADL	4.80E-03	BDL	1.00E-02	ADL	2.40E-03	DLL	5.73E-03
187 Ni	Measured		BDL	6.60E-03	BDL	6.60E-03	BDL	6.60E-03	BDL	6.60E-03
188 Pb	Measured		ADL	1.53E-02	BDL	1.99E-02	ADL	4.71E-02	DLL	2.74E-02
189 Pd	Measured		BDL	6.00E-02	BDL	6.00E-02	BDL	6.00E-02	BDL	6.00E-02
190 P	Measured	μg	ADL	1.24E-02	ADL	4.65E-02	BDL	2.66E-02	DLL	2.85E-02
191 Rb	Measured	μg	ADL	3.60E-03	ADL	9.50E-03	ADL	8.30E-03	ADL	7.13E-03
192 S	Measured	μg	BDL	1.67E-02	BDL	1.67E-02	BDL	1.67E-02	BDL	1.67E-02
193 Sb	Measured		ADL	1.12E-02	ADL	1.59E-02	ADL	2.54E-02	ADL	1.75E-02
194 Sc	Measured		ADL	9.50E-03	BDL	3.57E-01	ADL	7.55E-02	DLL	1.47E-01
195 Se	Measured		BDL	1.50E-02	ADL	6.50E-03	BDL	1.50E-02	DLL	1.22E-02
196 Si	Measured		ADL	2.49E-01	ADL	3.24E-02	ADL	1.86E-01	ADL	1.56E-01
197 Sm	Measured		ADL	1.64E-01	BDL	6.59E-01	BDL	6.59E-01	DLL	4.94E-01
198 Sn	Measured		BDL	6.00E-02	BDL	6.00E-02	ADL	5.43E-02	DLL	5.81E-02
199 Sr 200 Ta	Measured Measured		BDL BDI	1.16E-02	BDL BDI	1.16E-02	ADL RDI	3.50E-03	DLL	8.90E-03
200 Ta	Measured		BDL BDL	1.67E-01 4.75E-01	BDL ADL	1.67E-01 3.20E-01	BDL BDL	1.67E-01 4.80E-01	BDL DLL	1.67E-01 4.25E-01
201 Ti	Measured		ADL	4.75E-01 4.20E-03	BDL	8.30E-01	BDL	4.80E-01 8.30E-03	DLL	4.25E-01 6.93E-03
203 TI	Measured		BDL	1.33E-02	BDL	1.33E-02	ADL	7.70E-03	DLL	1.14E-02
204 U	Measured		BDL	3.49E-02	BDL	3.49E-02	BDL	3.49E-02	BDL	3.49E-02
205 V	Measured		ADL	2.40E-03	BDL	3.40E-03	BDL	3.40E-03	DLL	3.07E-03
206 W	Measured		ADL	1.66E-02	BDL	1.67E-01	ADL	5.42E-02	DLL	7.91E-02
207 Y	Measured	-	BDL	1.16E-02	ADL	4.80E-03	ADL	2.36E-02	DLL	1.33E-02
208 Zn	Measured		ADL	1.06E-02	ADL	8.20E-03	ADL	8.20E-03	ADL	9.00E-03
209 Zr	Measured	μg	ADL	2.77E-02	BDL	1.50E-02	ADL	6.50E-03	DLL	1.64E-02
			<u> </u>							

	Α	В	С	D	Ε	F	G	Н	I	J	K	L M N	0	Р	Q R	S
1	Modified CTM 39,	Site Alfa					Run 1				Run 2		Run 3			Average
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>				<u>Value</u>				<u>Value</u>		<u>Value</u>			<u>Value</u>
211	<u>lons</u>															
212	NH4+	Measured	μg													
213	CI-	Measured	μg													
214	NO3-	Measured	μg													
215	K+	Measured	μg													
216	Na+	Measured	μg													
217	SO42-	Measured	μg													
219																

А	В	С	D E F	G	H I J	K	L M N O	P Q R	S
1 Modified CTM 39,				Run 1		Run 2	Run 3		Average
2 <u>Parameter</u>	<u>Type</u>	<u>Units</u>		<u>Value</u>		<u>Value</u>	<u>Value</u>		<u>Value</u>
220 Species Lab Result	s - STFB San	<u>nples</u>							
221 <u>Carbon</u> 222 OC	Measured	Πσ	ADL	2.50E+00	ADL	3.63E+00		DLL	3.07E+00
223 EC	Measured		BDL	7.63E-01	BDL	7.63E-01		DLL	7.63E-01
224 Total C	Measured	-	ADL	2.50E+00	ADL	3.63E+00		DLL	3.07E+00
225 OC Backup	Measured		ADL	4.03E+00	ADL	1.49E+01		DLL	9.47E+00
226 EC Backup	Measured	μg	BDL	7.63E-01	ADL	2.70E-01		DLL	5.17E-01
227 Total C Backup	Measured	μg	ADL	4.03E+00	ADL	1.52E+01		DLL	9.61E+00
228 229 <u>Elements</u>									
230 Ag	Measured	μg	BDL	3.34E-02	BDL	3.34E-02		DLL	3.34E-02
231 Al	Measured	-	ADL	2.17E-01	BDL	4.62E-01		DLL	3.40E-01
232 As	Measured	μg	BDL	1.33E-02	BDL	1.33E-02		DLL	1.33E-02
233 Au	Measured	μg	BDL	3.66E-02	ADL	2.00E-02		DLL	2.83E-02
234 Ba	Measured		ADL	6.54E-02	BDL	1.19E-01		DLL	9.23E-02
235 Br	Measured		ADL	6.50E-03	BDL	1.16E-02		DLL	9.05E-03
236 Ca	Measured		BDL	1.33E-02	BDL	1.33E-02		DLL	1.33E-02
237 Cd	Measured		BDL	6.66E-02	ADL	5.90E-03		DLL	3.63E-02
238 Ce	Measured		BDL	4.67E-01	ADL	4.01E-01		DLL	4.34E-01
239 Cl	Measured		ADL	8.90E-03	ADL	1.48E-02		DLL	1.19E-02
240 Co	Measured		BDL	3.40E-03	BDL	3.40E-03		DLL	3.40E-03
241 Cr 242 Cs	Measured Measured		ADL ADL	2.84E-02 9.42E-02	BDL ADL	1.33E-02 9.89E-02		DLL DLL	2.09E-02 9.66E-02
242 CS 243 Cu	Measured		BDL	9.42E-02 1.16E-02	BDL	1.16E-02		DLL	9.66E-02 1.16E-02
244 Eu	Measured		BDL	9.82E-01	BDL	9.83E-01		DLL	9.82E-01
245 Fe	Measured		ADL	2.83E-02	ADL	1.30E-02		DLL	2.07E-02
246 Ga	Measured		BDL	1.16E-02	BDL	1.16E-02		DLL	1.16E-02
247 Hf	Measured		BDL	1.67E-01	BDL	1.67E-01		DLL	1.67E-01
248 Hg	Measured		BDL	2.50E-02	BDL	2.50E-02		DLL	2.50E-02
249 In	Measured	μg	BDL	3.17E-02	BDL	3.17E-02		DLL	3.17E-02
250 lr	Measured	μg	BDL	3.66E-02	BDL	3.66E-02		DLL	3.66E-02
251 K	Measured	μg	BDL	2.16E-02	BDL	2.16E-02		DLL	2.16E-02
252 La	Measured		ADL	7.66E-02	ADL	1.94E-01		DLL	1.36E-01
253 Mg	Measured		BDL	1.85E+00	BDL	1.85E+00		DLL	1.85E+00
254 Mn	Measured	-	ADL	3.60E-03	BDL	3.34E-02		DLL	1.85E-02
255 Mo	Measured		BDL	1.84E-02	ADL	6.00E-04		DLL	9.50E-03
256 Na	Measured		BDL	7.70E+00	BDL	7.70E+00		DLL	7.70E+00
257 Nb 258 Ni	Measured		ADL	3.60E-03	BDL	1.00E-02		DLL	6.80E-03
259 Pb	Measured Measured		ADL ADL	1.20E-03 2.36E-02	BDL BDL	6.60E-03 1.99E-02		DLL DLL	3.90E-03 2.18E-02
260 Pd	Measured		BDL	6.00E-02	ADL	5.54E-02		DLL	5.77E-02
261 P	Measured		BDL	2.66E-02	ADL	5.01E-02		DLL	3.84E-02
262 Rb	Measured		ADL	9.50E-03	ADL	8.30E-03		DLL	8.90E-03
263 S	Measured		BDL	1.67E-02	BDL	1.67E-02		DLL	1.67E-02
264 Sb	Measured		ADL	3.01E-02	ADL	3.01E-02		DLL	3.01E-02
265 Sc	Measured	μg	ADL	8.49E-02	BDL	3.57E-01		DLL	2.21E-01
266 Se	Measured	μg	BDL	1.50E-02	ADL	1.36E-02		DLL	1.43E-02
267 Si	Measured		ADL	1.35E-01	ADL	1.43E-01		DLL	1.39E-01
268 Sm	Measured		ADL	4.84E-01	BDL	6.61E-01		DLL	5.72E-01
269 Sn	Measured		BDL	6.00E-02	ADL	1.30E-02		DLL	3.65E-02
270 Sr	Measured		BDL	1.16E-02	BDL	1.16E-02		DLL	1.16E-02
271 Ta	Measured		BDL	1.67E-01	BDL	1.67E-01		DLL	1.67E-01
272 Tb	Measured		BDL	4.76E-01	BDL	4.74E-01		DLL	4.75E-01
273 Ti 274 TI	Measured		ADL	1.01E-02	BDL	8.30E-03		DLL	9.20E-03
274 II 275 U	Measured Measured		ADL BDL	6.50E-03 3.49E-02	BDL BDL	1.33E-02 3.49E-02		DLL DLL	9.90E-03 3.49E-02
276 V	Measured	-	BDL	3.49E-02 3.40E-03	ADL	5.90E-03		DLL	3.49E-02 4.65E-03
277 W	Measured		ADL	8.30E-03	BDL	1.67E-01		DLL	4.65E-03 8.75E-02
278 Y	Measured		ADL	7.10E-03	ADL	1.07E-01		DLL	3.60E-03
279 Zn	Measured		BDL	1.99E-02	ADL	8.20E-03		DLL	1.41E-02
280 Zr	Measured		ADL	1.83E-02	ADL	1.80E-03		DLL	1.01E-02
201		-			_				

	А	В	С	DΙ	E F		G	Н	I	J	K	L M	N	0	Р	Q R	S
1	Modified CTM 39,	Site Alfa					Run 1				Run 2			Run 3			Average
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>				<u>Value</u>				<u>Value</u>			<u>Value</u>			<u>Value</u>
282	<u>lons</u>																
283	NH4+	Measured	μg		ВС	L	1.67E-02		В	DL	1.67E-02					DLL	1.67E-02
284	CI-	Measured	μg		ВС	L	1.67E-02		В	DL	1.67E-02					DLL	1.67E-02
285	NO3-	Measured	μg		ΑD	L	1.95E-01		Al	DL	7.57E-02					DLL	1.35E-01
286	K+	Measured	μg		ВС	L	5.01E-01		В	DL	5.01E-01					DLL	5.01E-01
287	Na+	Measured	μg		ВС	L	5.82E-01		В	DL	1.67E-02					DLL	2.99E-01
	SO42-	Measured	μg		ВС	L	1.67E-02		В	DL	1.67E-02					DLL	1.67E-02
289																	

1 Modified CTM 39, Site Alfa Run 1 Run 2 2 Parameter Type Units Value 291 Species Lab Results - STFB Dilution Air 292 Carbon 293 OC Measured μg 294 EC Measured μg 295 Total C Measured μg	O P Q R S Run 3 Value DLL 5.86E+00 DLL 7.63E-01
291 Species Lab Results - STFB Dilution Air 292 Carbon 293 OC Measured μg 294 EC Measured μg 295 Total C Measured μg	DLL 5.86E+00 DLL 7.63E-01
292 Carbon 293 OC Measured μg 294 EC Measured μg 295 Total C Measured μg	DLL 7.63E-01
293 OC Measured μg 294 EC Measured μg 295 Total C Measured μg	DLL 7.63E-01
294 EC Measured μg 295 Total C Measured μg	DLL 7.63E-01
295 Total C Measured μg	DLL 7.63E-01
	DLL 7.63E-01
296 OC Backup Measured µg ADL 7.14E+00 ADL 4.58E+00	DLL 7.63E-01
297 EC Backup Measured µg BDL 7.63E-01 BDL 7.63E-01	
298 Total C Backup Measured µg ADL 7.14E+00 ADL 4.58E+00	DLL 5.86E+00
===	
300 <u>Elements</u> 301 Ag Measured µg BDL 3.34E-02 BDL 3.34E-02	DLL 3.34E-02
302 Al Measured Hg BDL 4.63E-01 BDL 4.61E-01	DLL 4.62E-01
303 As Measured Hg BDL 1.33E-02 BDL 1.33E-02	DLL 1.33E-02
304 Au Measured µg BDL 3.66E-02 ADL 4.70E-03	DLL 2.07E-02
305 Ba Measured µg BDL 1.18E-01 BDL 1.18E-01	DLL 1.18E-01
306 Br Measured µg ADL 1.12E-02 ADL 5.30E-03	DLL 8.25E-03
307 Ca Measured µg BDL 1.33E-02 BDL 1.25E-02	DLL 1.29E-02
308 Cd Measured μg BDL 6.66E-02 BDL 6.66E-02	DLL 6.66E-02
309 Ce Measured μg ADL 1.87E-01 ADL 3.55E-01	DLL 2.71E-01
310 Cl Measured µg BDL 1.16E-02 BDL 1.16E-02	DLL 1.16E-02
311 Co Measured µg BDL 3.40E-03 BDL 3.40E-03	DLL 3.40E-03
312 Cr Measured µg ADL 3.60E-03 ADL 2.40E-03	DLL 3.00E-03
313 Cs Measured µg ADL 1.45E-01 ADL 8.72E-02	DLL 1.16E-01
314 Cu Measured Hg ADL 2.40E-03 ADL 1.54E-02	DLL 8.90E-03
315 Eu Measured μg BDL 9.81E-01 ADL 7.50E-01 316 Fe Measured μg BDL 5.50E-02 BDL 5.50E-02	DLL 8.66E-01
316 Fe Measured μg BDL 5.50E-02 BDL 5.50E-02 317 Ga Measured μg BDL 1.16E-02 BDL 1.16E-02	DLL 5.50E-02 DLL 1.16E-02
318 Hf Measured µg BDL 1.67E-01 BDL 1.67E-01	DLL 1.67E-01
319 Hg Measured Hg BDL 2.50E-02 BDL 2.50E-02	DLL 2.50E-02
320 In Measured µg BDL 3.17E-02 BDL 3.17E-02	DLL 3.17E-02
321 Ir Measured µg BDL 3.66E-02 BDL 3.66E-02	DLL 3.66E-02
322 K Measured µg ADL 1.41E-02 BDL 2.16E-02	DLL 1.79E-02
323 La Measured µg BDL 1.98E-01 BDL 1.98E-01	DLL 1.98E-01
324 Mg Measured μg BDL 1.86E+00 BDL 1.86E+00	DLL 1.86E+00
325 Mn Measured μg BDL 3.34E-02 ADL 1.07E-02	DLL 2.21E-02
326 Mo Measured µg BDL 1.84E-02 ADL 2.90E-03	DLL 1.07E-02
327 Na Measured μg BDL 7.78E+00 BDL 7.42E+00	DLL 7.60E+00
328 Nb Measured μg ADL 7.10E-03 ADL 4.80E-03	DLL 5.95E-03
329 Ni Measured µg BDL 6.60E-03 BDL 6.60E-03	DLL 6.60E-03
330 Pb Measured µg ADL 1.53E-02 ADL 2.01E-02	DLL 1.77E-02
331 Pd Measured μg BDL 6.00E-02 BDL 6.00E-02	DLL 6.00E-02
332 P Measured μg BDL 2.66E-02 ADL 1.00E-02 333 Rb Measured μg BDL 3.40E-03 ADL 3.60E-03	DLL 1.83E-02 DLL 3.50E-03
334 S Measured µg BDL 3.40E-03 ADL 3.60E-03	DLL 3.50E-03 DLL 1.67E-02
335 Sb Measured µg BDL 1.67E-02 BDL 1.67E-02 335 Sb Measured µg ADL 6.89E-02 BDL 8.33E-02	DLL 1.67E-02 DLL 7.61E-02
336 Sc Measured µg BDL 3.58E-01 BDL 3.57E-01	DLL 7.61E-02 DLL 3.57E-01
337 Se Measured Hg BDL 1.50E-02 BDL 1.50E-02	DLL 1.50E-02
338 Si Measured Hg BDL 5.12E-02 ADL 1.02E-01	DLL 7.66E-02
339 Sm Measured µg BDL 6.59E-01 ADL 4.71E-02	DLL 3.53E-01
340 Sn Measured µg ADL 3.66E-02 BDL 6.00E-02	DLL 4.83E-02
341 Sr Measured μg BDL 1.16E-02 ADL 3.50E-03	DLL 7.55E-03
342 Ta Measured μg BDL 1.67E-01 BDL 1.67E-01	DLL 1.67E-01
343 Tb Measured μg ADL 1.27E-01 BDL 4.82E-01	DLL 3.04E-01
344 Ti Measured μg ADL 2.19E-02 BDL 8.30E-03	DLL 1.51E-02
345 TI Measured μg BDL 1.33E-02 BDL 1.33E-02	DLL 1.33E-02
346 U Measured μg BDL 3.49E-02 BDL 3.49E-02	DLL 3.49E-02
347 V Measured μg ADL 9.40E-03 ADL 4.70E-03	DLL 7.05E-03
348 W Measured μg ADL 2.36E-02 BDL 1.67E-01	DLL 9.51E-02
349 Y Measured μg ADL 7.10E-03 ADL 1.19E-02	DLL 9.50E-03
350 Zn Measured μg ADL 8.20E-03 ADL 1.88E-02	DLL 1.35E-02
351 Zr Measured μg BDL 1.50E-02 ADL 5.40E-03	DLL 1.02E-02

	Α	В	С	DI	F	G	Н	I	J	K	L	M N	0	P (ą	R	S
1	Modified CTM 39,	Site Alfa				Run 1				Run 2			Run 3				Average
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>			<u>Value</u>				<u>Value</u>			<u>Value</u>	<u> </u>			<u>Value</u>
353	<u>lons</u>																
354	NH4+	Measured	μg											l			
355	CI-	Measured	μg											l			
356	NO3-	Measured	μg											l			
357	K+	Measured	μg											l			
358	Na+	Measured	μg											l			
	SO42-	Measured	μg											l			
361																	

	А	В	С	D E F	G	H I J	K	L M N	0	P Q R	S
Security 1.00 1.0	1 Modified CTM 3	9, Site Alfa			Run 1		Run 2		Run 3		_
255 256 257 258							<u>Value</u>		<u>Value</u>		<u>Value</u>
265 CC		trations (with o	dilution air	<u>blank subtra</u>	action)						
Sep Total C. Calculated mg/dscm ADI 1.15F-02 ADI 2.15F-04 ADI 1.15F-04		Calculated	ma/deem	ADI	1 145 . 00	ADI	1 265 - 00	A D.I	1 225 - 00	# 401	1 245 - 00
288 TOLO Calculated myddscm ADL 1.176 O1 ADL 1.276 O1 ADL 1.766 O1 O1 ADL 1.766 O1 O1 ADL 1.766 O1 O1 ADL 1.766 O1 O1 O1 O1 O1 O1 O1			•								
2500 C Backup Calculated myddscm ADL 1.7F 0.1 ADL 1.75E 0.2 ADL 1.			_								
270 Elements 271 Elements 272 Total Calculated mygldscm B ADL 1.61e 04 B ADL 1.61e 05			_								
			_								
1975 AB	371 Total C Backup		_	B ADL	1.61E-02	B ADL	1.64E-02	B ADL	1.49E-02	B ADL	1.58E-02
375 Al	373 Elements										
1757 An	374 Ag	Calculated	mg/dscm	BBL	5.54E-05	BDL	5.12E-06	BDL	4.34E-06	DLL	2.16E-05
277 Au			_	BDL	3.59E-04	FB BBL	9.38E-04	BDL	5.73E-05	FB B DLL	4.52E-04
272 283			_								
398 Calculated mg/dscm FB ADL 5.51E-05 RB BBL 3.52E-05 ADL 3.64E-05 A			_								
SB0 Ca Calculated mg/dscm BDL 8.358-04 BDL 8.358-04 BDL 8.658-05 BDL 5.108-05 BDL 8.358-06 BDL			_								
September Sept			_								
1882 Calculated mg/dscm FB B BL 3.48E-04 ADL 5.37E-04 ADL 1.40E-03 FB B ADL 4.70E-05 ADL 6.61E-04 ADL 3.38E-04 ADL 4.70E-05 ADL 6.61E-04 ADL 3.50E-04 ADL 4.70E-05 ADL 6.61E-04 ADL 4.70E-05 ADL 4.70			_								
S88 C	—		_								
Section Sect			_								
S85 Cu Calculated mg/dscm F8 BBL 2.79E-04 F8 B ADL 2.67E-04 BDL 1.72E-06 BDL 1.73E-06 BDL 1.73E-05 BDL 2.73E-05 BDL 2.73E			_								
S87 Cu Calculated mg/dscm 8 BBL 2.56E-05 BDL 1.78E-06 BDL 1.51E-06 B DLL 9.46E-04 BBD 9.45E-04 BBD 1.45E-03 BBD 1.45E-03 BDL 1.43E-04 B DLL 9.22E-05 B DL 2.36E-04 BDL 9.22E-05 BDL 2.36E-04 BDL 1.51E-06 BDL 1.51E-06 BDL 1.51E-06 BDL 2.36E-04 BDL 2.36E-05	385 Cr	Calculated	mg/dscm	FB ADL	7.29E-05	BDL	9.77E-06	FB B BBL	3.44E-05	FB B DLL	3.90E-05
See	386 Cs	Calculated	mg/dscm	FB BBL	2.79E-04	FB B ADL	2.67E-04	BDL	1.22E-04	FB B DLL	2.23E-04
BB BB 1.58E-04 SD 1.58E-05 SD 1.51E-06 SD 1.			_	B BBL	2.56E-05	BDL	1.78E-06	BDL	1.51E-06	B DLL	9.61E-06
Section Sect			_						1.43E-04		
			_								
992 Ng			_								
Section Sect			_								
Section Sect			_								
395 K Calculated mg/dscm ADL 2.40E-04 ADL 1.34E-04 B ADL 4.61E-05 B ADL 1.40E-04 B ADL 3.96E-05 B ADL 3.95E-03 B ADL 3.95E-03 B ADL 3.96E-05 B A			•								
395 La Calculated mg/dscm BB BBL 6.07E-05 FB ADL 3.10E-04 BDL 2.36E-05 FB B DL 1.33E-04 397 Mg Calculated mg/dscm BDL 3.05E-03 BDL 2.50E-06 BDL 2.36E-06 BDL 2.36E-06 BDL 2.36E-06 BDL 2.36E-06 BDL 2.32E-06 BDL 2.32E-05 BDL 2			_								
398 Mm			_								
Supplementary Supplementar	397 Mg	Calculated	mg/dscm	BDL	3.05E-03	BDL	2.50E-04	BDL	2.36E-04	BDL	1.18E-03
A00 Na	398 Mn	Calculated	mg/dscm	BDL	4.43E-06	BDL	5.12E-06	FB BBL	5.40E-05	FB DLL	2.12E-05
A01 Nb			_	BDL		BDL	2.82E-06	BDL	2.39E-06	BDL	
A02 Ni			_								
Pb			_								
Pd			_								
ADL 4.38E-04 ADL 6.13E-04 ADL 8.22E-04 ADL 6.24E-04 ADL 6.24E-04 ADL 6.36E-03 ADL 4.79E-03 ADL 7.34E-03 ADL 7.34E-05 ADL 7.34E-06 ADL			_								
Rb			_								
ADL 4.79E-03 ADL 4.79E-03 ADL 7.34E-03 ADL 4.79E-03 ADL 7.34E-03 ADL 4.79E-03 ADL 7.34E-03 ADD 4.79E-03 ADD 7.34E-05 ADD 4.79E-05 ADD 4.79E-06 ADD			_								
A08 Sb			_								
409 Sc Calculated mg/dscm BDL 6.24E-04 BDL 5.67E-05 BDL 5.01E-04 BDL 3.94E-04 410 Se Calculated mg/dscm BDL 1.99E-06 BDL 1.96E-05 BDL 1.95E-06 BDL 7.84E-06 411 Si Calculated mg/dscm FB B ADL 4.13E-04 FB ADL 3.63E-04 ADL 1.40E-03 FB B ADL 7.26E-04 412 Sm Calculated mg/dscm FB B ADL 1.65E-04 BDL 1.05E-04 BDL 8.70E-05 FB B DLL 7.26E-04 413 Sn Calculated mg/dscm FB BBL 9.95E-05 FB BBL 1.22E-04 BDL 1.70E-05 FB B DLL 7.95E-05 414 Sr Calculated mg/dscm ADL 1.66E-05 ADL 1.75E-05 ADL 2.93E-05 FB B DL 2.21E-05 415 Ta Calculated mg/dscm BDL 2.21E-05 BDL 2.56E-05 BDL 2.17E-05 BDL 2.31E-05 416 Tb Calculated mg/dscm FB BBL 2.21E-05 BDL <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			_								
411 Si Calculated mg/dscm FB B ADL 4.13E-04 FB ADL 3.63E-04 ADL 1.40E-03 FB B ADL 7.26E-04 412 Sm Calculated mg/dscm FB B ADL 1.65E-04 BDL 1.05E-04 BDL 8.70E-05 FB B DLL 1.19E-04 413 Sn Calculated mg/dscm FB BBL 9.95E-05 FB BBL 1.22E-04 BDL 1.70E-05 FB B DLL 7.95E-05 414 Sr Calculated mg/dscm ADL 1.66E-05 ADL 1.75E-05 ADL 2.93E-05 B ADL 2.11E-05 415 Ta Calculated mg/dscm BDL 2.21E-05 BDL 2.56E-05 BDL 2.17E-05 BDL 2.31E-05 416 Tb Calculated mg/dscm ADL 2.05E-04 ADL 2.47E-04 FB ADL 6.58E-05 BDL 1.77E-04 418 Tl Calculated mg/dscm FB BBL 2.21E-05 FB BBL 2.70E-05 FB BBL 1.24E-05 FB B BBL 2.05E-05			_								
412 Sm Calculated mg/dscm FB B ADL 1.65E-04 BDL 1.05E-04 BDL 8.70E-05 FB B DLL 1.19E-04 413 Sn Calculated mg/dscm FB B BBL 9.95E-05 FB BBL 1.22E-04 BDL 1.70E-05 FB B DLL 7.95E-05 414 Sr Calculated mg/dscm ADL 1.66E-05 ADL 1.75E-05 ADL 2.93E-05 BDL 2.11E-05 415 Ta Calculated mg/dscm BDL 2.21E-05 BDL 2.56E-05 BDL 2.17E-05 BDL 2.31E-05 416 Tb Calculated mg/dscm ADL 2.05E-04 ADL 2.47E-04 FB ADL 6.58E-05 BDL 1.77E-04 418 Tl Calculated mg/dscm FB BBL 2.21E-05 FB BBL 2.70E-05 FB BBL 1.24E-05 FB BBL 2.05E-05 419 U Calculated mg/dscm BDL 4.63E-06 BBL 5.22E-07 BDL 4.42E-07 BDL 1.02E-06 420 V Calculated mg/dscm ADL 1.89E-05 FB BBL	410 Se		_		1.99E-06	BDL	1.96E-05	BDL	1.95E-06	BDL	7.84E-06
413 Sn Calculated mg/dscm FB BBL 9.95E-05 FB BBL 1.22E-04 BDL 1.70E-05 FB B DLL 7.95E-05 414 Sr Calculated mg/dscm ADL 1.66E-05 ADL 1.75E-05 ADL 2.93E-05 B ADL 2.11E-05 415 Ta Calculated mg/dscm BDL 2.21E-05 BDL 2.56E-05 BDL 2.17E-05 BDL 2.31E-05 416 Tb Calculated mg/dscm BDL 6.44E-05 BDL 4.06E-04 BDL 6.08E-05 BDL 1.77E-04 417 Ti Calculated mg/dscm ADL 2.05E-04 ADL 2.47E-04 FB ADL 6.58E-05 ADL 1.73E-04 418 Tl Calculated mg/dscm FB BBL 2.21E-05 FB BBL 2.70E-05 FB BBL 1.24E-05 FB BBL 2.05E-05 420 V Calculated mg/dscm BDL 2.11E-06 BDL 5.22E-07 <td></td> <td></td> <td>_</td> <td></td> <td>4.13E-04</td> <td>FB ADL</td> <td></td> <td>ADL</td> <td></td> <td>FB B ADL</td> <td></td>			_		4.13E-04	FB ADL		ADL		FB B ADL	
414 Sr Calculated mg/dscm ADL 1.66E-05 ADL 1.75E-05 ADL 2.93E-05 B ADL 2.11E-05 415 Ta Calculated mg/dscm BDL 2.21E-05 BDL 2.56E-05 BDL 2.17E-05 BDL 2.31E-05 416 Tb Calculated mg/dscm BDL 6.44E-05 BDL 4.06E-04 BDL 6.08E-05 BDL 1.77E-04 417 Ti Calculated mg/dscm ADL 2.05E-04 ADL 2.47E-04 FB ADL 6.58E-05 ADL 1.73E-04 418 Tl Calculated mg/dscm FB BBL 2.21E-05 FB BBL 2.70E-05 FB B BBL 1.24E-05 FB BBL 2.05E-05 419 U Calculated mg/dscm BDL 4.63E-06 BBL 7.10E-05 BBL 5.64E-05 DLL 4.40E-05 420 V Calculated mg/dscm FB ADL 1.90E-04 FB BBL 3.39E-04 FB <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			_								
415 Ta Calculated mg/dscm BDL 2.21E-05 BDL 2.56E-05 BDL 2.17E-05 BDL 2.31E-05 416 Tb Calculated mg/dscm BDL 6.44E-05 BDL 4.06E-04 BDL 6.08E-05 BDL 1.77E-04 417 Ti Calculated mg/dscm ADL 2.05E-04 ADL 2.47E-04 FB ADL 6.58E-05 ADL 1.73E-04 418 Tl Calculated mg/dscm FB BBL 2.21E-05 FB BBL 2.70E-05 FB BBL 1.24E-05 FB BBL 2.05E-05 419 U Calculated mg/dscm BDL 4.63E-06 BBL 7.10E-05 BBL 5.64E-05 DLL 4.40E-05 420 V Calculated mg/dscm FB ADL 1.90E-04 FB BBL 3.39E-04 FB BBL 8.76E-05 FB B DL 2.05E-04 422 Y Calculated mg/dscm ADL 1.89E-05 FB <			_								
416 Tb Calculated mg/dscm BDL 6.44E-05 BDL 4.06E-04 BDL 6.08E-05 BDL 1.77E-04 417 Ti Calculated mg/dscm ADL 2.05E-04 ADL 2.47E-04 FB ADL 6.58E-05 ADL 1.73E-04 418 Tl Calculated mg/dscm FB BBL 2.21E-05 FB BBL 2.70E-05 FB BBL 1.24E-05 FB BBL 2.05E-05 419 U Calculated mg/dscm BDL 4.63E-06 BDL 5.22E-07 BBL 5.64E-05 DLL 4.40E-05 420 V Calculated mg/dscm BDL 2.11E-06 BDL 5.22E-07 BDL 4.42E-07 BDL 1.02E-06 421 W Calculated mg/dscm ADL 1.90E-04 FB BBL 3.39E-04 FB B BBL 8.76E-05 FB B DL 2.23E-05 422 Y Calculated mg/dscm ADL 1.89E-05 FB BBL			_								
417 Ti Calculated mg/dscm ADL 2.05E-04 ADL 2.47E-04 FB ADL 6.58E-05 ADL 1.73E-04 418 Tl Calculated mg/dscm FB BBL 2.21E-05 FB BBL 2.70E-05 FB BBL 1.24E-05 FB BBL 2.05E-05 419 U Calculated mg/dscm BDL 4.63E-06 BBL 7.10E-05 BBL 5.64E-05 DLL 4.40E-05 420 V Calculated mg/dscm BDL 2.11E-06 BDL 5.22E-07 BDL 4.42E-07 BDL 1.02E-06 421 W Calculated mg/dscm FB ADL 1.90E-04 FB BBL 3.39E-04 FB B BBL 8.76E-05 FB B DL 2.23E-05 422 Y Calculated mg/dscm ADL 1.30E-05 FB BBL 9.76E-06 BDL 3.81E-05 FB B DL 2.23E-05 423 Zn Calculated mg/dscm ADL 1.30E-03 ADL 1.46E-03 ADL 8.81E-04			_								
418 Tl Calculated mg/dscm FB BBL 2.21E-05 FB BBL 2.70E-05 FB BBL 1.24E-05 FB BBL 2.05E-05 419 U Calculated mg/dscm BDL 4.63E-06 BBL 7.10E-05 BBL 5.64E-05 DLL 4.40E-05 420 V Calculated mg/dscm BDL 2.11E-06 BDL 5.22E-07 BDL 4.42E-07 BDL 1.02E-06 421 W Calculated mg/dscm FB ADL 1.90E-04 FB BBL 3.39E-04 FB B BBL 8.76E-05 FB B DL 2.05E-05 422 Y Calculated mg/dscm ADL 1.89E-05 FB B BL 9.76E-06 BDL 3.81E-05 FB B DL 2.23E-05 423 Zn Calculated mg/dscm ADL 1.30E-03 ADL 1.46E-03 ADL 8.81E-04 ADL 1.21E-03			_								
419 U Calculated mg/dscm BDL 4.63E-06 BBL 7.10E-05 BBL 5.64E-05 DLL 4.40E-05 420 V Calculated mg/dscm BDL 2.11E-06 BDL 5.22E-07 BDL 4.42E-07 BDL 1.02E-06 421 W Calculated mg/dscm FB ADL 1.90E-04 FB BBL 3.39E-04 FB BBL 8.76E-05 FB B DL 2.05E-04 422 Y Calculated mg/dscm ADL 1.89E-05 FB BBL 9.76E-06 BDL 3.81E-05 FB B DLL 2.23E-05 423 Zn Calculated mg/dscm ADL 1.30E-03 ADL 1.46E-03 ADL 8.81E-04 ADL 1.21E-03			•								
420 V Calculated mg/dscm BDL 2.11E-06 BDL 5.22E-07 BDL 4.42E-07 BDL 1.02E-06 421 W Calculated mg/dscm FB ADL 1.90E-04 FB BBL 3.39E-04 FB BBL 8.76E-05 FB B DL 2.05E-04 422 Y Calculated mg/dscm ADL 1.89E-05 FB BBL 9.76E-06 BDL 3.81E-05 FB B DLL 2.23E-05 423 Zn Calculated mg/dscm ADL 1.30E-03 ADL 1.46E-03 ADL 8.81E-04 ADL 1.21E-03			_								
421 W Calculated mg/dscm FB ADL 1.90E-04 FB BBL 3.39E-04 FB BBL 8.76E-05 FB B DLL 2.05E-04 422 Y Calculated mg/dscm ADL 1.89E-05 FB BBL 9.76E-06 BDL 3.81E-05 FB B DLL 2.23E-05 423 Zn Calculated mg/dscm ADL 1.30E-03 ADL 1.46E-03 ADL 8.81E-04 ADL 1.21E-03			_								
422 Y Calculated mg/dscm ADL 1.89E-05 FB B BBL 9.76E-06 BDL 3.81E-05 FB B DLL 2.23E-05 423 Zn Calculated mg/dscm ADL 1.30E-03 ADL 1.46E-03 ADL 8.81E-04 ADL 1.21E-03			•								
			_								
14247 Colodered worldown DDI 4 cop op DDI 2 cop op DDI 2 cop op		Calculated	mg/dscm	ADL	1.30E-03	ADL	1.46E-03	ADL	8.81E-04	ADL	1.21E-03
424 Zr	424 Zr	Calculated	mg/dscm	BDL	4.60E-05	BDL	2.30E-06	BDL	1.57E-05	BDL	2.13E-05

	Α	В	С	D E	F	G	ΗΙ	J	K	L M N	0	PC	Q R	S
1	Modified CTM 39,	Site Alfa				Run 1			Run 2		Run 3			Average
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>			<u>Value</u>			<u>Value</u>		<u>Value</u>			<u>Value</u>
426	<u>lons</u>													
427	NH4+	Calculated	mg/dscm		BDL	2.98591E-05		BDL	3.61656E-05	BDL	2.91603E-05		BDL	3.17283E-05
428	CI-	Calculated	mg/dscm		BDL	2.98591E-05		BDL	3.61656E-05	BDL	2.91603E-05		BDL	3.17283E-05
429	NO3-	Calculated	mg/dscm	#	ADL	0.003673327	#	ADL	0.006015448	# ADL	0.002193416	#	# ADL	0.00396073
430	K+	Calculated	mg/dscm		BDL	0.000896067		BDL	0.001085306	BDL	0.000875082		BDL	0.000952152
431	Na+	Calculated	mg/dscm	#	ADL	0.000611143	#	+ ADL	0.000134053	BDL	2.91603E-05	#	# DLL	0.000258119
432	SO42-	Calculated	mg/dscm	#	ADL	0.007132594	#	+ ADL	0.008502171	# ADL I	0.006211186	# I	# ADL	0.007281984

	АВ	С	D E F	G	H I J	K	L M N	0	P Q R	S
1 Modifie	ed CTM 39, Site Alfa			Run 1		Run 2		Run 3		Average
2 <u>Parame</u>		<u>Units</u>		<u>Value</u>		<u>Value</u>		<u>Value</u>		<u>Value</u>
	tructed Mass (applying		•		1		1			
436 OC		mg/dscm		1.04E+00	ADL	1.22E+00	ADL	1.14E+00	ADL	1.13E+00
437 EC		mg/dscm		1.19E-02	ADL	2.82E-02	ADL	2.11E-02	ADL	2.04E-02
438 Total C		mg/dscm								
439 OC Bac	•	mg/dscm mg/dscm								
440 EC Back 441 Total C	•	mg/dscm								
	•	ilig/uscili								
443 Elemen		/-	D.D.I	7 105 05	DD.	2 225 06	DD.	2.015.06	D	2.605.05
444 Ag		mg/dscm		7.18E-05	BDL	3.32E-06	BDL	2.81E-06	DLL	2.60E-05
445 Al 446 As		mg/dscm mg/dscm	BDL BDL	3.39E-04	BBL	1.77E-03 1.57E-06	BDL	5.41E-05 1.33E-06	DLL BDL	7.22E-04 1.41E-06
446 AS 447 Au		mg/dscm	BDL	1.35E-06 2.72E-06	BDL BBL	8.35E-05	BDL ADL	3.32E-05	DLL	3.98E-05
448 Ba		mg/dscm	BDL	1.25E-05	ADL	1.11E-03	BDL	1.23E-05	DLL	3.78E-04
449 Br		mg/dscm		7.71E-05	ADL	2.67E-05	BBL	4.93E-05	DLL	5.10E-05
450 Ca	Calculated	_	ADL	1.43E-02	ADL	1.61E-02	ADL	1.08E-02	ADL	1.37E-02
451 Cd	Calculated	_	BDL	5.04E-06	BBL	1.55E-04	BDL	4.94E-06	DLL	5.49E-05
452 Ce		mg/dscm	BBL	4.29E-04	BDL	3.13E-04	BDL	3.98E-05	DLL	2.61E-04
453 Cl	Calculated	_	ADL	1.39E-03	ADL	3.61E-03	ADL	1.21E-04	ADL	1.70E-03
454 Co		mg/dscm		3.07E-07	BDL	3.55E-07	BDL	3.01E-07	BDL	3.21E-07
455 Cr	Calculated	_	ADL	1.40E-04	BDL	9.39E-06	BBL	6.62E-05	DLL	7.20E-05
456 Cs		mg/dscm	BBL	2.96E-04	ADL	2.83E-04	BDL	6.47E-05	DLL	2.15E-04
457 Cu	Calculated	mg/dscm	BBL	3.20E-05	BDL	1.11E-06	BDL	9.44E-07	DLL	1.13E-05
458 Eu	Calculated	mg/dscm	BDL	5.47E-04	ADL	1.68E-03	BDL	8.29E-05	DLL	7.71E-04
459 Fe	Calculated	mg/dscm	ADL	6.55E-04	BBL	2.26E-04	ADL	1.32E-04	DLL	3.38E-04
460 Ga	Calculated	mg/dscm	BDL	1.03E-06	BDL	1.20E-06	BDL	1.01E-06	BDL	1.08E-06
461 Hf		mg/dscm	BDL	1.30E-05	BDL	1.51E-05	BDL	1.28E-05	BDL	1.36E-05
462 Hg	Calculated	_	BDL	2.41E-05	BDL	2.83E-05	BDL	1.75E-06	BDL	1.81E-05
463 In	Calculated	_	BDL	2.54E-06	BDL	3.67E-05	BDL	2.49E-06	BDL	1.39E-05
464 Ir		mg/dscm		2.83E-06	BDL	3.28E-06	BDL	2.77E-06	BDL	2.96E-06
465 K		mg/dscm		4.36E-04	ADL	2.43E-04	ADL	8.39E-05	ADL	2.55E-04
466 La		mg/dscm		7.12E-05	ADL	3.63E-04	BDL	1.68E-05	DLL	1.50E-04
467 Mg		mg/dscm	BDL	3.53E-03	BDL	2.89E-04	BDL	2.73E-04	BDL	1.36E-03
468 Mn		mg/dscm		4.47E-06	BDL	5.17E-06	BBL	1.09E-04	DLL	3.95E-05
469 Mo 470 Na		mg/dscm mg/dscm	BDL BDL	1.83E-06 1.86E-03	BDL BDL	2.12E-06 1.40E-03	BDL BDL	1.79E-06 1.96E-03	BDL BDL	1.91E-06 1.74E-03
470 Na 471 Nb		mg/dscm	BDL	7.12E-06	BDL	1.40E-05 1.10E-06	BDL	9.71E-06	BDL	5.98E-06
471 No 472 Ni		mg/dscm	ADL	2.04E-05	BDL	7.13E-07	BDL	6.04E-07	DLL	7.25E-06
473 Pb		mg/dscm		7.31E-06	ADL	5.75E-05	BBL	8.78E-05	DLL	5.09E-05
474 Pd		mg/dscm		5.18E-06	BDL	5.99E-06	BDL	5.07E-06	BDL	5.41E-06
475 P	Calculated	_	ADL	1.00E-03	ADL	1.40E-03	ADL	1.88E-03	ADL	1.43E-03
476 Rb		mg/dscm		4.10E-06	BBL	2.65E-05	BBL	1.84E-05	DLL	1.64E-05
477 S	Calculated	mg/dscm	ADL	3.26E-02	ADL	1.91E-02	ADL	1.43E-02	ADL	2.20E-02
478 Sb	Calculated	mg/dscm	BDL	8.68E-05	ADL	6.48E-05	ADL	1.81E-05	DLL	5.66E-05
479 Sc	Calculated	mg/dscm	BDL	4.78E-04	BDL	4.35E-05	BDL	3.84E-04	BDL	3.02E-04
480 Se	Calculated	mg/dscm	BDL	1.60E-06	BDL	1.57E-05	BDL	1.57E-06	BDL	6.30E-06
481 Si		mg/dscm	ADL	8.83E-04	ADL	7.77E-04	ADL	3.00E-03	ADL	1.55E-03
482 Sm		mg/dscm	ADL	1.92E-04	BDL	6.08E-05	BDL	5.05E-05	DLL	1.01E-04
483 Sn		mg/dscm		1.26E-04	BBL	1.55E-04	BDL	1.08E-05	DLL	9.74E-05
484 Sr		mg/dscm		2.26E-05	ADL	2.39E-05	ADL	3.99E-05	ADL	2.88E-05
485 Ta	Calculated	_	BDL	1.35E-05	BDL	1.56E-05	BDL	1.32E-05	BDL	1.41E-05
486 Tb		mg/dscm	BDL	3.79E-05	BDL	2.39E-04	BDL	3.57E-05	BDL	1.04E-04
487 Ti		mg/dscm	ADL	3.42E-04	ADL	4.12E-04	ADL	1.10E-04	ADL	2.88E-04
488 TI		mg/dscm		2.47E-05	BBL	3.02E-05	BBL	1.39E-05	BBL	2.29E-05
489 U 490 V		mg/dscm		2.78E-06	BBL	8.53E-05	BBL	6.78E-05	DLL	5.19E-05
490 V 491 W	Calculated	mg/ascm mg/dscm	BDL	1.88E-06	BDL BBI	4.66E-07	BDL BBI	3.94E-07	BDL	9.15E-07 2.59E-04
491 W 492 Y		mg/ascm mg/dscm	ADL ADL	2.40E-04 2.40E-05	BBL BBL	4.27E-04 1.24E-05	BBL BDL	1.10E-04 2.42E-05	DLL DLL	2.59E-04 2.02E-05
492 Y 493 Zn		mg/ascm mg/dscm		2.40E-05 1.93E-03	ADL	1.24E-05 2.17E-03	ADL	2.42E-05 1.31E-03	ADL	2.02E-05 1.81E-03
494 Zr		mg/dscm		3.10E-05	BDL	1.55E-06	BDL	1.06E-05	BDL	1.61E-03 1.44E-05
-1J-T L1	Calculateu	iiig/uscill	DUL	J.10L 0J	DDL	1.550 00		1.000 03	DUL	1.77L UJ

	А	В	С	D	E F		G	Н	1	J	K	L M	N	0	Р	Q R	S
1	Modified CTM 39,	Site Alfa					Run 1				Run 2			Run 3			Average
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>				<u>Value</u>				<u>Value</u>			<u>Value</u>			<u>Value</u>
496	<u>lons</u>																
497	NH4+	Calculated	mg/dscm		ВЕ	DL	1.49E-05		В	BDL	1.81E-05		BDL	1.46E-05		BDL	1.59E-05
498	CI-	Calculated	mg/dscm		ВЕ	DL	3.85E-05		В	BDL	4.66E-05		BDL	3.76E-05		BDL	4.09E-05
499	NO3-	Calculated	mg/dscm		ΑĽ	DL	3.67E-03		Δ	DL	6.02E-03		ADL	2.19E-03		ADL	3.96E-03
500	K+	Calculated	mg/dscm		ВЕ	DL	8.15E-04		В	BDL	9.87E-04		BDL	7.96E-04		BDL	8.66E-04
501	Na+	Calculated	mg/dscm		ΑĽ	DL	1.46E-03		Δ	DL	3.21E-04		BDL	3.49E-05		DLL	6.06E-04
502	SO42-	Calculated	mg/dscm		ΑĽ	DL	1.19E-02		Δ	DL	1.42E-02		ADL	1.03E-02		ADL	1.21E-02
503																	
504	Reconstructed mas	Calculated	mg/dscm		DL	L	1.12E+00			LL	1.31E+00		DLL	1.20E+00		DLL	1.21E+00
505	Species mass closu	re	%				90%				101%			94%			95%
509																	

	Α	В	С	D E	F	G	НІ	J	K	L M N	0	P Q R	S
1	Modified CTM 39,	Site Alfa			•	Run 1			Run 2		Run 3		Average
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>			<u>Value</u>			<u>Value</u>		<u>Value</u>		<u>Value</u>
	Species Profile (fra	ction of sur	n of specie	es, with	diluti	on air blank)							
659		Calculated	mg/mg	0	ADL	0.92983	C) ADL	0.93290	0 ADL	0.95052	# ADL	0.93779
660	EC	Calculated			ADL	0.01066) ADL	0.02154	0 ADL	0.01756	# ADL	0.01687
	Total C	Calculated		0	ADL	0.00000	C) ADL	0.00000	0 ADL	0.00000	# ADL	0.00000
-	OC Backup	Calculated											
	EC Backup	Calculated											
	Total C Backup	Calculated	mg/mg										
665													
	Elements (as oxides		,			0.0000			0.0000		0.0000	5	0.00000
667	=	Calculated			BBL	0.00006		BDL	0.00000	BDL	0.00000	DLL	0.00002
668 669		Calculated			BDL	0.00030	FB	BBL BDL	0.00135	BDL BDL	0.00005	FB B DLL BDL	0.00060
670		Calculated Calculated			BDL	0.00000	FB		0.00000		0.00000		0.00000
671		Calculated			BDL BDL	0.00000 0.00001	ГБ	BBL ADL	0.00006 0.00085	FB B ADL BDL	0.00003 0.00001	FB B DLL FB DLL	0.00003 0.00031
672		Calculated		FB	ADL	0.00001	FB	ADL	0.00003	FB B BBL	0.00001	FB B DLL	0.00031
673		Calculated			ADL	0.01285		ADL	0.01229	ADL	0.00895	ADL	0.01136
674		Calculated			BDL	0.00000	FB	BBL	0.001223	BDL	0.00093	FB DLL	0.001130
675		Calculated		FB B		0.00038		BDL	0.00012	BDL	0.00003	FB B DLL	0.00003
676		Calculated			ADL	0.00124		ADL	0.00276	FB B ADL	0.00010	ADL	0.00141
677		Calculated			BDL	0.00000		BDL	0.00000	BDL	0.00000	BDL	0.00000
678	Cr	Calculated		FB	ADL	0.00013		BDL	0.00001	FB B BBL	0.00006	FB B DLL	0.00006
679		Calculated	· ·	FB	BBL	0.00027	FB B	ADL	0.00022	BDL	0.00005	FB B DLL	0.00018
680	Cu	Calculated	mg/mg	В	BBL	0.00003		BDL	0.00000	BDL	0.00000	B DLL	0.00001
681	Eu	Calculated	mg/mg		BDL	0.00049	В	ADL	0.00129	BDL	0.00007	B DLL	0.00064
682	Fe	Calculated	mg/mg		ADL	0.00059	FB B	BBL	0.00017	ADL	0.00011	B DLL	0.00028
683	Ga	Calculated	mg/mg		BDL	0.00000		BDL	0.00000	BDL	0.00000	BDL	0.00000
684	Hf	Calculated	mg/mg		BDL	0.00001		BDL	0.00001	BDL	0.00001	BDL	0.00001
685	Hg	Calculated			BDL	0.00002		BDL	0.00002	BDL	0.00000	BDL	0.00001
686		Calculated			BDL	0.00000		BDL	0.00003	BDL	0.00000	BDL	0.00001
687		Calculated			BDL	0.00000		BDL	0.00000	BDL	0.00000	BDL	0.00000
688		Calculated			ADL	0.00039		ADL	0.00019	B ADL	0.00007	B ADL	0.00021
689		Calculated		FB B		0.00006	FB	ADL	0.00028	BDL	0.00001	FB B DLL	0.00012
-	Mg	Calculated			BDL	0.00317		BDL	0.00022	BDL	0.00023	BDL	0.00113
	Mn	Calculated			BDL	0.00000		BDL	0.00000	FB BBL	0.00009	FB DLL	0.00003
	Mo	Calculated			BDL	0.00000		BDL	0.00000	BDL	0.00000	BDL	0.00000
693		Calculated			BDL	0.00166		BDL	0.00107	BDL	0.00163	BDL	0.00144
694 695		Calculated		FB	BDL	0.00001		BDL	0.00000 0.00000	BDL	0.00001	BDL	0.00000 0.00001
696		Calculated Calculated		FB B	ADL	0.00002 0.00001	FB	BDL ADL	0.00000	BDL FB B BBL	0.00000 0.00007	FB DLL FB B DLL	0.00001
697		Calculated		100	BDL	0.00001		BDL	0.00004	BDL	0.00007	BDL	0.00004
698		Calculated			ADL	0.00090		ADL	0.00107	ADL	0.00157	ADL	0.00118
699		Calculated			BDL	0.00000	FB B	BBL	0.00007	FB B BBL	0.00137	FB B DLL	0.00011
700		Calculated			ADL	0.02919		ADL	0.01456	ADL	0.00002	ADL	0.01819
701		Calculated			BDL	0.00008	FB B	ADL	0.00005	FB B ADL	0.00002	FB B DLL	0.00005
702		Calculated			BDL	0.00043		BDL	0.00003	BDL	0.00032	BDL	0.00025
703		Calculated			BDL	0.00000		BDL	0.00001	BDL	0.00000	BDL	0.00001
704		Calculated		FB B		0.00079	FB	ADL	0.00059	ADL	0.00250	FB B ADL	0.00129
705	Sm	Calculated		FB B	ADL	0.00017		BDL	0.00005	BDL	0.00004	FB B DLL	0.00008
706	Sn	Calculated	mg/mg	FB	BBL	0.00011	FB	BBL	0.00012	BDL	0.00001	FB B DLL	0.00008
707	Sr	Calculated	mg/mg		ADL	0.00002		ADL	0.00002	ADL	0.00003	B ADL	0.00002
708		Calculated			BDL	0.00001		BDL	0.00001	BDL	0.00001	BDL	0.00001
709		Calculated			BDL	0.00003		BDL	0.00018	BDL	0.00003	BDL	0.00009
710		Calculated			ADL	0.00031		ADL	0.00032	FB ADL	0.00009	ADL	0.00024
711		Calculated		FB	BBL	0.00002	FB	BBL	0.00002	FB B BBL	0.00001	FB B BBL	0.00002
712		Calculated			BDL	0.00000		BBL	0.00007	BBL	0.00006	DLL	0.00004
713		Calculated			BDL	0.00000		BDL	0.00000	BDL	0.00000	BDL	0.00000
714		Calculated			ADL	0.00021	FB	BBL	0.00033	FB B BBL	0.00009	FB B DLL	0.00021
715		Calculated			ADL	0.00002	FB B	BBL	0.00001	BDL	0.00002	FB B DLL	0.00002
716		Calculated			ADL	0.00173		ADL	0.00166	ADL	0.00109	ADL	0.00149
717		Calculated	mg/mg		BDL	0.00003		BDL	0.00000	BDL	0.00001	BDL	0.00001
718													

	Α	В	С	D	Е	F	G	Ι	-	J	K	L M	Ν	0	Р	Q R	S
1	Modified CTM 39,	Site Alfa					Run 1				Run 2			Run 3			Average
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>				<u>Value</u>				<u>Value</u>			<u>Value</u>			<u>Value</u>
719	Ions (Cl-, K+,Na+ as	oxides)															
720	NH4+	Calculated	mg/mg		Е	3DL	0.00001		E	3DL	0.00001		BDL	0.00001		BDL	0.00001
721	CI-	Calculated	mg/mg		E	3DL	0.00003		E	3DL	0.00004		BDL	0.00003		BDL	0.00003
722	NO3-	Calculated	mg/mg		# /	ADL	0.00329		# /	ADL	0.00460	#	ADL	0.00183		# ADL	0.00328
723	K+	Calculated	mg/mg		E	3DL	0.00073		Е	3DL	0.00075		BDL	0.00066		BDL	0.00072
724	Na+	Calculated	mg/mg		# #	ADL	0.00131		# /	ADL	0.00025		BDL	0.00003		# DLL	0.00050
725	SO42-	Calculated	mg/mg		# /	ADL	0.01065		# /	ADL	0.01083	#	ADL	0.00861		# ADL	0.01004
726																	
727																	

	Α	В	С	D I	F	G	НІ	J	K	LN	ΛN	0	Р (Q R	S
1	Modified CTM 39,	Site Alfa				Run 1			Run 2			Run 3			Average
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>			<u>Value</u>			<u>Value</u>			<u>Value</u>			<u>Value</u>
797	Results for 142-mm	n filter and	recovery ri	nses	(with o	dilution air blank	corre	ection)							
798	Vds(std)'	Calculated	dscm			21.867			30.218			20.090			
799	mar,probe	Calculated	mg	FB	BDL	1.740	FB	BDL	1.880	FB	BDL	1.040	FB	BDL	1.553
800	mar,venturi-chamb	Calculated	mg	FB	BDL	2.170	FB	BDL	3.050	FB	BDL	2.790	FB	BDL	2.670
801	mwr,chamber	Calculated	mg	FB	BDL	0.430	FB	BDL	0.970	FB	BDL	0.070	FB	BDL	0.490
802	mf142mm	Calculated	mg		ADL	6.670		ADL	4.130		ADL	8.600		ADL	6.467
803	Cpm,probe	Calculated	mg/dscm	FB	BDL	0.694	FB	BDL	0.750	FB	BDL	0.424	FB	BDL	0.623
804	Cpm,venturi-chaml	Calculated	mg/dscm	FB	BDL	0.866	FB	BDL	1.218	FB	BDL	1.137	FB	BDL	1.073
805	Cpm,chamber	Calculated	mg/dscm	FB	BDL	0.172	FB	BDL	0.387	FB	BDL	0.029	FB	BDL	0.196
806	Cpm,142mmf	Calculated	mg/dscm		ADL	4.789		ADL	2.582		ADL	6.553		ADL	4.641
807															
808	Results for 142mm	and 47mm	filters with	ı rec	overy r	inses (with dilut	ion ai	r blank	correction)						
809	mf47q,est	Calculated	mg	estir	nated	0.701	estin	nated	0.610	estir	nated	0.746	estir	mated	0.686
810	Cs,f+r,total	Calculated	mg/dscm	FB	DLL	4.939	FB	DLL	4.466	FB	DLL	5.681	FB	DLL	5.029
811	Es,f+r,total	Calculated	lb/MMBtu	FB	DLL	5.79E-03	FB	DLL	5.19E-03	FB	DLL	6.51E-03	FB	DLL	5.83E-03
812	Es,f+r,total	Calculated	kg/GJ	FB	DLL	2.49E-03	FB	DLL	2.23E-03	FB	DLL	2.80E-03	FB	DLL	2.51E-03
816															
817	Results for 142mm	and 47mm	filters with	nout	recove	ry rinses (with d	lilutio	n air bla	ank correction)						
	Cs,f,total	Calculated	mg/dscm		ADL	3.21		ADL	2.11		ADL	4.09		ADL	3.14
	Es,f,total	Calculated	lb/MMBtu	ı	ADL	3.76E-03		ADL	2.45E-03		ADL	4.69E-03		ADL	3.63E-03
820	Es,f,total	Calculated	kg/GJ		ADL	1.62E-03		ADL	1.05E-03		ADL	2.02E-03		ADL	1.56E-03

А	ВС	D E F G	HIIJK	L M N O	PQR S
1 Modified CTM 39	, Site Buick	Run 1	Run 2	Run 3	Average
2 <u>Parameter</u>	<u>Type</u> <u>Units</u>	Value	Value	Value	Value
3 k1	Calibration	0.8517	0.8517	0.8517	0.8517
4 n1	Calibration	0.5	0.5	0.5	0.5
5 k2	Calibration	10.545			
6 n2	Calibration	0.5			
7 Cdmfm1	Calibration	1.018			
8 Csmfm1	Calibration	1.01		1.01	
9 Csmfm2 10 T1m	Calibration Measured F	1.012 503.0072937		1.012 326.7581944	
11 T1	Calculated R	963.0072937		786.7581944	
12 T2m	Measured F	99.15396429		92.64943452	
13 T2	Calculated R	559.1539643		552.6494345	
14 Stack T	Measured F	884.0136091		942.4025357	
15 Filter T	Measured F	93.32527976			
16 T3m	Measured F	88.02492063	87.66473698	estir 99.12	91.6032192
17 T3	Calculated R	548.0249206	547.664737	559.12	551.6032192
18 Pbar	Measured in. Hg	26.5649127	26.3136875	26.07756746	26.31872255
19 Ps	Measured iwc	-0.911251984	-0.957630208	-0.848501984	-0.905794726
20 Pst	Calculated in. Hg	26.49790888	26.24327351	26.01517761	26.25212
21 Cyclone dP	Measured iwc	-2.400680556	-2.470742188	-2.209071429	-2.360164724
22 P1	Calculated in. Hg	26.32138825		25.85274589	
23 Sample venturi di		0.767597222		0.53828373	
24 Dil venturi dP	Measured iwc	0.405111111		1.229202381	
25 P2	Calculated in. Hg	26.3474916			
26 Exhaust Vac	Measured iwc	5.544498016		7.954144841	
27 P3	Calculated in Hg	26.15722902		25.49270387	
28 %02	Measured %vd	15.34		15.24	
29 %CO2 30 Ms	Measured %vd Calculated lb/lb-mo	3.94		3.98 29.2464	
31 Mws	Calculated lb/lb-mo			29.2464	
32 Mwdil	Calculated lb/lb-mo			28.89105169	
33 Q1	Calculated wacf/mi				
34 Q2	Calculated wacf/mi			10.04544485	
35 RHdil	Measured %	1.987734127		12.07700397	
36 RH mix	Measured %	16.36461508			
37 Bwdil	Calculated v/v	0.001420939		0.007196746	
38 Bwds	Calculated v/v	0.008359156	0.009384166	0.009567895	0.009103739
39 Qmix,std	Calculated wacf/mi	n 5.187169258	9.64512079	8.685188261	7.839159436
40 Bws	Calculated v/v	0.082287698	0.116687083	0.062241573	0.087072118
41					
42 PM2.5 Concentra	<u>tion</u>				
43 Run duration	Measured minutes				
44 mf47ds	Measured mg	ADL 0.758		ADL 0.009	
45 mf47dab	Measured mg	ADL 0.011			
46 mf47ds-stfb1	Measured mg	ADL 0.008		ADL 0.008	
47 mf47dab-stfb1	Measured mg	ADL 0.004		ADL 0.004	
48 mf47ds-stfb2 49 mf47dab-stfb2	Measured mg	ADL 0.008		ADL 0.008	
50 qf47ds,tq	Measured mg Calculated wacm/n	ADL 0.006 0.036299911		ADL 0.006 0.03683153	
51 Vf47ds,tq(std)	Calculated dscm	8.563561256		8.69723246	
52 qf47ds,q	Calculated wacm/n			0.036965077	
53 Vf47ds,q(std)	Calculated dscm	8.590072758		8.728767721	
54 gf47dab	Calculated wacm/n			0.037200505	
55 Vf47dab(std)	Calculated dscm	8.784055957		8.805390958	
57 Vdv(std)	Calculated dscm	29.53558339		55.41314592	
58 Vd(std)	Calculated dscm	20.75152743		46.60775496	
59 Vs(std)	Calculated dscm	2.479305741			
60 Vds(std)	Calculated dscm	23.23083317	41.31416452	48.70821024	37.75106931
61 DR	Calculated v/v	9.369894479	23.63898819	23.18935844	18.73274704
62 Cpm2.5	Calculated mg/dscr	m ADL 0.818890885	FB B ADL 0.008780317	FB B ADL 0.006356805	ADL 0.278009336
64					

	Α	В	С	D	Ε	F	G	Н	I	J	K	L	Μ	Ν	0	Р	Q	R	S
1	Modified CTM 39, 9	Site Buick					Run 1				Run 2				Run 3				Average
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>				Value				Value				Value				Value
65	PM2.5 Emission Fa	<u>ctor</u>																	
66	Fd	Input	dscf/MMB	Btu			8615				8615				8615				8615
67	Epm2.5	Calculated	lb/MMBt		A	٩DL	0.00165551	FΒ	В	ADL	1.71642E-05	FΒ	В	ADL	1.26242E-05				0.000561766
68	Epm2.5	Calculated	kg/GJ		A	٩DL	0.000711712	FΒ	В	ADL	7.37896E-06	FΒ	В	ADL	5.42719E-06				0.000241506
69																			
70	Stack gas flow rate																		
71	Qfuel(15C)	Input	lb/hr		e	estir	10045.61898			estir	10850.44241				10799				10565.02046
72	HHV(15C)	Input	Btu/lb				21901				21687				21702				21763.33333
73	Qstk,dry(25C)	Calculated	dscf/hr				7246295.944				7494269.258				7582581.392				7441048.865
74							1263.346596				1364.561956				1358.09251				
75	PM2.5 Mass Flow F	<u>Rate</u>					75.94360703				82.02797022				81.63907213				
76	Mpm2.5	Calculated	lb/hr		A	٩DL	370.4428329	FΒ	В	ADL	4.10788791	FΒ	В	ADL	3.009089341		Α	DL	125.85327
77																			
78																			

	А	В	С	D E F	G	H I J	K	L M N	0	P Q R	S
	Modified CTM 39,				Run 1		Run 2		Run 3		Average
	<u>Parameter</u>	<u>Type</u>	<u>Units</u>		Value		Value		Value		Value
_	Species Lab Result	s - Samples									
	<u>Carbon</u> OC	Measured	Πα	ADL	387.11548	ADL	49.20986	ADL	57.29804	ADL	164.5411267
82		Measured	-	ADL	24.90398	ADL	1.7841	BDL	0.763166667	DLL	9.150415556
\vdash	Total C	Measured	-	ADL	412.01945	ADL	50.99396	ADL	57.29804	ADL	173.43715
_	OC Backup	Measured	-	ADL	81.57181	ADL	37.95779	ADL	47.93059		55.82006333
85	EC Backup	Measured	μg	ADL	12.75143	ADL	0.28678	ADL	0.21856	ADL	4.418923333
	Total C Backup	Measured	μg	ADL	94.32324	ADL	38.24458	ADL	48.14915	ADL	60.23899
88	Elements										
89		Measured	μg	BDL	0.0334	BDL	0.0334	BDL	0.0334	BDL	0.0334
90	Al	Measured	μg	BDL	0.4573	BDL	0.4623	BDL	0.4615	BDL	0.460366667
91		Measured	μg	BDL	0.0133	BDL	0.0133	BDL	0.0133	BDL	0.0133
92	Au	Measured		BDL	0.0366	BDL	0.0366	BDL	0.0366		0.0366
	Ba	Measured	-	ADL	0.0419	BDL	0.1182	BDL	0.1175		0.092533333
94		Measured		ADL	0.6851	ADL	0.0301	ADL	0.0018		0.239
95 96		Measured Measured		ADL ADL	0.0801 0.0436	ADL BDL	0.0083 0.0666	BDL ADL	0.0125 0.0507	DLL DLL	0.033633333 0.053633333
97		Measured	-	BDL	0.0436	BDL	0.0668	ADL	0.0507	DLL	0.053633333
98		Measured		ADL	0.2433	ADL	0.4008	ADL	0.1374	ADL	0.096033333
99		Measured		BDL	0.0034	BDL	0.0034	BDL	0.0034	BDL	0.0034
100	Cr	Measured	μg	ADL	0.0013	BDL	0.0133	ADL	0.0236	DLL	0.012733333
101	Cs	Measured	μg	BDL	0.1683	BDL	0.1691	ADL	0.1343	DLL	0.157233333
102	Cu	Measured		ADL	0.0012	BDL	0.0116	BDL	0.0116		0.008133333
103		Measured	-	BDL	0.9813	ADL	0.0707	BDL	0.982	DLL	0.678
104		Measured	-	ADL	0.0825	ADL	0.0035	ADL	0.0848		0.056933333
105		Measured	-	BDL	0.0116	BDL	0.0116	BDL	0.0116		0.0116
106 107		Measured Measured		BDL ADL	0.1666 0.0012	BDL BDL	0.1666 0.025	BDL ADL	0.1666 0.0024	BDL DLL	0.1666 0.009533333
108	_	Measured		ADL	0.0012	BDL	0.023	BDL	0.0024	DLL	0.026866667
109		Measured	-	BDL	0.0366		0.0366		0.0366		0.0366
110		Measured		ADL	0.1614		0.0236		0.0216		0.068866667
111	La	Measured	μg	BDL	0.1974	BDL	0.1974	BDL	0.1974	BDL	0.1974
112	_	Measured	μg	BDL	1.8308	ADL	0.2009	BDL	1.8563	DLL	1.296
	Mn	Measured		ADL	0.0048	ADL	0.0001	ADL	0.0201		0.008333333
	Mo	Measured		BDL	0.0184	BDL	0.0184	BDL	0.0184		0.0184
115		Measured		BDL		ADL	3.8757	BDL	7.6982		6.253233333
116 117		Measured Measured		BDL BDL		BDL ADL	0.01 0.0012	BDL BDL	0.01 0.0066		0.01 0.0048
118		Measured		ADL		BDL	0.012		0.0165		0.0048
119		Measured		BDL		BDL	0.06		0.06		0.06
120		Measured		ADL		ADL	0.0383		0.0124		0.827166667
121	Rb	Measured	μg	BDL	0.0034	BDL	0.0034	ADL	0.0024	DLL	0.003066667
122		Measured		BDL	0.0167	BDL	0.0167	BDL	0.0167		0.0167
123		Measured		BDL	0.0833	BDL	0.0833	ADL	0.0536		0.0734
124		Measured		BDL		BDL	0.3578		0.3569		0.3572
125 126		Measured		BDL		ADL	0.0089		0.015 0.0478		0.012966667 41.48786667
126		Measured Measured		ADL ADL		ADL ADL	0.2928 0.0236		0.0478		0.3787
128		Measured		ADL		BDL	0.0230	BDL	0.0048		0.3787
129		Measured		ADL		BDL	0.0116		0.0116		0.0085
130		Measured		BDL		BDL	0.1666		0.1666		0.1666
131		Measured		BDL	0.4857	ADL	0.1738	BDL	0.4748	DLL	0.3781
132		Measured		ADL	0.0054	ADL	0.0301	BDL	0.0083		0.0146
133		Measured		ADL		ADL	0.0124	BDL	0.0133		0.010366667
134		Measured		BDL		ADL	0.0095	ADL	0.0224		0.022266667
135		Measured		BDL		ADL	0.0059		0.0034		0.004233333
136 137		Measured Measured		BDL	0.1666 0.0272	ADL BDL	0.0071	ADL	0.0248		0.066166667
137		Measured		ADL ADL		BDL	0.0116 0.0199		0.0083 0.0023		0.0157 0.008566667
139		Measured		BDL		ADL	0.0199	ADL	0.0023		0.008300007
133	<u>-1</u>	ivicasureu	۳٥	BUL	0.015	ADL	0.0077	ADL	0.0112	DLL	0.0113

	А	В	С	D	Ε	F	G	Н	I	J	K	L M	N	0	Р	Q	R	S
1	Modified CTM 39,	Site Buick					Run 1				Run 2			Run 3				Average
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>				Value				Value			Value				Value
141	<u>lons</u>																	
142	NH4+	Measured	μg		В	BDL	0.0167			BDL	0.0167		BDL	0.0167			BDL	0.0167
143	CI-	Measured	μg		В	BDL	0.0167		ı	BDL	0.0167		BDL	0.0167			BDL	0.0167
144	NO3-	Measured	μg		Δ	١DL	0.419238725		/	ADL	0.100402133		ADL	0.250457916			ADL	0.256699591
145	K+	Measured	μg		В	BDL	0.502022499		1	BDL	0.501172873		BDL	0.50115676			BDL	0.50145071
146	Na+	Measured	μg		Δ	NDL	0.159182184		E	BDL	0.569839361		BDL	0.574558161			DLL	0.434526569
147	SO42-	Measured	μg		В	BDL	0.0167		ı	BDL	0.0167		BDL	0.0167			BDL	0.0167
148																		

А	В	С	D E F	G	НІЈ	K	L M N	0	P Q R	S
1 Modified CTM 39	, Site Buick		•	Run 1		Run 2		Run 3		Average
2 <u>Parameter</u>	<u>Type</u>	<u>Units</u>		Value		Value		Value		Value
149 Species Lab Resul	ts - Run Dilu	tion Air								
150 Carbon	N.A	11-								
151 OC 152 EC	Measured Measured	-								
153 Total C	Measured	-								
154 OC Backup	Measured	-	ADL	32.05789	ADL	32.67148	ADL	29.43353	ADL	31.38763333
155 EC Backup	Measured	-	ADL	12.75143	ADL	0.28678	ADL	0.21856		
156 Total C Backup	Measured		ADL	94.32324	ADL	38.24458	ADL	48.14915		
158 Elements										
159 Ag	Measured	μg	BDL	0.0334	BDL	0.0334	BDL	0.0334	BDL	0.0334
160 AI	Measured	μg	BDL	0.4623	ADL	0.202	BDL	0.4607	DLL	0.375
161 As	Measured		BDL	0.0133	BDL	0.0133	BDL	0.0133		
162 Au	Measured	-	ADL	0.0259	BDL	0.0366	ADL	0.0153		0.025933333
163 Ba	Measured	-	ADL	0.0666	BDL	0.1199	BDL	0.1175		0.101333333
164 Br	Measured		ADL	0.0124	ADL	0.0006	BDL	0.0116		0.0082
165 Ca	Measured		ADL BDL	0.0165	BDL ADL	0.0133	BDL BDL	0.0133		0.014366667
166 Cd 167 Ce	Measured Measured	-	ADL	0.0666 0.4059	ADL ADL	0.0153 0.2916	BDL	0.0666 0.4668		0.0495 0.3881
168 Cl	Measured	-	ADL	0.4039	ADL	0.2910	ADL	0.4008		
169 Co	Measured		BDL	0.0034	BDL	0.0034	BDL	0.0034		
170 Cr	Measured		BDL	0.0133	ADL	0.0166	BDL	0.0133		0.0144
171 Cs	Measured	μg	BDL	0.1699	BDL	0.1683	ADL	0.0023	DLL	0.1135
172 Cu	Measured	μg	ADL	0.0024	ADL	0.0849	BDL	0.0116	DLL	0.032966667
173 Eu	Measured	μg	ADL	0.0094	ADL	0.781	BDL	0.9804	DLL	0.590266667
174 Fe	Measured	-	ADL	0.0141	ADL	0.0024	ADL	0.0683		
175 Ga	Measured		BDL	0.0116	BDL	0.0116	BDL	0.0116		
176 Hf	Measured		BDL	0.1666	BDL	0.1666	BDL	0.1666		
177 Hg	Measured		BDL	0.025	ADL	0.0059	BDL	0.025		0.018633333
178 In 179 Ir	Measured Measured	-	BDL BDL	0.0317 0.0366	BDL BDL	0.0317 0.0366	BDL BDL	0.0317 0.0366		
180 K	Measured		ADL	0.0300	ADL	0.0300		0.0300		
181 La	Measured		ADL	0.0613	ADL	0.1143	BDL	0.1991		
182 Mg	Measured		BDL	1.8612	ADL	1.7865	ADL	0.5083		1.385333333
183 Mn	Measured		BDL	0.0334	BDL	0.0334	BDL	0.0334		
184 Mo	Measured		BDL	0.0184	ADL	0.0041	BDL	0.0184	DLL	0.013633333
185 Na	Measured	μg	BDL	7.4912	BDL	7.7062	BDL	7.4184	BDL	7.5386
186 Nb	Measured		ADL	0.0036	BDL	0.01	BDL	0.01	DLL	0.007866667
187 Ni	Measured		BDL	0.0066	BDL	0.0066	BDL	0.0066		
188 Pb	Measured		ADL	0.0377	ADL	0.0401	ADL	0.0094		
189 Pd	Measured		BDL	0.06	ADL	0.0001	BDL	0.06		0.040033333
190 Ph 191 Rb	Measured		ADL	0.0135 0.0012	BDL BDL	0.0266 0.0034	ADL	0.0218 0.0001		0.020633333 0.001566667
192 S	Measured Measured		ADL BDL	0.0012	BDL	0.0034	ADL BDL	0.0001		
193 Sb	Measured		BDL	0.0833	ADL	0.0631	ADL	0.0631		
194 Sc	Measured		BDL	0.3578	ADL	0.1391	BDL	0.3569		
195 Se	Measured		BDL	0.015	BDL	0.015	BDL	0.015		
196 Si	Measured		ADL	0.4447	ADL	0.096	ADL	0.129		
197 Sm	Measured	μg	BDL	0.6597	BDL	0.6648	ADL	0.0083	DLL	0.444266667
198 Sn	Measured	μg	BDL	0.06	ADL	0.0236	ADL	0.0201	DLL	0.034566667
199 Sr	Measured		ADL	0.0059	BDL	0.0116	ADL	0.0118		0.009766667
200 Ta	Measured		BDL	0.1666	BDL	0.1666	BDL	0.1666		
201 Tb	Measured		BDL	0.4731	BDL	0.4806	ADL	0.0183		0.324
202 Ti	Measured		ADL	0.0089	ADL	0.003	BDL	0.0083		
203 TI	Measured		BDL	0.0133	BDL	0.0133	BDL	0.0133		
204 U 205 V	Measured Measured		BDL ADL	0.0349 0.0094	ADL ADL	0.0071 0.0094	BDL ADL	0.0349 0.0024		
206 W	Measured		ADL	0.0094	ADL ADL	0.0094	BDL	0.0024		0.007066667
207 Yt	Measured		ADL	0.0177	BDL	0.079		0.1000		0.087700007
208 Zn	Measured		ADL	0.0177	ADL	0.0235	BDL	0.0199		
209 Zr	Measured		ADL	0.0042	BDL	0.015	ADL	0.0112		
	2		1	3.00 12		0.015		3.0112		

	Α	В	С	D	Ε	F	(G	Η	I	J	K	L N	1 N	0	Р	Q	R	S	
1	Modified CTM 39, Site Buick			Run 1							Run 2			Run 3		Average				
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>				Value					Value			Value				Value	
211	<u>lons</u>																			
212	NH4+	Measured	μg																	
213	CI-	Measured	μg																	
214	NO3-	Measured	μg																	
215	K+	Measured	μg																	
216	Na+	Measured	μg																	
217	SO42-	Measured	μg																	
218																				
219																				

А	В	С	D E F	G	H I J	K	L M N O	P Q R	S
	CTM 39, Site Buick			Run 1		Run 2	Run 3		Average
2 <u>Parameter</u>		<u>Units</u>		Value		Value	Value		Value
	b Results - STFB San	<u>nples</u>							
221 <u>Carbon</u> 222 OC	Measured	Πσ	ADL	8.04047	ADL	3.90335		DLL	5.97191
223 EC	Measured		ADL	0.09622	BDL	0.763166667		DLL	0.429693333
224 Total C	Measured	-	ADL	8.13669	ADL	3.90335		DLL	6.02002
225 OC Backup		-	ADL	7.23388	ADL	6.96475		DLL	7.099315
226 EC Backup	Measured	μg	BDL	0.763166667	BDL	0.763166667		DLL	0.763166667
227 Total C Bad	ckup Measured	μg	ADL	7.23388	ADL	6.96475		DLL	7.099315
229 Elements									
230 Ag	Measured	μg	BDL	0.0334	BDL	0.0334		DLL	0.0334
231 AI	Measured	μg	BDL	0.4615	BDL	0.4615		DLL	0.4615
232 As	Measured	-	BDL	0.0133	BDL	0.0133		DLL	0.0133
233 Au	Measured		ADL	0.0177	ADL	0.0036		DLL	0.01065
234 Ba	Measured		ADL	0.089	BDL	0.1175		DLL	0.10325
235 Br 236 Ca	Measured Measured	-	ADL BDL	0.0207 0.0133	ADL BDL	0.0089 0.0125		DLL DLL	0.0148 0.0129
237 Cd	Measured	•	BDL	0.0133	ADL	0.0123		DLL	0.0129
237 Cu 238 Ce	Measured		ADL	0.1432	BDL	0.4668		DLL	0.305
239 CI	Measured		ADL	0.0065	BDL	0.0116		DLL	0.00905
240 Co	Measured	-	BDL	0.0034	BDL	0.0034		DLL	0.0034
241 Cr	Measured	μg	ADL	0.0048	ADL	0.0013		DLL	0.00305
242 Cs	Measured		BDL	0.1674	ADL	0.033		DLL	0.1002
243 Cu	Measured		BDL	0.0116	BDL	0.0116		DLL	0.0116
244 Eu	Measured	-	BDL	0.9779	ADL	0.3416		DLL	0.65975
245 Fe	Measured		ADL	0.0047	ADL	0.0212		DLL	0.01295
246 Ga 247 Hf	Measured Measured		BDL BDL	0.0116 0.1666	BDL BDL	0.0116 0.1666		DLL DLL	0.0116 0.1666
248 Hg	Measured		BDL	0.025	BDL	0.025		DLL	0.025
249 In	Measured		ADL	0.0289	ADL	0.0183		DLL	0.0236
250 Ir	Measured		BDL	0.0366	BDL	0.0366		DLL	0.0366
251 K	Measured	μg	ADL	0.0012	BDL	0.0216		DLL	0.0114
252 La	Measured	μg	BDL	0.1966	ADL	0.132		DLL	0.1643
253 Mg	Measured		BDL	1.8612	BDL	1.8605		DLL	1.86085
254 Mn	Measured		BDL	0.0334	BDL	0.0334		DLL	0.0334
255 Mo	Measured		ADL	0.0053	BDL	0.0184		DLL	0.01185 4.04025
256 Na 257 Nb	Measured Measured	-	ADL BDL	0.5408 0.01	BDL BDL	7.5397 0.01		DLL DLL	4.04025 0.01
258 Ni	Measured		BDL	0.0066	BDL	0.0066		DLL	0.0066
259 Pb	Measured		ADL	0.0106	ADL	0.0224		DLL	0.0165
260 Pd	Measured	-	BDL	0.06	BDL	0.06		DLL	0.06
261 Ph	Measured	μg	ADL	0.0265	ADL	0.0029		DLL	0.0147
262 Rb	Measured		BDL	0.0034	ADL	0.0048		DLL	0.0041
263 S	Measured		BDL	0.0167	BDL	0.0167		DLL	0.0167
264 Sb	Measured		ADL	0.0548	BDL	0.0833		DLL	0.06905
265 Sc	Measured		BDL	0.3569	BDL	0.3569		DLL	0.3569
266 Se 267 Si	Measured Measured		BDL ADL	0.015 0.1773	BDL BDL	0.015 0.0512		DLL DLL	0.015 0.11425
268 Sm	Measured		BDL	0.1773	BDL	0.0512		DLL	0.11425
269 Sn	Measured		ADL	0.059	ADL	0.0295		DLL	0.04425
270 Sr	Measured		BDL	0.0116	BDL	0.0116		DLL	0.0116
271 Ta	Measured		BDL	0.1666	BDL	0.1666		DLL	0.1666
272 Tb	Measured		BDL	0.4764	BDL	0.4723		DLL	0.47435
273 Ti	Measured		ADL	0.0325	ADL	0.0042		DLL	0.01835
274 TI	Measured		ADL	0.0113	BDL	0.0133		DLL	0.0123
275 U	Measured		BDL	0.0349	BDL	0.0349		DLL	0.0349
276 V 277 W	Measured		ADL	0.0012	BDL	0.0034		DLL DLL	0.0023
277 W 278 Yt	Measured Measured		BDL ADL	0.1666 0.013	BDL ADL	0.1666 0.0012		DLL	0.1666 0.0071
279 Zn	Measured		ADL	0.013	BDL	0.0012		DLL	0.0071
280 Zr	Measured	-	ADL	0.0018	ADL	0.0155		DLL	0.0089
				1.5020	· ·	020		1	2.2003

	Α	В	С	D	Ε	F	G	Ι	1	J	K	L N	1	Ν	0	Р	Q	R	S
1	1 Modified CTM 39, Site Buick			Run 1			Run 2							Run 3	Average				
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>	Value					Value	Value				Value					
282	<u>lons</u>																		
283	NH4+	Measured	μg		E	BDL	0.0167			BDL	0.0167							DLL	0.0167
284	CI-	Measured	μg		E	BDL	0.0167			BDL	0.0167							DLL	0.0167
285	NO3-	Measured	μg		1	ADL	0.088581817			ADL	0.159572873							DLL	0.124077345
286	K+	Measured	μg			BDL	0.501154035			BDL	0.501166498							DLL	0.501160267
287	Na+	Measured	μg		E	BDL	0.580636343			ADL	0.035211205							DLL	0.307923774
288	SO42-	Measured	μg			BDL	0.0167			BDL	0.0167							DLL	0.0167
289																			
290																			

	A B	С	D E F	G	H I J	К	L M N O	P Q R	S
	ed CTM 39, Site Buick			Run 1		Run 2	Run 3		Average
2 Parame		<u>Units</u>	 	Value		Value	Value		Value
	s Lab Results - STFB Dilu	ution Air							
292 <u>Carbon</u> 293 OC	<u>.</u> Measured	Пα							
294 EC	Measured	-							
295 Total C		-							
296 OC Bac			ADL	8.16895	ADI	7.27283		DLL	7.72089
297 EC Bacl	kup Measured	μg	BDL	0.763166667	ADI	0.05896		DLL	0.411063333
298 Total C	Backup Measured	μg	ADL	8.16895	ADI	7.3318		DLL	7.750375
300 Elemen	<u>nts</u>								
301 Ag	Measured	μg	BDL	0.0334	BDI	0.0334		DLL	0.0334
302 Al	Measured	-	BDL	0.4615	BDI			DLL	0.4619
303 As	Measured	-	BDL	0.0133	BDI			DLL	0.0133
304 Au	Measured		BDL	0.0366	BDI			DLL	0.0366
305 Ba 306 Br	Measured Measured		BDL ADL	0.1191 0.0053	BDI ADI			DLL DLL	0.11865 0.00415
307 Ca	Measured		BDL	0.0033	BDI			DLL	0.0129
308 Cd	Measured	-	BDL	0.0666	BDI			DLL	0.0666
309 Ce	Measured		ADL	0.2398	BDI			DLL	0.3533
310 CI	Measured		ADL	0.195	ADI			DLL	0.10725
311 Co	Measured	μg	BDL	0.0034	BDI	0.0034		DLL	0.0034
312 Cr	Measured		BDL	0.0133	BDI			DLL	0.0133
313 Cs	Measured		ADL	0.0389	BDI			DLL	0.1036
314 Cu	Measured	-	BDL	0.0116	ADI			DLL	0.0117
315 Eu 316 Fe	Measured Measured	-	BDL ADL	0.9804 0.0177	BDI ADI			DLL DLL	0.98 0.04715
317 Ga	Measured		BDL	0.0177	BDI			DLL	0.04713
318 Hf	Measured		BDL	0.1666	BDI			DLL	0.1666
319 Hg	Measured	-	BDL	0.025	BDI			DLL	0.025
320 In	Measured	μg	ADL	0.0042	ADI	0.0183		DLL	0.01125
321 Ir	Measured	μg	BDL	0.0366	BDI	0.0366		DLL	0.0366
322 K	Measured	-	BDL	0.0216	BDI			DLL	0.0216
323 La	Measured		BDL	0.1983	BDI			DLL	0.19785
324 Mg 325 Mn	Measured Measured		BDL ADL	1.8513 0.0177	BDI ADI			DLL DLL	1.85505 0.0124
326 Mo	Measured		BDL	0.0177	BDI			DLL	0.0124
327 Na	Measured		BDL	7.7524	BDI			DLL	7.80845
328 Nb	Measured		BDL	0.01	BDI			DLL	0.01
329 Ni	Measured	μg	BDL	0.0066	BDI	0.0066		DLL	0.0066
330 Pb	Measured	μg	ADL	0.0212	ADI			DLL	0.023
331 Pd	Measured		BDL	0.06	BDI			DLL	0.06
332 Ph	Measured		BDL	0.0266	BDI			DLL	0.0266
333 Rb	Measured		ADL	0.0036	ADI			DLL	0.003
334 S 335 Sb	Measured Measured		BDL ADL	0.0167 0.0466	BDI ADI			DLL DLL	0.0167 0.0572
336 Sc	Measured		BDL	0.3569	BDI			DLL	0.3569
337 Se	Measured		BDL	0.015	ADI			DLL	0.0131
338 Si	Measured		ADL	0.3046	ADI			DLL	0.1956
339 Sm	Measured		BDL	0.6597	BDI			DLL	0.6589
340 Sn	Measured		ADL	0.0425	ADI			DLL	0.03305
341 Sr	Measured		BDL	0.0116	ADI			DLL	0.00755
342 Ta	Measured		BDL	0.1666	BDI			DLL	0.1666
343 Tb 344 Ti	Measured Measured		BDL ADL	0.4756 0.0348	ADI ADI			DLL DLL	0.277 0.0183
345 TI	Measured		BDL	0.0348	ADI			DLL	0.0183
346 U	Measured		BDL	0.0349	BDI			DLL	0.0349
347 V	Measured		BDL	0.0034	BDI			DLL	0.0034
348 W	Measured		ADL	0.0743	ADI			DLL	0.0466
349 Yt	Measured	-	ADL	0.0001	ADI			DLL	0.0048
350 Zn	Measured		ADL	0.0012	ADI			DLL	0.00415
351 Zr	Measured	μg	BDL	0.015	ADI	0.0148		DLL	0.0149

	Α	В	С	D E	F	G		ΗΙ	J	ŀ	<	L M	N	0	Р	Q R	9	5
1	Modified CTM 39, Site Buick				Run 1					Run 2				Run 3			Average	
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>			Value				Value				Value			Value	
353	lons																	
354	NH4+	Measured	μg															
355	CI-	Measured	μg															
356	NO3-	Measured	μg															
357	K+	Measured	μg															
358	Na+	Measured	μg															
359	SO42-	Measured	μg															
360																		
361																		

2 <u>P</u>	Nodified CTM 39,	Site Buick										S
					Run 1			Run 2		Run 3		Average
362 S	<u>'arameter</u>	<u>Type</u>	<u>Units</u>		Value			Value		Value		Value
	pecies Concentrat	ions (with o	dilution air	blank subt	raction)							
	Carbon				0.400050405			0.477040040	451	0.450004040		0.05050505
366 O		Calculated	_	ADL			ADL	0.177318949	ADL	0.152221348		
367 E		Calculated Calculated	_	ADL ADL			ADL ADL	0.006428686 0.183747635		0.002027474 0.152221348	DLL ADL	0.011873655 0.261797425
_	OC Backup	Calculated	_	B ADL			ADL	0.024865203	B ADL	0.053163491		
	C Backup	Calculated	_	B ADL	0.001758817		ADL	5.10592E-05	B ADL	2.98738E-05	B ADL	
-	otal C Backup	Calculated	_	B ADL	0.013010096		ADL	0.00680918		0.00658125	B ADL	
373 E	lements											
374 A		Calculated	mg/dscm	BDL	4.71968E-06		BDL	6.4454E-06	BDL	4.887E-06	BDL	5.35069E-06
375 A	Al .	Calculated	mg/dscm	BDL	5.98558E-05		BDL	0.000980813	BDL	6.95415E-05	BDL	0.00037007
376 A		Calculated	_	BDL			BDL	2.56658E-06	BDL	1.94602E-06		
377 A		Calculated	•	BDL			BDL	7.06292E-06	BDL	5.90307E-05	BDL	
378 B		Calculated	_		6.34599E-05		BDL	0.000410691	BDL	1.71923E-05		0.000163781
379 B 380 C		Calculated Calculated	_	ADL B ADL			ADL BBL	0.000106854 4.55562E-05	FB BBL BDL	2.92317E-05 3.35157E-05	DLL B DLL	0.000291293 5.03306E-05
381 C		Calculated	•		6.34599E-05		BDL	0.000188569		0.00016783		0.000139953
382 C		Calculated	•	BDL	0.000125851		BDL	0.00069019		0.001176324		0.000664122
383 C		Calculated	_	B ADL			ADL	3.13872E-05		8.16472E-05	B DLL	5.39977E-05
384 C	Co	Calculated	mg/dscm	BDL	4.80447E-07		BDL	6.56118E-07	BDL	4.97479E-07	BDL	5.44681E-07
385 C		Calculated	_		1.26729E-05		BDL	5.68596E-05	ADL	2.94088E-05	FB B DLL	
386 C		Calculated	_	BDL			BDL	3.53725E-05		0.000352287		0.000136639
387 C		Calculated	_	B BBL	2.28684E-06		BDL	0.000290806	BDL	1.69728E-06	B DLL	9.82634E-05
388 E		Calculated Calculated	_	BDL ADL	0.001064741 7.68329E-05			0.002675143 4.44322E-06	BDL B ADL	0.000147716 5.39873E-05		0.001295866 4.50878E-05
390 G		Calculated	_	BDL			BDL	2.23852E-06	В ADL BDL	1.69728E-06		
391 H		Calculated	_	BDL			BDL	3.21498E-05	BDL	2.43765E-05		
392 H		Calculated	•	BBL	2.38213E-05		BDL	7.02472E-05	BBL	6.29994E-05	B DLL	
393 Ir	n	Calculated	mg/dscm	FB BBL	3.02054E-05		BDL	6.11734E-06	BDL	4.63826E-06	FB DLL	1.36537E-05
394 Ir		Calculated	mg/dscm	BDL	5.17187E-06		BDL	7.06292E-06	BDL	5.35522E-06		5.86334E-06
395 K		Calculated	_	ADL				4.49725E-05	BDL	5.1544E-05		
396 La		Calculated	_	BDL			BDL	0.000322734	BDL	2.45991E-05	BDL	
397 N 398 N	•	Calculated	•	BDL			BBL	0.00611926	BDL	0.003668534	B DLL	0.003339178
399 N		Calculated Calculated	_	BBL BDL	3.18252E-05 2.60006E-06		BBL BDL	0.000114404 5.25322E-05	BBL BDL	8.41671E-05 2.69224E-06	BBL BDL	
400 N		Calculated	•	BDL			BBL	0.026395882	BDL	0.00183147		0.011788449
401 N		Calculated	_	BDL			BDL	1.92976E-06	BDL	1.46317E-06		
402 N	li	Calculated	mg/dscm	BDL	9.32632E-07		BBL	2.26068E-05	BDL	9.65695E-07	DLL	8.16839E-06
403 P	b	Calculated	_	FB B BBL	3.59225E-05		BDL	0.000137354	FB B ADL	2.03061E-05	FB B DLL	6.45274E-05
404 P		Calculated	_	BDL			BDL	0.000216753	BDL	8.77905E-06		
405 P		Calculated	_	ADL			ADL	4.74667E-05		5.49354E-05	DLL FD D DLL	0.000916406
406 R 407 S		Calculated Calculated		BDL BDL			BDL BDL	6.56118E-07 3.2227E-06	FB ADL BDL	6.1471E-06 2.4435E-06		
407 S		Calculated	_	BDL			BDL	8.52655E-05		0.00015901		8.53489E-05
409 S		Calculated	_	BDL			BDL	0.000818155		5.22207E-05		
410 S		Calculated	_	BDL			BBL	5.13792E-05	BDL	2.19476E-06		
411 Si		Calculated	_	ADL				0.000730598		0.000325077	DLL	
412 Sı	m	Calculated	mg/dscm	BBL	0.000628596		BBL	0.002277125	BDL	0.001751635	B DLL	0.001552452
413 Sı		Calculated	_		5.7171E-05		BDL	0.000136259		0.000109326		0.000100919
414 Si		Calculated	_	B BBL	5.62182E-06		BDL	2.23852E-06	BDL	2.97357E-05		1.2532E-05
415 T		Calculated	_	BDL			BDL	3.21498E-05	BDL	2.43765E-05		
416 T		Calculated Calculated	_	BDL FR R RRI	8.06391E-05 8.48037E-06		BBL ADL	0.001646189 9.86336E-05	BDL BDL	0.00121984 1.21443E-06		0.000982223 3.61095E-05
417 T		Calculated	_		1.26729E-05		BBL	4.55562E-05	BDL	1.94602E-06		2.00584E-05
419 U		Calculated	_	BDL			ADL	1.00539E-05	BBL	8.79471E-05		3.43109E-05
420 V		Calculated	_	BDL				3.21976E-05	BDL	3.01745E-06		
421 W		Calculated	•	BDL			BBL	0.000270597	BBL	0.000419828		0.000285282
422 Y		Calculated	•		2.0709E-05		BDL	2.23852E-06		2.39398E-05		1.56291E-05
423 Z		Calculated	•		1.68655E-05		BDL	8.0494E-05		5.01475E-05		
424 Z	r	Calculated	mg/dscm	BDL	1.24104E-05	FB	BBL	5.13792E-05	FB B ADL	1.63876E-06	FB B DLL	2.18094E-05

	Α	В	С	D	Ε	F	G	Н	I	J	K	L M	1	Ν	0	Р	Q	R	S
1	Modified CTM 39,	Site Buick		Run 1				Run 2				Run 3	Average						
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>	Value					Value	Value				\			Value		
426	<u>lons</u>															i			
427	NH4+	Calculated	mg/dscm		E	3DL	1.82161E-05		E	BDL	6.01755E-05		В	DL	4.43662E-05	i		BDL	4.09192E-05
428	CI-	Calculated	mg/dscm		E	3DL	1.82161E-05		E	BDL	6.01755E-05		В	DL	4.43662E-05	i		BDL	4.09192E-05
429	NO3-	Calculated	mg/dscm	FB	# /	٩DL	0.000457298	FΒ	# /	ADL	0.000361781	FB #	Α	١DL	0.000665381	FB	#	ADL	0.00049482
430	K+	Calculated	mg/dscm		E	BDL	0.000547597		E	BDL	0.001805887		В	DL	0.001331403	l		BDL	0.001228296
431	Na+	Calculated	mg/dscm	FB	# /	٩DL	0.000173633			BDL	0.002053314		В	DL	0.001526405	FB	#	DLL	0.001251118
432	SO42-	Calculated	mg/dscm		E	3DL	1.82161E-05			BDL	6.01755E-05		В	DL	4.43662E-05	i		BDL	4.09192E-05
433																l			
434																<u> </u>			

А	В	С	D E F	G	НІ	J	K	L M N	0	P Q R	S
1 Modified CTM 3	9, Site Buick	•		Run 1		R	un 2	F	Run 3		Average
2 <u>Parameter</u>	<u>Type</u>	<u>Units</u>	,	Value		V	'alue	\	/alue	,	Value
435 Reconstructed N			1								
436 OC	Calculated	_	ADL	0.392934067		ADL	0.164650046		0.106982486		0.2215222
437 EC	Calculated	_	ADL	0.027164807	<i> </i>	ADL	0.006428686	BDL	0.001013737	DLL	0.011535743
438 Total C 439 OC Backup	Calculated	_									
440 EC Backup	Calculated Calculated										
441 Total C Backup	Calculated	_									
443 Elements		6, acc									
444 Ag	Calculated	mg/dscm	BDL	3.0597E-06		3DL	4.17846E-06	BDL	3.16817E-06	BDL	3.46878E-06
445 AI	Calculated	_	BDL	5.65305E-05		3DL	0.000926323	BDL	6.56781E-05		0.000349511
446 As	Calculated	•	BDL	1.4414E-06		3DL	1.96844E-06	BDL	1.4925E-06		1.63412E-06
447 Au	Calculated	mg/dscm	BDL	8.61991E-06	E	3DL	3.96175E-06	BDL	3.31117E-05	BDL	1.52311E-05
448 Ba	Calculated	mg/dscm	BBL	7.82459E-05	E	3DL	0.000253191	BDL	1.0599E-05	DLL	0.000114012
449 Br	Calculated	_	ADL	0.001033279		ADL	0.00014965	BBL	4.0939E-05	DLL	0.000407956
450 Ca	Calculated	_	ADL	0.000129341		3BL	8.19284E-05	BDL	3.01373E-05	DLL	8.0469E-05
451 Cd	Calculated	_	BBL	7.24933E-05		3DL	0.000107706	BBL	0.000191721	DLL	0.000123973
452 Ce	Calculated	_	BDL	7.72967E-05		3DL	0.000423909	BBL	0.001444975		0.000648727
453 Cl 454 Co	Calculated Calculated	_	ADL BDL	0.000126299 3.27187E-07		ADL BDL	8.09692E-05 4.4682E-07	BBL BDL	0.000210624 3.38786E-07	DLL BDL	0.000139297 3.70931E-07
454 C0 455 Cr	Calculated	•	BBL	3.27187E-07 2.43719E-05		3DL	4.4682E-07 5.46747E-05	ADL	5.65575E-05	DLL	4.52014E-05
456 Cs	Calculated	_	BDL	1.17986E-05		3DL 3DL	1.87508E-05	ADL	0.000373492		0.00013468
457 Cu	Calculated	_	BBL	2.86264E-06		3DL	0.000182014	BDL	1.06232E-06		6.19795E-05
458 Eu	Calculated	_	BDL	0.000616449		3BL	0.003097634	BDL	8.55224E-05	DLL	0.001266535
459 Fe	Calculated	mg/dscm	ADL	0.000109851	A	ADL	6.35268E-06	ADL	7.71881E-05	ADL	6.44641E-05
460 Ga	Calculated	mg/dscm	BDL	1.10171E-06	E	3DL	1.50455E-06	BDL	1.14077E-06	BDL	1.24901E-06
461 Hf	Calculated	_	BDL	1.38813E-05	E	3DL	1.89568E-05	BDL	1.43734E-05	BDL	1.57372E-05
462 Hg	Calculated	_	BBL	2.57214E-05		3DL	3.79252E-05	BBL	6.80245E-05		4.38904E-05
463 In	Calculated	_	BBL	3.6519E-05		3DL	3.698E-06	BDL	2.80388E-06		1.43403E-05
464 Ir	Calculated	•	BDL	3.01644E-06		3DL	4.11937E-06	BDL	3.12337E-06		3.41973E-06
465 K 466 La	Calculated Calculated	_	ADL BDL	0.000316976 9.24022E-05		ADL BDL	8.17806E-05 0.000189249	BDL BDL	4.68652E-05 1.44247E-05		0.000148541 9.8692E-05
467 Mg	Calculated	•	BDL	0.000266108		BBL	0.000189249	BDL	0.004249266		0.00623042
468 Mn	Calculated	_	BBL	6.42656E-05		3BL	0.00023102	BBL	0.000169961		0.000155082
469 Mo	Calculated	_	BDL	1.95046E-06		3DL	3.94074E-05	BDL	2.0196E-06		1.44592E-05
470 Na	Calculated	O,	BDL	0.008536936		3BL	0.063138159	BDL	0.00219041		0.024621835
471 Nb	Calculated	mg/dscm	BDL	5.37256E-06	E	3DL	1.38028E-06	BDL	1.04655E-06	BDL	2.5998E-06
472 Ni	Calculated	mg/dscm	BDL	6.56973E-07	E	3BL	3.18498E-05	BDL	6.80264E-07	DLL	1.10624E-05
473 Pb	Calculated	•	BBL	4.14703E-05		3DL	7.92833E-05	ADL	2.34421E-05		4.80653E-05
474 Pd	Calculated	_	BDL	5.51419E-06		3DL	0.000140971	BDL	5.70968E-06		5.07315E-05
475 P	Calculated	_	ADL	0.006065043		ADL	0.000108768	BBL	0.000125882		0.002099897
476 Rb	Calculated	_	BDL	1.77073E-06		3DL	4.50888E-07	ADL	8.44864E-06		3.55675E-06
477 S 478 Sb	Calculated Calculated	_	BDL BDL	3.53535E-06 7.8191E-06		BDL BDL	4.82802E-06 5.66394E-05	BDL BBL	3.66068E-06 0.000211252		4.00801E-06 9.19035E-05
479 Sc	Calculated	_	BDL	3.80194E-05		3DL 3DL	0.000627446		4.00482E-05		0.000235171
480 Se	Calculated	_	BDL	1.70407E-06		3BL	8.26127E-05	BDL	1.76448E-06		2.86938E-05
		_		on excluded -							
1015:				ontamination			0.004=05=:		0.000000		0.004:55==
481 Si	Calculated	•] .	יחר	0.001563011	001	0.000695455		0.001129233
482 Sm 483 Sn	Calculated Calculated	•	BBL	0.00072893 7.25849E-05		BBL BDL	0.002640593 8.64977E-05	BDL BDL	0.001015613 6.94007E-05		0.001461712 7.61611E-05
484 Sr	Calculated	_	BBL BBL	7.23849E-05 7.67498E-06		3DL	1.52803E-06	BDL	2.02978E-05		9.8336E-06
485 Ta	Calculated	_	BDL	1.4373E-05		3DL	1.96283E-05	BDL	1.48825E-05		1.62946E-05
486 Tb	Calculated	_	BDL	4.74232E-05		BBL	0.001936221	BDL	0.000717378		0.000900341
487 Ti	Calculated	_	BBL	1.41458E-05		ADL	0.001350221	BDL	1.01287E-06		5.98951E-05
488 TI	Calculated	_	BBL	1.41611E-05		3BL	5.09061E-05	BDL	1.08728E-06		2.20515E-05
489 U	Calculated	_	BDL	2.96307E-06		٩DL	1.20814E-05	BBL	0.000105682		4.02422E-05
490 V	Calculated	mg/dscm	BDL	7.99501E-06	6	3BL	5.74804E-05	BDL	2.69344E-06	DLL	2.27229E-05
491 W	Calculated	_	BDL	0.000104306		3BL	0.000341249	BBL	0.000529443		0.000324999
492 Y	Calculated	_	ADL	2.62994E-05		3DL	1.4214E-06	BBL	3.04022E-05		1.93743E-05
493 Zn	Calculated	•	BBL	2.51202E-05		3DL	5.99458E-05	BBL	7.4692E-05		5.32527E-05
494 Zr	Calculated	mg/dscm	BDL	8.38199E-06	[]	3BL	6.9403E-05	ADL	2.21363E-06	DLL	2.66662E-05

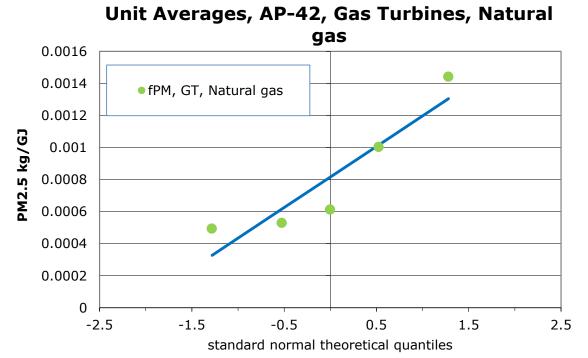
	Α	В	С	D E	F	G	ΗΙ	J	K	L M	N	0	PC	Q R	S
1	Modified CTM 39,	Site Buick				Run 1			Run 2			Run 3			Average
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>			Value			Value			Value			Value
496	lons														
497	NH4+	Calculated	mg/dscm		BDL	9.10803E-06		BDL	3.00877E-05		BDL	2.21831E-05		BDL	2.04596E-05
498	CI-	Calculated	mg/dscm		BDL	2.34959E-05		BDL	7.7617E-05		BDL	5.72255E-05		BDL	5.27795E-05
499	NO3-	Calculated	mg/dscm		ADL	0.000457298		ADL	0.000361781		ADL	0.000665381		ADL	0.00049482
500	K+	Calculated	mg/dscm		BDL	0.000497891		BDL	0.001641963		BDL	0.001210549		BDL	0.001116801
501	Na+	Calculated	mg/dscm		ADL	0.000415325		BDL	0.002455733		BDL	0.001825558		DLL	0.001565539
502	SO42-	Calculated	mg/dscm		BDL	1.51763E-05		BDL	5.01337E-05		BDL	3.69626E-05		BDL	3.40908E-05
503															
504	Reconstructed mas	Calculated	mg/dscm		DLL	0.439714245		DLL	0.264530174		DLL	0.12297198		DLL	0.27611521
505	Species mass closu	re	%			0.536963169			30.12763333			19.34493419			0.993186828
506															
	Reconstructed														
	mass (w/o Run 1														
507	Si)	Calculated	mg/dscm		DLL	0.439714245	FB	DLL	0.264530174	FB	DLL	0.12297198	FB	DLL	0.275738799
	Reconstructed														
	mass (w/o Run 1														
508	Si)	Calculated	lb/MMBtu		DLL	0.000888948	FB	DLL	0.000517116	FB	DLL	0.000244214	FB	DLL	0.000550093
	Reconstructed														
	mass (w/o Run 1														
509	Si)	Calculated	kg/GJ		DLL	0.000382163	FB	DLL	0.000222311	FB	DLL	0.000104989	FB	DLL	2.36E-04

ESS EC Calculated mg/mg	А	В	С	D E F	G	Н	I J	K	L M N	0	P Q R	S
Colorative from the fraction of sum of species, with dilutions air bank)	1 Modified C	TM 39, Site Buick			Run 1			Run 2		Run 3		Average
Sept CC								Value		Value		Value
Second Calculated mg/mg Ca				es, with dilu	ıtion air blank)							
Section Calculated mg/mg Section Section Section Calculated mg/mg Section S												
See See Calculated mg/mg See See				0 ADL	0.061778318	FB	0 ADL	0.024302279	0 BDL	0.00824364	0 DLL	0.041778731
Sept Security Calculated mg/mg Calculated m												
September Sept	·											
Sept												
Bob		kup Calculated	mg/mg									
Sep Sep Calculated mg/mg Sep Sep		as avidas)										
See Sult			ma/ma	BDI	6 05830F-06		BDI	1 570585-05	BDI	2 57624F ₋ 05	BUI	1.25628E-05
												
Fig. 2											FB B DLL	0.000412914
Fig. Calculated mg/mg Fig. Ball 0.000164865 BDL 0.000407159 Fig. Ball 0.001175045 Fig. Ball 0.00024675 Fig. Calculated mg/mg Ball 0.000175788 Ball 0.0001602496 Fig. Ball 0.0011750445 Fig. Ball 0.00024675 Fig. Ball 0.0017175045 Fig. Ball 0.000175045 Fig. Ball 0.000175045 Fig. Ball 0.000175045 Fig. Ball 0.0000175045 Fig. Ball 0.00001750	672 Br	Calculated	mg/mg	ADL	0.002349888	FB	ADL	0.000565718	FB BBL	0.000332913	DLL	0.001477484
Force	673 Ca	Calculated	mg/mg	B ADL	0.000294148		BBL	0.000309713	BDI	0.000245075	B DLL	0.000291433
	674 Cd					1	BDL					0.000448991
												0.002349479
Fig. Calculated mg/mg Fig. BBL 5.54267-05 BDL 0.000266866 ADL 0.000459922 Fig. BDL 0.000169068063 ADL 0.000337209 Fig. BDL 0.0000168063 BDL 0.00045920 Fig. BDL 0.0000168063 BDL 0.00045920 Fig. BDL 0.0000168063 BDL 0.00045920 Fig. BDL 0.0000168063 BDL 0.000												0.00050449
Form Calculated mg/mg BDL 2.68325E-05 BDL 7.08834E-05 BB ADL 0.003037209 BB BDL 0.00046806 BDL 0.00068766 BDL 0.00046806 BDL 0.0006866 BDL 0.00068766 BDL 0.00046806 BDL 0.00068766 BDL 0.00046806 BDL 0.000												
Section Calculated mg/mg												0.000163705
BBL												0.000487769
Feb												0.00022447
BBL 2.50552E-06 BDL 5.68763E-06 BDL 9.27668E-06 BDL 4.5235 BBL 6.885 BBL Galculated mg/mg BBL 3.15688E-05 BBL 7.16623E-05 BBL 0.000116883 BBL 0.00015887 BBL 0.00016883 BBL 0.000158171 BBL 0.00015887 BBL 0.00014836 BBL 0.000553171 BBL 0.00015887 BBL 0.00015871 BBL 0.000158571 BBL 0.00015857												0.00458698
684 Hf Calculated mg/mg BDL 3.15688E-05 BDL 7.16623E-05 BDL 0.000116883 BDL 5.6994 685 Hg Calculated mg/mg BBL 5.84956E-05 BDL 0.000143368 BBL 0.000513171 B DLL 0.00016687 687 Ir Calculated mg/mg BBL 8.83015E-05 BDL 1.39795E-05 BDL 2.2891E-05 FB BDL 5.1935 688 K Calculated mg/mg ADL 0.000720868 FB B ADL 0.000381105 DLL 0.000511010 DLL 0.000511701 BDL 0.000381105 DLL 0.000511701 BDL 0.000381105 DLL 0.000381105 DLL 0.000511701 BDL 0.000381105 DLL 0.000381105 DLL 0.000381105 DLL 0.000381105 DLL 0.000381105 DLL <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
BBL												
Fig.												0.000158957
BBU												5.19359E-05
BB												1.23851E-05
Box	688 K	Calculated	mg/mg	ADL	0.000720868	FB	B ADL	0.000309154	BDL	0.000381105	DLL	0.000537966
BBL 0.000146153 BBL 0.000873322 BBL 0.001382114 BBL 0.000566592 BBL 0.001382114 BBL 0.000566593 BBL 0.00148971 BBL 0.00148971 BBL 0.00148971 BBL 0.017812271 BBL 0.008917 BBL 0.017812271 BBL 0.0017812271 BBL 0.0017812271 BBL 0.0017812271 BBL 0.000181271 BBL 0	689 La	Calculated	mg/mg	BDL	0.000210141		BDL	0.000715416	BDL	0.000117301	BDL	0.00035743
Fig. 2 Mo	690 Mg	Calculated	mg/mg	BDL	0.000605183		B BBL	0.053588924	BDL	0.034554751	B DLL	0.022564568
Fig. 2013 Fig. 2014 Fig. 2014 Fig. 2015 Fig. 2014 Fig.												0.000561658
Bold												
See Sec Calculated mg/mg Sec Sec Calculated mg/mg Sec C												0.089172324
FB B BBL 9.4312E-05 BDL 0.000299714 FB B ADL 0.00019063 FB B DLL 0.00015697 BDL 0.00053291 BDL 4.64307E-05 BDL 0.00015698 BDL 4.64307E-05 BDL 0.000153291 BDL 4.64307E-05 BDL 0.00016566 BDL 0.00016566 BDL 0.00016566 BDL 0.00016566 BDL 0.00016566 DLL 0.00016566 BDL 0.00016566 DLL 0.00016566 BDL 0.000165666 BDL 0.000165666 BDL 0.0001656	———											
Fig. 2015 Fig. 3												4.00643E-05
Fig. 12 Fig. 13 Fig. 14 Fig. 14 Fig. 14 Fig. 14 Fig. 15 Fig. 14 Fig. 15 Fig.												
FB Rb Calculated mg/mg BDL 4.02701E-06 BDL 1.70449E-06 FB ADL 6.87038E-05 FB B DLL 1.2881			•									0.007605149
TOO S												1.28814E-05
701 Sb Calculated mg/mg BDL 1.77822E-05 BDL 0.000214113 FB B BBL 0.001717887 FB B DL 0.00033 702 Sc Calculated mg/mg BDL 8.64639E-05 BDL 0.002371928 BDL 0.00032567 BDL 0.00038 703 Se Calculated mg/mg ADL 0 FB BBL 0.0003123 BDL 1.43486E-05 DLL 0.0003 704 Si Calculated mg/mg ADL 0 FB B ADL 0.00590863 FB B BBL 0.00555396 DLL 0.00408 705 Sm Calculated mg/mg BBL 0.001657736 BBL 0.00982199 BDL 0.008258896 B DL 0.000588896 B DL 0.0005529 706 Sn Calculated mg/mg FB BBL 0.00165073 BDL 0.000326986 BDL 0.00016506 B DL 0.00027 707 Sr Calculated mg/mg BDL 3.26871E-05 BDL </td <td></td>												
702 Sc Calculated mg/mg BDL 8.64639E-05 BDL 0.002371928 BDL 0.00032567 BDL 0.000885 703 Se Calculated mg/mg BDL 3.8754E-06 BBL 0.0003123 BDL 1.43486E-05 DLL 0.0003 704 Si Calculated mg/mg ADL 0 FB B ADL 0.00599863 FB B BL 0.005655396 DLL 0.00408 705 Sm Calculated mg/mg BBL 0.001657736 BBL 0.009982199 BDL 0.008258896 B DL 0.000565396 DLL 0.005529 0.000564362 FB B DL 0.008258896 B DL 0.000564362 FB B DL 0.000564362 FB B DL 0.000564362 FB B DL 0.00016506												0.000332845
703 Se Calculated mg/mg BDL 3.8754E-06 BBL 0.0003123 BDL 1.43486E-05 DLL 0.0001 704 Si Calculated mg/mg ADL 0 FB B ADL 0.00590863 FB B BBL 0.005655396 DLL 0.00408 705 Sm Calculated mg/mg BBL 0.001657736 BBL 0.009982199 BDL 0.008258896 B DLL 0.00525 706 Sn Calculated mg/mg FB BBL 0.000165073 BDL 0.000326986 BDL 0.000564362 FB B DLL 0.00027 707 Sr Calculated mg/mg BDL 3.26871E-05 BDL 5.77639E-06 BDL 0.00016506 B DLL 3.5614 709 Tb Calculated mg/mg BDL 0.00010785 BBL 0.00731947 BDL 0.005833669 B DLL 0.00326969 BDL 0.005833669 B DLL 0.00326969 BDL 0.0005833669 BDL 0.00326969 BDL 0.000121024 BDL 0.0005833669												
705 Sm Calculated mg/mg BBL 0.001657736 BBL 0.009982199 BDL 0.008258896 B DLL 0.00525 706 Sn Calculated mg/mg FB BBL 0.000165073 BDL 0.000326986 BDL 0.000564362 FB B DLL 0.00027 707 Sr Calculated mg/mg B BBL 1.74545E-05 BDL 5.77639E-06 BDL 0.00016506 B DLL 3.5614 708 Ta Calculated mg/mg BDL 3.26871E-05 BDL 7.42008E-05 BDL 0.000121024 BDL 5.9013 709 Tb Calculated mg/mg BDL 0.00010785 BBL 0.00731947 BDL 0.005833669 B DLL 0.00326 710 Ti Calculated mg/mg FB BBL 3.221703E-05 FB ADL 0.000621958 BDL 8.23662E-06 FB B DLL 7.9863 712 U Calculated mg/mg BDL 6.73862E-06 B ADL 4.5671E-05 BBL 0.0008594 B DLL 0.00012	703 Se	Calculated	mg/mg	BDL	3.8754E-06		BBL	0.0003123	BDL	1.43486E-05	DLL	0.00010392
706 Sn Calculated mg/mg FB BBL 0.000165073 BDL 0.000326986 BDL 0.000564362 FB B DLL 0.00027 707 Sr Calculated mg/mg B BBL 1.74545E-05 BDL 5.77639E-06 BDL 0.00016506 B DLL 3.5614 708 Ta Calculated mg/mg BDL 3.26871E-05 BDL 7.42008E-05 BDL 0.000121024 BDL 5.9013 709 Tb Calculated mg/mg BDL 0.00010785 BBL 0.00731947 BDL 0.005833669 B DLL 0.00326 710 Ti Calculated mg/mg FB BBL 3.21703E-05 FB ADL 0.000621958 BDL 8.23662E-06 FB B DLL 0.00022 711 Tl Calculated mg/mg FB BBL 3.22053E-05 FB BBL 0.00019244 BDL 8.84165E-06 FB DLL 7.9863 712 U Calculated mg/mg BDL 6.73862E-06 B ADL 4.5671E-05 BBL 0.0008594 <td< td=""><td>704 Si</td><td>Calculated</td><td>mg/mg</td><td>ADL</td><td>. 0</td><td>FB</td><td>B ADL</td><td>0.00590863</td><td>FB B BBL</td><td>0.005655396</td><td>DLL</td><td>0.004089717</td></td<>	704 Si	Calculated	mg/mg	ADL	. 0	FB	B ADL	0.00590863	FB B BBL	0.005655396	DLL	0.004089717
707 Sr Calculated mg/mg B BBL 1.74545E-05 BDL 5.77639E-06 BDL 0.00016506 B DLL 3.5614 708 Ta Calculated mg/mg BDL 3.26871E-05 BDL 7.42008E-05 BDL 0.000121024 BDL 5.9013 709 Tb Calculated mg/mg BDL 0.00010785 BBL 0.00731947 BDL 0.005833669 B DLL 0.00326 710 Ti Calculated mg/mg FB BBL 3.21703E-05 FB ADL 0.000621958 BDL 8.23662E-06 FB B DLL 7.9863 712 U Calculated mg/mg BDL 6.73862E-06 B ADL 4.5671E-05 BBL 0.0008594 B DLL 0.00014 713 V Calculated mg/mg BDL 1.81823E-05 FB BBL 0.000217292 BDL 2.19028E-05 FB B DLL 8.2295 714 W Calculated mg/mg BDL 0.000237214 B BBL 0.001290019 BBL 0.004305398 B DLL 0.0011729017												0.005293848
708 Ta Calculated mg/mg BDL 3.26871E-05 BDL 7.42008E-05 BDL 0.000121024 BDL 5.9013 709 Tb Calculated mg/mg BDL 0.00010785 BBL 0.00731947 BDL 0.005833669 B DLL 0.00326 710 Ti Calculated mg/mg FB BBL 3.21703E-05 FB ADL 0.000621958 BDL 8.23662E-06 FB B DLL 0.00022 711 TI Calculated mg/mg FB BBL 3.22053E-05 FB BBL 0.00019244 BDL 8.84165E-06 FB DLL 7.9863 712 U Calculated mg/mg BDL 6.73862E-06 B ADL 4.5671E-05 BBL 0.0008594 B DLL 0.00014 713 V Calculated mg/mg BDL 1.81823E-05 FB BBL 0.000217292 BDL 2.19028E-05 FB B DLL 0.00117 714 W Calculated mg/mg BDL 0.000237214 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.000275831</td></td<>												0.000275831
709 Tb Calculated mg/mg BDL 0.00010785 BBL 0.00731947 BDL 0.005833669 B DLL 0.00326 710 Ti Calculated mg/mg FB BBL 3.21703E-05 FB ADL 0.000621958 BDL 8.23662E-06 FB B DLL 0.00022 711 TI Calculated mg/mg FB BBL 3.22053E-05 FB BBL 0.00019244 BDL 8.84165E-06 FB DLL 7.9863 712 U Calculated mg/mg BDL 6.73862E-06 B ADL 4.5671E-05 BBL 0.0008594 B DLL 0.00014 713 V Calculated mg/mg BDL 1.81823E-05 FB BBL 0.000217292 BDL 2.19028E-05 FB B DLL 8.2295 714 W Calculated mg/mg BDL 0.000237214 B BBL 0.001290019 BBL 0.004305398 B DLL 0.001172												3.56141E-05
710 Ti Calculated mg/mg FB B BBL 3.21703E-05 FB ADL 0.000621958 BDL 8.23662E-06 FB B DLL 0.00023 711 TI Calculated mg/mg FB BBL 3.22053E-05 FB BBL 0.00019244 BDL 8.84165E-06 FB DLL 7.9863 712 U Calculated mg/mg BDL 6.73862E-06 B ADL 4.5671E-05 BBL 0.0008594 B DLL 0.00014 713 V Calculated mg/mg BDL 1.81823E-05 FB BBL 0.000217292 BDL 2.19028E-05 FB B DLL 8.2295 714 W Calculated mg/mg BDL 0.000237214 B BBL 0.001290019 BBL 0.004305398 B DLL 0.00117												
711 TI Calculated mg/mg FB BBL 3.22053E-05 FB BBL 0.00019244 BDL 8.84165E-06 FB DLL 7.9863 712 U Calculated mg/mg BDL 6.73862E-06 B ADL 4.5671E-05 BBL 0.0008594 B DLL 0.00014 713 V Calculated mg/mg BDL 1.81823E-05 FB B BBL 0.000217292 BDL 2.19028E-05 FB B DLL 8.2295 714 W Calculated mg/mg BDL 0.000237214 B BBL 0.001290019 BBL 0.004305398 B DLL 0.00117												0.003260742
712 U Calculated mg/mg BDL 6.73862E-06 B ADL 4.5671E-05 BBL 0.0008594 B DLL 0.00014 713 V Calculated mg/mg BDL 1.81823E-05 FB B BBL 0.000217292 BDL 2.19028E-05 FB B DLL 8.2295 714 W Calculated mg/mg BDL 0.000237214 B BBL 0.001290019 BBL 0.004305398 B DLL 0.00117	———											0.000216921
713 V Calculated mg/mg BDL 1.81823E-05 FB BBL 0.000217292 BDL 2.19028E-05 FB B DLL 8.2295												7.98634E-05 0.000145744
714 W Calculated mg/mg BDL 0.000237214 B BBL 0.001290019 BBL 0.004305398 B DLL 0.00117												8.22952E-05
			J. J									0.001177043
1. ZOLO DE CONTRECE DE CONTRE DE CONTRE DE CONTRE DE CONTRE DE CONTRETE DE CONTRETE DE LA CONTRETE DE LA CONTRETE DE CONTRETE	715 Y			FB B ADL			BDL					7.01676E-05
												0.000192864
												9.65764E-05
718	718								<u> </u>		<u> </u>	

	Α	В	С	D	Ε	F	G	Н	1	J	K	L M	١	V	0	Р	Q	R	S
1	Modified CTM 39, 9	Site Buick					Run 1				Run 2				Run 3				Average
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>				Value				Value				Value				Value
719	Ions (Cl-, K+,Na+ as	oxides)																	
720	NH4+	Calculated	mg/mg		E	BDL	2.07135E-05		В	3DL	0.00011374		ВС	DL	0.000180392		1	BDL	7.40981E-05
721	CI-	Calculated	mg/mg			BDL	5.34344E-05		В	3DL	0.000293415		ВС	DL	0.000465354		ŀ	BDL	0.00019115
722	NO3-	Calculated	mg/mg	FB	# /	ADL	0.001039989	FΒ	# A	۱DL	0.001367637	FB #	Αľ	DL	0.005410836	FB	# /	ADL	0.001792078
723	K+	Calculated	mg/mg		E	BDL	0.001132305		В	BDL	0.006207092		ВС	DL	0.009844101		ŀ	BDL	0.004044691
724	Na+	Calculated	mg/mg	FB	# /	ADL	0.000944534		В	3DL	0.009283377		ВС	DL	0.014845314	FB	# !	DLL	0.005669875
725	SO42-	Calculated	mg/mg		E	BDL	3.45139E-05		В	BDL	0.00018952		ВС	DL	0.000300577		ŀ	BDL	0.000123466
726																			
727																			

	Α	В	С	D	E F		G	ΗΙ	J	К	L M	N	0	P Q	R	S
1	Modified CTM 39,	Site Buick				R	tun 1			Run 2			Run 3			Average
2	<u>Parameter</u>	<u>Type</u>	<u>Units</u>			V	/alue		,	Value			Value		,	Value
797	Results for 142-mm	n filter and i	recovery ri	nses	(wit	h di	lution air blank	corre	ction)	<u>.</u>						
798	Vds(std)'	Calculated	dscm				6.077199158			28.22057445			31.28221005			21.85999455
799	mar,probe	Calculated	mg	FB	BD	L	0.31	FB	BDL	0.56	FB	BDL	0.55			0.473333333
800	mar,venturi	Calculated	mg	FB	BD	L	1.07	FB	BDL	2.55	FB	BDL	1.6			1.74
801	mwr,chamber	Calculated	mg	FB	BD	L	1.77	FB	BDL	1.53	FB	BDL	0.7			1.333333333
802	mf142mm	Calculated	mg		no	fi	0		no fi	0		no fi	0		no fi	0
803	Cs,probe	Calculated	mg/dscm	FB	BD	L	0.125035003	FB	BDL	0.320418761	FB	BDL	0.261847994			0.235767252
804	Cs,venturi	Calculated	mg/dscm	FB	BD	L	0.431572429	FB	BDL	1.459049713	FB	BDL	0.761739619			0.884120587
805	Cs,chamber	Calculated	mg/dscm	FB	BD	L	0.713909532	FB	BDL	0.875429828	FB	BDL	0.333261083			0.640866814
806	Cs,142mmf	Calculated	mg/dscm		no	fi	-0.010481358		no fi	-0.027402228		no fi	-0.01763982		no fi	-0.018507802
807																
808	Results for 142mm	and 47mm	filters with	ı rec	over	y rir	nses (with diluti	on ai	r blanl	k correction)						
809	mf47q,est	Calculated	mg				0.760346654			0.010041442			0.009032633			0.25980691
810	Cs,f+r,total	Calculated	mg/dscm	FB	DL	L	1.872443598	FB	DLL	2.638963313	FB	DLL	1.347793984	FB	DLL	1.953066965
811	Es,f+r,total	Calculated	lb/MMBtu	FB	DL	L	0.003785425	FB	DLL	0.00515877	FB	DLL	0.002676626	FB	DLL	0.003873607
812	Es,f+r,total	Calculated	kg/GJ	FB	DL	L	0.001627372	FB	DLL	0.002217779	FB	DLL	0.001150694	FB	DLL	0.001665282
816																
817	Results for 142mm	and 47mm	filters with	<u>10ut</u>	reco	ver	y rinses (with d	ilutior	<u>n air b</u>	lank correction)						
818	Cs,f,total	Calculated	mg/dscm				0.601926635			-0.015934989			-0.009054713			0.192312311
819	Es,f,total	Calculated	lb/MMBtu	l			0.001216885			-3.11505E-05			-1.7982E-05			0.000389251
820	Es,f,total	Calculated	kg/GJ				0.000523144			-1.33917E-05			-7.73056E-06			0.000167341

APPENDIX B U.S. EPA AP-42 EMISSION FACTOR DATA SUMMARIES

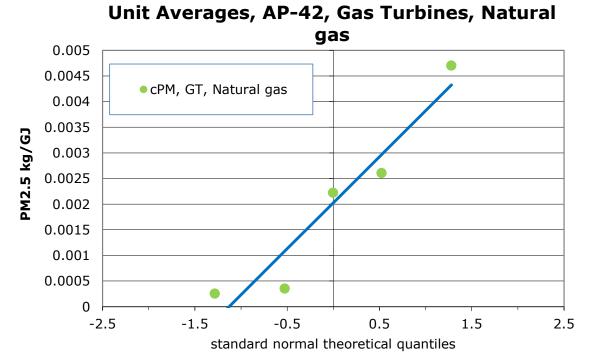

Parameter	Units	Value	Value	Value (1)	Value (2)
Data set		fPM	сРМ	f+cPM	f+cPM
Number of units tested		5	5	5	5
Mean	kg/GJ	8.16E-04	2.03E-03	2.84E-03	2.84E-03
Median	kg/GJ	6.12E-04	2.22E-03		3.61E-03
Geometric mean	kg/GJ	7.46E-04	1.19E-03		2.18E-03
Minimum	kg/GJ	4.93E-04	2.54E-04	7.47E-04	7.47E-04
Maximum	kg/GJ	1.44E-03	4.70E-03	6.14E-03	5.23E-03
Standard deviation	kg/GJ	4.04E-04	1.84E-03	1.88E-03	1.93E-03
COV	%	50	91	91	68
Confidence level	%	95%	95%		95%
Measurement bias	%	6.5	6.5		6.5
t factor (2 tail)		2.78	2.78		2.78
t factor (1 tail)		1.53	1.53		1.53
Total uncertainty	%	62	113	129	85
Total uncertainty	kg/GJ	5.05E-04	2.28E-03	2.34E-03	2.40E-03
95% confidence upper bound	kg/GJ	1.10E-03	3.29E-03		4.18E-03
Data distribution		normal	normal		normal
99% confidence upper prediction limit	kg/GJ	2.48E-03	9.56E-03		1.08E-02

⁽¹⁾ by combining fPM + cPM factors(2) by combining fPM+cPM unit average results

AP-42 Data Gas Turbines Unit averages

											Test Run	Test Run Emission	
											Emission Value	Value	
FacilityID	UnitID	Make	Model	Rating (MW)	Fuel	Controls	Pollutant	Run ID	Test Date	Test Method	lb/MMBtu	kg/GJ	In (Run Value)
WDNR Fon du Lac	WDNR0098-1	ABB	GT11N1	86	natural gas	Water injection	fPM	Average	4/18/1994	EPA 5	0.001423911	0.0006121461573	-7.398539485
WDNR Fon du Lac	WDNR0098-2	ABB	GT11N1	86	natural gas	Water injection	fPM	Average	4/18/1994	EPA 5	0.001146864	0.0004930419774	-7.614916241
WDNR Fon du Lac	WDNR0099-1	ABB	GT11N1	86	natural gas	Water injection	fPM	Average	6/12/1994	EPA 5	0.002332621	0.0010028046025	-6.904954602
WDNR Fon du Lac	WDNR0099-2	ABB	GT11N1	86	natural gas	Water injection	fPM	Average	6/12/1994	EPA 5	0.003352109	0.0014410874203	-6.542357297
WDNR Fon du Lac	WDNR0102-1	ABB	GT11N1	86	natural gas	Water injection	fPM	Average	4/16/1996	EPA 5	0.001230803	0.0005291278058	-7.544280556

Х

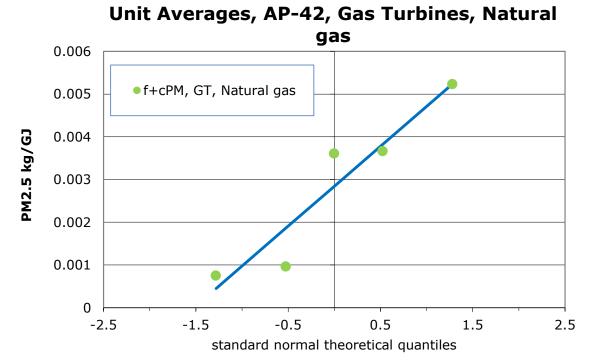


Raw Statistics	
Number of Valid Observations	5
Number of Distinct Observations	5
Minimum	4.93E-04
Maximum	1.44E-03
Mean of Raw Data	8.16E-04
Standard Deviation of Raw Data	4.04E-04
Khat	5.75
Theta hat	1.42E-04
Kstar	2.433
Theta star	3.35E-04
Mean of Log Transformed Data	-7.201
Standard Deviation of Log Transformed Data	0.461
Normal GOF Test Results	
Correlation Coefficient R	0.925
Shapiro Wilk Test Statistic	0.848
Shapiro Wilk Critical (0.05) Value	0.762
Approximate Shapiro Wilk P Value	N/A
Lilliefors Test Statistic	0.293
Lilliefors Critical (0.05) Value	0.396
Data appear Normal at (0.05) Significance Le	vel
` '	

AP-42 Data Gas Turbines Unit averages

											Test Run Emission Value	Test Run Emission Value	
FacilityID	UnitID	Make	Model	Rating (MW)	Fuel	Controls	Pollutant	Run ID	Test Date	Test Method	lb/MMBtu	kg/GJ	In (Run Value)
WDNR Fon du Lac	WDNR0098-1	ABB	GT11N1	86	natural gas	Water injection	cPM	Average	4/18/1994	EPA 5 back half	0.000814236	0.0003500436672	-7.957452648
WDNR Fon du Lac	WDNR0098-2	ABB	GT11N1	86	natural gas	Water injection	cPM	Average	4/18/1994	EPA 5 back half	0.000591123	0.0002541266799	-8.277677676
WDNR Fon du Lac	WDNR0099-1	ABB	GT11N1	86	natural gas	Water injection	cPM	Average	6/12/1994	EPA 5 back half	0.006061204	0.0026057396217	-5.95003872
WDNR Fon du Lac	WDNR0099-2	ABB	GT11N1	86	natural gas	Water injection	cPM	Average	6/12/1994	EPA 5 back half	0.005162558	0.0022194077444	-6.110514901
WDNR Fon du Lac	WDNR0102-1	ABB	GT11N1	86	natural gas	Water injection	cPM	Average	4/16/1996	EPA 5 back half	0.01093901	0.0047027314937	-5.35961177

Х


Raw Statistics	
Number of Valid Observations	5
Number of Distinct Observations	5
Minimum	2.54E-04
Maximum	4.70E-03
Mean of Raw Data	2.03E-03
Standard Deviation of Raw Data	1.84E-03
Khat	1.08
Theta hat	1.88E-03
Kstar	0.565
Theta star	3.58E-03
Mean of Log Transformed Data	-6.731
Standard Deviation of Log Transformed Data	1.301
Normal GOF Test Results	
Correlation Coefficient R	0.958
Shapiro Wilk Test Statistic	0.909
Shapiro Wilk Critical (0.05) Value	0.762
Approximate Shapiro Wilk P Value	N/A
Lilliefors Test Statistic	0.219
Lilliefors Critical (0.05) Value	0.396
Data appear Normal at (0.05) Significance Le	evel

3 of 3

AP-42 Data Gas Turbines Unit averages

											Test Run Emission Value	Test Run Emission Value	
FacilityID	UnitID	Make	Model	Rating (MW)	Fuel	Controls	Pollutant	Run ID	Test Date	Test Method	lb/MMBtu	kg/GJ	In (Run Value)
WDNR Fon du Lac	WDNR0098-1	ABB	GT11N1	86	natural gas	Water injection	f+cPM	Average	4/18/1994	EPA5 + back half	0.002238147	0.0009621898245	-6.946298804
WDNR Fon du Lac	WDNR0098-2	ABB	GT11N1	86	natural gas	Water injection	f+cPM	Average	4/18/1994	EPA5 + back half	0.001737987	0.0007471686572	-7.199219619
WDNR Fon du Lac	WDNR0099-1	ABB	GT11N1	86	natural gas	Water injection	f+cPM	Average	6/12/1994	EPA5 + back half	0.008393825	0.0036085442242	-5.62445085
WDNR Fon du Lac	WDNR0099-2	ABB	GT11N1	86	natural gas	Water injection	f+cPM	Average	6/12/1994	EPA5 + back half	0.008514667	0.0036604951646	-5.61015685
WDNR Fon du Lac	WDNR0102-1	ABB	GT11N1	86	natural gas	Water injection	f+cPM	Average	4/16/1996	EPA5 + back half	0.012169813	0.0052318592995	-5.252988557

Х

Raw Statistics	
Number of Valid Observations	5
Number of Distinct Observations	5
Minimum	7.47E-04
Maximum	5.23E-03
Mean of Raw Data	2.84E-03
Standard Deviation of Raw Data	1.93E-03
Khat	2.049
Theta hat	1.39E-03
Kstar	0.953
Theta star	2.98E-03
Mean of Log Transformed Data	-6.127
Standard Deviation of Log Transformed Data	0.881
Normal GOF Test Results	
Correlation Coefficient R	0.949
Shapiro Wilk Test Statistic	0.886
Shapiro Wilk Critical (0.05) Value	0.762
Approximate Shapiro Wilk P Value	N/A
Lilliefors Test Statistic	0.254
Lilliefors Critical (0.05) Value	0.396
Data appear Normal at (0.05) Significance Le	vel

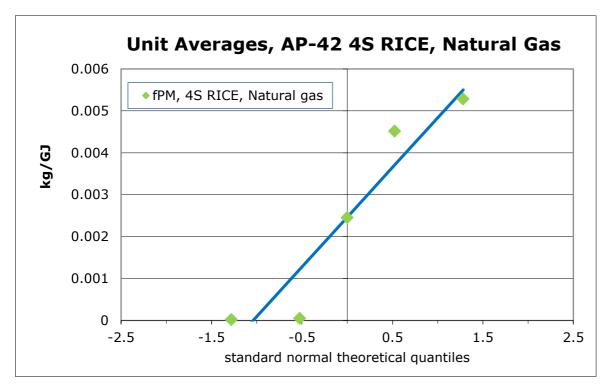
Natural Gas

Emission F	actor Report for	.]	PM-filteral	ble	with Steam/	ection	21-Jun-16	
ID	Manufacturer	Model	Rating (MW)	Load (%)	EF (lb/MMBtu)	Count of Runs	ND Count	Control Device
WDNR0102-1	ABB	GT11N1	86	100	1.23E-03	3	0	Water Injection for NOx control.
WDNR0099-2	ABB	GT11N1	86	100	3.35E-03	3	0	Water Injection for NOx control.
WDNR0099-1	ABB	GT11N1	86	100	2.33E-03	2	0	Water Injection for NOx control.
WDNR0098-2	ABB	GT11N1	86	100	1.15E-03	3	0	Water Injection for NOx control.
WDNR0098-1	ABB	GT11N1	86	100	1.42E-03	3	0	Water Injection for NOx control.
			A	vg EF =	1.90E-03			
				Count =	5			
			St	d Dev =	9.39E-04			
			RS	$\mathbf{D}(\%) =$	49.5%			

Natural Gas

Emission F	actor Report for	PM-condensibles with Steam/Water Inje					ection	21-Jun-16
ID	Manufacturer	Model	Rating (MW)	Load (%)	EF (lb/MMBtu)	Count of Runs	ND Count	Control Device
WDNR0102-1	ABB	GT11N1	86	100	1.10E-02	3	0	Water Injection for NOx control.
WDNR0099-2	ABB	GT11N1	86	100	5.16E-03	3	0	Water Injection for NOx control.
WDNR0099-1	ABB	GT11N1	86	100	6.06E-03	2	0	Water Injection for NOx control.
WDNR0098-2	ABB	GT11N1	86	100	5.91E-04	3	0	Water Injection for NOx control.
WDNR0098-1	ABB	GT11N1	86	100	8.15E-04	3	0	Water Injection for NOx control.
			A	vg EF =	4.73E-03		_	
			(Count =	5			
			St	d Dev =	4.29E-03			
			RS	$\mathbf{D}(\%) =$	90.9%			

AP-42 Data - 4-stroke RICE

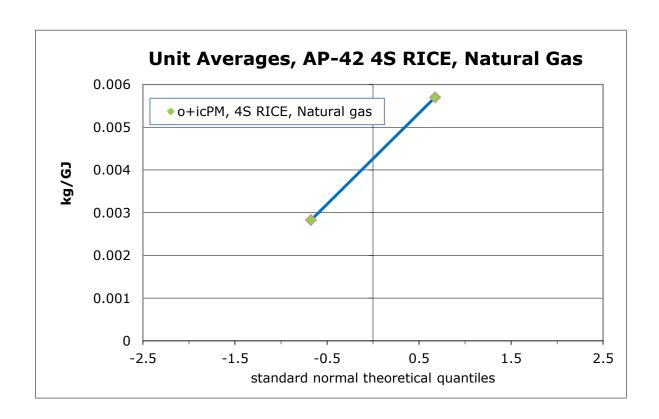

Parameter	Units	Value	Value	Value (1)
Pollutant		fPM	сРМ	fPM+cPM
Number of units tested		5	2	
Mean	kg/GJ	2.46E-03	4.26E-03	6.73E-03
Median	kg/GJ	2.45E-03	4.26E-03	
Geometric mean	kg/GJ	5.54E-04	4.01E-03	
Minimum	kg/GJ	1.90E-05	2.82E-03	2.84E-03
Maximum	kg/GJ	5.28E-03	5.70E-03	1.10E-02
Standard deviation	kg/GJ	2.45E-03	2.03E-03	3.18E-03
COV	%	99	48	47
Confidence level	%	95%	95%	
Measurement bias	%	6.5	6.5	
t factor (2 tail)		2.78	12.71	
t factor (1 tail)		1.53	3.08	
Total uncertainty	%	124	428	446
Total uncertainty	kg/GJ	3.04E-03	1.83E-02	1.85E-02
95% confidence upper bound	kg/GJ	4.15E-03	8.69E-03	
Data distribution		normal	normal	
99% confidence upper prediction limit	kg/GJ	1.25E-02	8.35E-02	

⁽¹⁾ By combining fPM + cPM factors

AP-42 Data 4-stroke RICE Unit averages

												Value
FacilityID	UnitID	Category	Make	Model	Rating	Fuel	Controls	Pollutant	Run ID	Test Date	Test Method	lb/MMBtu
GRI Site 3A	29.38x	4SLB	Cooper Bessemer	LSV-16 turbo	4200	natural gas	None	fPM		6/16/1994	201	0.000044183379
GRI Site 3A	29.34x	4SLB	Cooper Bessemer	LSV-16 turbo	4200	natural gas	None	fPM		6/15/1994	201	0.000109506219
Elk Hills Naval Petroleum Reserve No. 1	102.1	4SRB	Waukesha	L7042 GSIU	1500	natural gas	PCC	fPM		5/25/1993	5	0.012288658317
Elk Hills Naval Petroleum Reserve No. 1	102.2	4SRB	Waukesha	L7042 GSIU	1500	natural gas	PCC	fPM		7/22/1993	5	0.005706347534
Elk Hills Naval Petroleum Reserve No. 1	133	4SRB	Waukesha	L7042 GSIU	1500	natural gas	PCC	fPM		5/26/1993	5	0.010508330643

Test Run Emission


Raw Statistics	
Number of Valid Observations	5
Number of Distinct Observations	5
Minimum	1.90E-05
Maximum	0.00528
Mean of Raw Data	0.00246
Standard Deviation of Raw Data	2.45E-03
Khat	0.435
Theta hat	5.66E-03
Kstar	0.307
Theta star	0.00802
Mean of Log Transformed Data	-7.498
Standard Deviation of Log Transformed Data	2.7
Normal GOF Test Results	
Correlation Coefficient R	0.951
Shapiro Wilk Test Statistic	0.874
Shapiro Wilk Critical (0.05) Value	0.762
Approximate Shapiro Wilk P Value	N/A
Lilliefors Test Statistic	0.238
Lilliefors Critical (0.05) Value	0.396
Data appear Normal at (0.05) Significance Lev	/el

AP-42 Data 4-stroke RICE Unit averages

												Test Run Emission Value	Test Run Emission Value
FacilityID	UnitID	Category	Make	Model	Rating	Fuel	Controls	Pollutant	Run ID	Test Date	Test Method	lb/MMBtu	kg/GJ
GRI Site 3A	29.38x	4SLB	Cooper Bessemer	LSV-16 turbo	4200	natural gas	None	o+icPM		6/16/1994	202	0.006570373153	0.002824633994
GRI Site 3A	29.34x	4SLB	Cooper Bessemer	LSV-16 turbo	4200	natural gas	None	o+icPM		6/15/1994	202	0.013255013665	0.005698392058

AP-42 Data - 4-stroke RICE

Parameter	Units	Value
Pollutant		сРМ
Number of units tested		2
Mean	kg/GJ	4.26E-03
Median	kg/GJ	4.26E-03
Geometric mean	kg/GJ	4.01E-03
Minimum	kg/GJ	2.82E-03
Maximum	kg/GJ	5.70E-03
Standard deviation	kg/GJ	2.03E-03
COV	%	48
Confidence level	%	95%
Measurement bias	%	6.5
t factor (2 tail)		12.71
t factor (1 tail)		3.08
Total uncertainty	%	428
Total uncertainty	kg/GJ	1.83E-02
95% confidence upper bound	kg/GJ	8.69E-03
Data distribution		normal
99% confidence upper prediction limit	kg/GJ	8.35E-02

Engine Family: 4SRB

Emission	n Factor Report fo	r	PM-10		with	PCC		30-Jun-16
ID	Manufacturer	Model	Rating (HP)	Load (%)	EF	(lb/MMBtu)	Count of Runs	ND Count
133	Waukesha	L7042 GSIU	1500	67		1.05E-02	3	0
102.2	Waukesha	L7042 GSIU	1500	63		5.70E-03	2	0
102.1	Waukesha	L7042 GSIU	1500	66		1.23E-02	3	0
				Avg EF	'=	9.50E-03	:	
				Std Dev	=	3.41E-03		
				Count	=	3		
				RSD(%)	=	35.9%		

Engine Family: 4SLB

Emission	Factor Report fo	r	PM-10		with	No Control		03-Mar-16
ID	Manufacturer	Model	Rating (HP)	Load (%)	EF	(lb/MMBtu)	Count of Runs	ND Count
29.38x	Cooper Bessemer	LSV-16	4200	99		1.10E-04	1	0
29.34x	Cooper Bessemer	LSV-16	4200	101		4.42E-05	1	0
				Avg EF	`=	7.71E-05		
				Std Dev	=	4.65E-05		
				Count	=	2		
				RSD(%)	=	60.3%		

Engine Family: 4SLB

Emission	Factor Report for	PM-0	Organic Cor	ndensible	with	No Control		30-Jun-16
ID	Manufacturer	Model	Rating (HP)	Load (%)	EF	(lb/MMBtu)	Count of Runs	ND Count
29.38x	Cooper Bessemer	LSV-16	4200	99		2.19E-03	1	0
29.34x	Cooper Bessemer	LSV-16	4200	101		6.63E-03	1	0
				Avg EI	r =	4.41E-03		
				Std Dev	<i>y</i> =	3.14E-03		
				Coun	t =	2		
				RSD(%)) =	71.2%		

Engine Family: 4SLB

Emission	Factor Report for	PM-I	norganic Co	ndensible	with	No Control		30-Jun-16
ID	Manufacturer	Model	Rating (HP)	Load (%)	EF	(lb/MMBtu)	Count of Runs	ND Count
29.38x	Cooper Bessemer	LSV-16	4200	99		4.38E-03	1	0
29.34x	Cooper Bessemer	LSV-16	4200	101		6.63E-03	1	0
				Avg EF	=	5.50E-03		
				Std Dev	=	1.59E-03		
				Count	=	2		
				RSD(%)	=	28.9%		

APPENDIX C
GE ENERGY GAS TURBINE TEST DATA
SUMMARY

Table C-1: Paired CTM 39 PM2.5 result for a gas turbine combined cycle unit- 47-mm filter only (2008).

	Fuel Heat Input	02	Exhaust Gas Temper- ature	PM2.5 mass (A-TMF)*	PM2.5 mass (A-TMF)*	PM2.5 mass (B-TMF)*	PM2.5 mass (B-TMF)*
	MMBtu/hr	%vol, dry	°F	μg/dscm	lb/MMBtu	μg/dscm	lb/MMBtu
Run 1	1561	13.81	228	62.69	9.92E-05	33.79	5.35E-05
Run 2	1577	13.87	215	13.78	2.20E-05	-10.38	-1.66E-05
Run 3	1560	13.85	213	13.44	2.14E-05	-26.76	-4.26E-05
Run 4	1560	13.84	215	6.76	1.08E-05	6.81	1.08E-05
Run 5	1567	13.84	216	6.92	1.10E-05	-23.19	-3.68E-05
Run 6	1560	13.87	214	65.36	1.04E-04	259.36	4.14E-04
Run 7	1536	13.51	215	-16.47	-2.50E-05	-23.6	-3.58E-05
Run 8	1513	13.86	219	-14.99	-2.39E-05	43.55	6.94E-05
Run 9	1545	13.77	215	199.1	3.13E-04	-30.4	-4.78E-05
Average	1553.2	13.80	216.7	37.40	5.92E-05	25.46	4.09E-05
Average-A 8	кВ					31.43	5.00E-05

^{*}A and B represent results for each in a pair of modified CTM 39 sampling trains that collected samples simultaneously.

Table C-2: PM2.5 species results for modified CTM 39 Train A – GE Energy test program (2008).

		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
											Averag
Parameter	Units	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	е
Organic carbon	μg/dscm	196.53	212.66	166.42	142.13	220.31	212.23	128.8	220.91	235.28	192.81
Elemental carbon	µg/dscm	9.46	15.57	8.44	5.16	28.34	10.47	15.79	19.9	31.61	16.08
Ammonium	µg/dscm	2.34	1.95	3.2	3.19	4.26	1.86	1.8	2.03	2.45	2.56
Chloride	μg/dscm	1.3	2.19	2.23	2.92	3.2	1.47	0.5	4.09	2.7	2.29
Nitrate	μg/dscm	1.7	0.45	1.76	0.69	1.49	1.94	1.61	1.38	1.36	1.38
Sulfate	μg/dscm	2.64	1.84	2.07	1.99	3.81	2.23	1.92	1.66	2.36	2.28
Al	μg/dscm	1.27	0.46	ND	0.47	ND	ND	0.49	ND	0.59	0.66
Br	µg/dscm	ND	0.11	ND	ND	ND	ND	ND	ND	ND	0.11
Ca	µg/dscm	ND	0.17	ND	2.18	ND	0.28	0.68	ND	1.38	0.94
CI	μg/dscm	ND	ND	ND	0.52	0.37	0.15	0.27	ND	0.79	0.42
Cr	μg/dscm	ND	ND	ND	ND	ND	0.08	ND	ND	0.06	0.07
Cu	μg/dscm	ND	ND	ND	ND	0.17	ND	ND	ND	ND	0.17
Fe	μg/dscm	0.18	0.34	ND	0.37	0.2	0.29	0.28	ND	1.48	0.45
K	μg/dscm	ND	ND	ND	0.21	ND	ND	ND	ND	0.22	0.22
Мо	μg/dscm	ND	ND	ND	0.19	ND	ND	ND	ND	ND	0.19
Ni	μg/dscm	ND	ND	ND	ND	0.06	ND	ND	ND	0.04	0.05
Pb	µg/dscm	ND	ND	ND	0.22	ND	ND	ND	ND	ND	0.22
Rb	μg/dscm	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
S	µg/dscm	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Se	μg/dscm	0.15	ND	ND	ND	ND	ND	ND	ND	ND	0.15
Si	μg/dscm	5.35	1.21	ND	1.62	ND	1.84	1.07	ND	1.01	2.02
Sm	μg/dscm	ND	0.1	ND	ND	ND	ND	ND	ND	ND	0.10
Sr	µg/dscm	0.15	0.14	ND	0.11	ND	ND	ND	0.15	ND	0.14
Ti	µg/dscm	ND	0.07	ND	ND	ND	ND	ND	0.08	0.08	0.08
V	µg/dscm	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Υ	µg/dscm	0.1	ND	ND	ND	ND	ND	ND	0.12	ND	0.11
Zn	μg/dscm	ND	ND	ND	0.25	0.69	ND	0.14	ND	0.1	0.30

Table C-3: PM2.5 species results for modified CTM 39Train B – GE Energy test program (2008).

		В	В	В	В	В	В	В	В	В	В
		Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	Average
Organic carbon	µg/dscm	217.11	247	193.39	399.9	186.02	493.09	154.15	233.8	181.77	256.25
Elemental carbon	µg/dscm	3.15	16.68	32.25	10.03	6.67	58.4	30.61	45.3	28.76	25.76
Ammonium	µg/dscm	2.37	2.1	3.23	6.12	2.85	2.23	1.93	2.02	2.37	2.80
Chloride	µg/dscm	2.41	0.28	1.86	1.35	1.31	1.01	1.96	1.98	0.48	1.40
Nitrate	µg/dscm	2.56	1.85	5.77	1.24	1.59	2.88	0.91	1.3	2.38	2.28
Sulfate	µg/dscm	3.15	3.65	2.48	15.98	3.07	2.8	2.45	2.68	1.44	4.19
Al	µg/dscm	ND	ND	ND	ND	ND	1.78	0.45	0.73	ND	0.99
Ca	µg/dscm	ND	ND	ND	ND	ND	0.21	0.15	0.22	ND	0.19
CI	µg/dscm	ND	ND	ND	ND	ND	0.14	0.29	ND	ND	0.22
Fe	µg/dscm	0.17	0.29	ND	0.67	ND	0.6	1.22	1.4	ND	0.73
K	µg/dscm	ND	ND	ND	ND	ND	0.16	0.12	ND	ND	0.14
Ni	µg/dscm	0.04	0.05	ND	ND	0.05	ND	ND	ND	ND	0.05
Rb	µg/dscm	ND	ND	ND	ND	ND	ND	ND	ND	0.06	0.06
S	µg/dscm	ND	ND	ND	ND	ND	0.52	ND	ND	ND	0.52
Si	µg/dscm	ND	ND	0.57	2.3	ND	17.22	0.81	3.36	1.17	4.24
Sr	µg/dscm	0.13	ND	ND	ND	ND	ND	ND	ND	ND	0.13
Τi	µg/dscm	ND	ND	0.06	ND	ND	ND	0.06	0.07	0.07	0.07
V	µg/dscm	0.01	ND	ND	0.01	ND	ND	ND	ND	0.01	0.01
Υ	µg/dscm	0.11	ND	ND	ND	ND	ND	0.09	ND	ND	0.10
Zn	µg/dscm	ND	ND	ND	ND	ND	0.07	0.08	0.09	ND	0.08

APPENDIX D API RICE TEST DATA SUMMARY

Table D-1: API reciprocating engine test results – two-stroke lean burn engine (2003).

Parameter	Units	Run 1	Run 2	Run 3	Average
Fuel Flow Rate (60 °F, 14.5 psia)	1000 scfd	400.1	399.0	402.4	400.5
Fuel heat input	MMBtu/hr	17.76	17.78	17.80	17.78
Engine speed	RPM	322			322
Engine load	hp	2261	2264	2267	2264
Fuel HHV (Dry, 14.696 psia, 60 °F)	Btu/scf	1068.7	1072.7	1065.1	1068.8
Total fuel sulfur (STP)	gr/100 scf	0.006	0.004	0.009	0.0063
O ₂	%vol	14.4	14.3	14.6	14.5
Exhaust temperature	°F	589	589	589	589
Stack gas flow rate	dscfm	8400	8220	8700	8440
PM2.5 (TMF)	mg/dscm	9.92E+00	1.08E+0 1	1.07E+01	1.05E+01
PM2.5 (TMF)	lb/hr	3.10E-01	3.33E-01	3.46E-01	3.30E-01
PM2.5 (TMF)	lb/MMBtu	1.75E-02	1.87E-02	1.94E-02	1.85E-02
PM2.5 (TMF)	kg/GJ	7.51E-03	8.05E-03	8.35E-03	7.97E-03
PM2.5 (probe/venturi)	mg/dscm	4.34E-01	1.22E+0 0	7.96E-01	8.17E-01
PM2.5 (probe/venturi)	lb/hr	1.36E-02	3.75E-02	2.57E-02	2.56E-02
PM2.5 (TMF/probe/venturi)	mg/dscm	1.04E+01	1.20E+0 1	1.15E+01	1.13E+01
PM2.5 (TMF/probe/venturi)	lb/hr	3.24E-01	3.70E-01	3.71E-01	3.55E-01
PM2.5 (TMF/probe/venturi)	lb/MMBtu	1.82E-02	2.08E-02	2.09E-02	2.00E-02
PM2.5 (TMF/probe/venturi)	kg/GJ	7.84E-03	8.96E-03	8.97E-03	8.59E-03
Organic Carbon	mg/dscm	8.22E+00	7.95E+0 0	8.37E+00	8.18E+00
Elemental Carbon	mg/dscm	6.32E-02	9.36E-02	4.65E-02	6.78E-02
Backup OC	mg/dscm	4.27E-01	4.74E-01	6.17E-01	5.06E-01
Acenaphthene	mg/dscm	9.65E-05	1.37E-04	1.02E-04	1.12E-04
Acenaphthylene	mg/dscm	5.28E-04	6.12E-04	5.44E-04	5.61E-04
Anthracene	mg/dscm	4.52E-05	6.05E-05	6.02E-05	5.53E-05
Anthraquinone	mg/dscm	3.63E-04	3.97E-04	3.86E-04	3.82E-04
Anthrone	mg/dscm	ND	ND	ND	ND e
Benz(a)anthracene-7,12-dionene	mg/dscm	ND	7.54E-05	4.63E-05	6.09E-05

Table D-1: API reciprocating engine test results – two-stroke lean burn engine (2003).

Parameter	Units	Run 1	Run 2	Run 3	Average
Benzanthrone	mg/dscm	1.97E-04	ND	2.34E-04	2.15E-04
Biphenyl	mg/dscm	2.11E-04	2.67E-04	1.93E-04	2.24E-04
Dibenzofuran	mg/dscm	2.96E-04	3.02E-04	2.50E-04	2.83E-04
1,3+1,6+1,7- dimethylnaphthalene	mg/dscm	1.47E-03	1.63E-03	1.29E-03	1.46E-03
2,6+2,7-dimethylnaphthalene	mg/dscm	6.05E-04	6.55E-04	5.23E-04	5.95E-04
1,4+1,5+2,3- dimethylnaphthalene	mg/dscm	5.61E-04	6.36E-04	4.92E-04	5.63E-04
1,2-dimethylnaphthalene	mg/dscm	2.13E-04	2.90E-04	2.21E-04	2.41E-04
C-dimethylphenanthrene	mg/dscm	2.16E-04	2.27E-04	1.33E-04	1.92E-04
D-dimethylphenanthrene	mg/dscm	8.70E-05	1.15E-04	9.03E-05	9.75E-05
1,7-dimethylphenanthrene	mg/dscm	3.91E-05	5.70E-05	4.29E-05	4.63E-05
E-dimethylphenanthrene	mg/dscm	3.01E-05	2.07E-05	ND	2.54E-05
1+2-ethylnaphthalene	mg/dscm	8.18E-04	8.49E-04	7.10E-04	7.92E-04
Fluoranthene	mg/dscm	4.41E-05	7.95E-05	7.70E-05	6.69E-05
Fluorene	mg/dscm	2.53E-04	2.24E-04	2.44E-04	2.40E-04
9-fluorenone	mg/dscm	8.19E-04	8.25E-04	9.29E-04	8.58E-04
D-MePy/MeFl	mg/dscm	ND	5.75E-06	ND	5.75E-06 e
2-Methylbiphenyl	mg/dscm	6.11E-04	7.13E-04	6.75E-04	6.66E-04
4-Methylbiphenyl	mg/dscm	1.31E-04	1.17E-04	1.14E-04	1.21E-04
3-Methylbiphenyl	mg/dscm	3.16E-04	3.54E-04	ND	3.35E-04
A-methylfluorene	mg/dscm	2.49E-04	2.11E-04	2.93E-04	2.51E-04
B-methylfluorene	mg/dscm	1.24E-04	1.38E-04	1.58E-04	1.40E-04
2-methylnaphthalene	mg/dscm	2.71E-03	2.88E-03	2.50E-03	2.70E-03
1-methylnaphthalene	mg/dscm	2.13E-03	2.26E-03	1.95E-03	2.11E-03
C-methylphenanthrene	mg/dscm	2.20E-04	2.44E-04	1.67E-04	2.11E-04
2-methylphenanthrene	mg/dscm	2.06E-04	2.04E-04	1.59E-04	1.90E-04
1-methylphenanthrene	mg/dscm	1.83E-04	1.13E-04	1.38E-04	1.45E-04 a
A-methylphenanthrene	mg/dscm	1.22E-04	1.27E-04	1.09E-04	1.19E-04
4-methylpyrene	mg/dscm	5.91E-05	6.16E-05	2.84E-05	4.97E-05 a
Naphthalene	mg/dscm	6.03E-03	6.06E-03	5.38E-03	5.82E-03
Phenanthrene	mg/dscm	5.17E-04	5.51E-04	4.66E-04	5.11E-04

Table D-1: API reciprocating engine test results – two-stroke lean burn engine (2003).

Parameter	Units	Run 1	Run 2	Run 3	Average			
Pyrene	mg/dscm	4.07E-05	1.12E-04	6.78E-05	7.34E-05			
B-trimethylnaphthalene	mg/dscm	2.71E-04	3.21E-04	2.43E-04	2.79E-04			
C-trimethylnaphthalene	mg/dscm	2.60E-04	2.79E-04	2.42E-04	2.60E-04	а		
E-trimethylnaphthalene	mg/dscm	2.35E-04	2.22E-04	1.89E-04	2.15E-04			
J-trimethylnaphthalene	mg/dscm	1.44E-04	1.66E-04	1.52E-04	1.54E-04			
F-trimethylnaphthalene	mg/dscm	1.55E-04	1.36E-04	1.23E-04	1.38E-04			
A-trimethylnaphthalene	mg/dscm	1.11E-04	1.34E-04	1.12E-04	1.19E-04			
2,3,5+I-trimethylnaphthalene	mg/dscm	1.16E-04	5.82E-05	1.80E-05	6.40E-05	а		
2,4,5-trimethylnaphthalene	mg/dscm	ND	2.01E-05	ND	2.01E-05	е		
Xanthone	mg/dscm	2.77E-04	3.30E-04	2.96E-04	3.01E-04			
Al	mg/dscm	1.96E-04	ND	ND	1.96E-04	е		
Ва	mg/dscm	6.74E-04	ND	5.96E-04	6.35E-04		b	
Br	mg/dscm	7.19E-05	5.34E-05	6.85E-05	6.46E-05			
Ca	mg/dscm	1.27E-02	1.38E-02	1.55E-02	1.40E-02			
CI	mg/dscm	4.11E-04	4.66E-04	3.69E-04	4.15E-04		b	d
Cr	mg/dscm	9.03E-05	2.22E-05	ND	5.62E-05			
Cu	mg/dscm	1.93E-03	2.35E-05	2.26E-04	7.26E-04	а		d
Fe	mg/dscm	7.78E-04	ND	ND	7.78E-04	е		
К	mg/dscm	5.96E-04	3.38E-04	2.21E-04	3.85E-04	а		
Mg	mg/dscm	2.34E-04	6.68E-04	8.86E-05	3.30E-04	а	b	d
Мо	mg/dscm	1.51E-03	1.69E-03	1.92E-03	1.71E-03			
Na	mg/dscm	3.42E-04	3.25E-04	ND	3.33E-04	а	b	d
Р	mg/dscm	1.38E-03	8.52E-04	1.30E-03	1.18E-03			
Rb	mg/dscm	9.51E-06	8.90E-06	1.35E-05	1.06E-05			
S	mg/dscm	2.15E-02	2.21E-02	2.27E-02	2.21E-02			
Si	mg/dscm	2.69E-03	8.44E-03	1.16E-02	7.57E-03	а		d
Sr	mg/dscm	ND	7.28E-06	2.88E-05	1.80E-05			
U	mg/dscm	ND	ND	3.02E-05	3.02E-05	е		
Υ	mg/dscm	ND	ND	4.15E-05	4.15E-05	е		
Zn	mg/dscm	4.24E-03	4.53E-03	5.07E-03	4.61E-03			
Zr	mg/dscm	ND	ND	5.45E-05	5.45E-05	е		

Table D-1: API reciprocating engine test results – two-stroke lean burn engine (2003).

Parameter	Units	Run 1	Run 2	Run 3	Average			
Sulfate	mg/dscm	2.07E-02	2.29E-02	2.15E-02	2.17E-02			
Nitrate	mg/dscm	8.81E-03	1.60E-02	2.62E-02	1.70E-02			
Chloride	mg/dscm	4.24E-03	3.44E-03	5.59E-03	4.42E-03	а	b	
Ammonium	mg/dscm	5.64E-03	7.10E-03	5.63E-03	6.12E-03			
Soluble Na	mg/dscm	6.06E-04	1.55E-03	5.04E-03	2.40E-03	а	b	d

a - 95% confidence lower bound of the average concentration is less than the dilution sampler blank concentration.

b - 95% confidence lower bound of the average concentration is less than the field blank concentration.

d - 95% confidence lower bound of the average concentration is less than the ambient concentration.

e - Insufficient data to calculate 95% confidence lower bound of the average concentration (i.e. zero or one valid run).

Table D-2: API reciprocating engine test results – four-stroke rich burn engine (2003).

Run	Units	Run 1	Run 2	Run 3	Average
Fuel Flow Rate (60 °F,	1000	270.4	204.6	201.0	201.0
14.5 psia)	1000 scfd	279.4	284.6	281.8	281.9
Fuel heat input	MMBtu/hr	12.36	12.60	12.48	12.48
Engine speed	RPM	313	320	320	318
Engine load	hp	1220	1244	1232	1232
Fuel HHV (Dry, 14.696 psia, 60 °F)	Btu/scf	1062.8	1061.6	1066.1	1063.5
Total fuel sulfur (STP)	gr/100 scf	0.01	0.011	0.011	0.0107
O ₂	%vol	11.0	11.4	11.2	11.2
Exhaust temperature	°F	652	657	667	659
Stack gas flow rate	dscfm	4040	4330	4210	4190
PM2.5 (TMF)	mg/dscm	1.44E+00	1.26E+00	9.02E-01	1.20E+00
PM2.5 (TMF)	lb/hr	2.04E-02	1.89E-02	1.31E-02	1.75E-02
PM2.5 (TMF)	lb/MMBtu	1.65E-03	1.50E-03	1.05E-03	1.40E-03
PM2.5 (TMF)	kg/GJ	7.09E-04	6.45E-04	4.53E-04	6.02E-04
PM2.5 (probe/venturi)	mg/dscm	2.80E-01	5.41E-01	2.00E-01	3.40E-01
PM2.5 (probe/venturi)	lb/hr	3.96E-03	8.14E-03	2.91E-03	5.00E-03
PM2.5 (TMF/probe/venturi)	mg/dscm	1.72E+00	1.80E+00	1.10E+00	1.54E+00
PM2.5 (TMF/probe/venturi)	lb/hr	2.43E-02	2.70E-02	1.61E-02	2.25E-02
PM2.5 (TMF/probe/venturi)	lb/MMBtu	1.97E-03	2.15E-03	1.29E-03	1.80E-03
PM2.5 (TMF/probe/venturi)	kg/GJ	8.47E-04	9.22E-04	5.53E-04	7.74E-04
Organic Carbon	mg/dscm	1.05E+00	9.19E-01	7.27E-01	8.99E-01
Elemental Carbon	mg/dscm	1.35E-02	1.66E-02	4.99E-02	2.67E-02 d
Backup OC	mg/dscm	1.66E-01	1.71E-01	1.65E-01	1.68E-01
Acenaphthene	mg/dscm	4.59E-05	ND	ND	4.59E-05 e
Acenaphthylene	mg/dscm	4.36E-04	6.74E-04	4.21E-04	5.10E-04
Anthracene	mg/dscm	2.37E-05	3.88E-05	1.09E-05	2.45E-05
Anthraquinone	mg/dscm	1.68E-04	1.62E-04	1.61E-04	1.64E-04
Anthrone	mg/dscm	ND	ND	ND	ND e
Benzanthrone	mg/dscm	ND	5.19E-05	ND	5.19E-05 e
Biphenyl	mg/dscm	1.37E-04	2.70E-04	1.81E-04	1.96E-04
Dibenzofuran	mg/dscm	ND	9.47E-05	9.20E-05	9.34E-05

Table D-2: API reciprocating engine test results – four-stroke rich burn engine (2003).

Run	Units	Run 1	Run 2	Run 3	Average
C-dimethylphenanthrene	mg/dscm	4.54E-05	5.39E-05	7.12E-05	5.68E-05 a
D-dimethylphenanthrene	mg/dscm	ND	ND	4.94E-05	4.94E-05 e
1+2-ethylnaphthalene	mg/dscm	1.53E-04	2.16E-04	2.18E-04	1.95E-04
Fluoranthene	mg/dscm	7.64E-05	9.37E-05	9.36E-05	8.79E-05
Fluorene	mg/dscm	1.38E-04	1.70E-04	1.43E-04	1.50E-04
9-fluorenone	mg/dscm	2.36E-04	2.81E-04	2.37E-04	2.51E-04
C-MePy/MeFI	mg/dscm	2.06E-06	8.06E-06	9.35E-06	6.49E-06
2-Methylbiphenyl	mg/dscm	7.94E-04	7.24E-04	5.48E-04	6.88E-04
4-Methylbiphenyl	mg/dscm	5.11E-05	5.84E-05	5.93E-05	5.63E-05
B-methylfluorene	mg/dscm	ND	8.06E-05	ND	8.06E-05 e
2-methylnaphthalene	mg/dscm	3.99E-04	6.30E-04	5.22E-04	5.17E-04
1-methylnaphthalene	mg/dscm	2.78E-04	4.52E-04	3.51E-04	3.60E-04
C-methylphenanthrene	mg/dscm	6.09E-05	6.80E-05	8.94E-05	7.28E-05 a
1-methylphenanthrene	mg/dscm	2.53E-05	3.02E-05	4.94E-05	3.50E-05 a
2-methylphenanthrene	mg/dscm	2.84E-05	4.53E-05	2.60E-05	3.32E-05 a
4-methylpyrene	mg/dscm	1.55E-05	1.56E-05	2.18E-05	1.76E-05 a
Naphthalene	mg/dscm	2.09E-03	4.18E-03	2.88E-03	3.05E-03
Phenanthrene	mg/dscm	3.49E-04	4.08E-04	3.04E-04	3.53E-04
Pyrene	mg/dscm	6.72E-06	1.56E-05	4.78E-05	2.34E-05
B-trimethylnaphthalene	mg/dscm	3.25E-05	5.14E-05	5.10E-05	4.50E-05 a
C-trimethylnaphthalene	mg/dscm	2.48E-05	4.58E-05	5.72E-05	4.26E-05
E-trimethylnaphthalene	mg/dscm	2.32E-05	3.63E-05	5.04E-05	3.66E-05 a
J-trimethylnaphthalene	mg/dscm	1.19E-05	2.37E-05	3.28E-05	2.28E-05 a
F-trimethylnaphthalene	mg/dscm	8.77E-06	2.07E-05	2.55E-05	1.83E-05 a
2,3,5+I-trimethylnaphthalene	mg/dscm	ND	ND	6.76E-06	6.76E-06 e
Xanthone	mg/dscm	4.75E-05	4.99E-05	ND	4.87E-05
Al	mg/dscm	ND	6.08E-04	ND	6.08E-04 e
Ва	mg/dscm	ND	ND	5.10E-04	5.10E-04 e
Br	mg/dscm	7.12E-06	1.04E-05	6.25E-06	7.92E-06
Ca	mg/dscm	1.02E-02	7.76E-03	6.25E-03	8.06E-03
Cl	mg/dscm	ND	3.87E-04	ND	3.87E-04 e

Table D-2: API reciprocating engine test results - four-stroke rich burn engine (2003).

Run	Units	Run 1	Run 2	Run 3	Average			
Со	mg/dscm	1.25E-04	5.52E-04	1.11E-04	2.63E-04			
Cr	mg/dscm	1.47E-04	1.99E-04	7.29E-05	1.40E-04			
Cu	mg/dscm	9.57E-04	6.49E-04	2.40E-05	5.43E-04	а		d
Fe	mg/dscm	2.43E-03	1.02E-01	1.06E-03	3.51E-02	а		d
К	mg/dscm	1.40E-04	4.35E-04	4.23E-05	2.06E-04	а		d
La	mg/dscm	3.65E-04	ND	ND	3.65E-04	е		
Mg	mg/dscm	2.68E-04	ND	2.36E-04	2.52E-04		b	d
Mn	mg/dscm	3.07E-05	3.06E-04	ND	1.69E-04			
Мо	mg/dscm	1.25E-03	1.04E-03	9.86E-04	1.09E-03			
Na	mg/dscm	2.53E-03	ND	2.89E-04	1.41E-03	а	b	d
Ni	mg/dscm	5.46E-05	6.47E-05	ND	5.97E-05			
Р	mg/dscm	1.04E-03	6.55E-04	5.06E-04	7.34E-04			
Rb	mg/dscm	ND	5.74E-06	ND	5.74E-06	е		
S	mg/dscm	1.45E-02	1.88E-02	1.29E-02	1.54E-02			
Se	mg/dscm	1.49E-05	1.30E-05	ND	1.40E-05			
Si	mg/dscm	5.48E-02	1.77E-02	2.88E-02	3.38E-02			
Sn	mg/dscm	1.16E-04	1.13E-04	1.75E-04	1.35E-04			
Sr	mg/dscm	ND	9.63E-06	ND	9.63E-06	е		
V	mg/dscm	ND	5.56E-05	ND	5.56E-05	е		
Zn	mg/dscm	3.07E-03	8.85E-03	2.25E-03	4.72E-03			d
Sulfate	mg/dscm	3.77E-02	4.14E-02	3.52E-02	3.81E-02			
Nitrate	mg/dscm	8.94E-03	5.64E-03	2.93E-03	5.83E-03	а		ļ
Chloride	mg/dscm	5.89E-03	4.29E-03	3.69E-03	4.62E-03	а	b	ļ
Ammonium	mg/dscm	1.09E-02	1.09E-02	9.97E-03	1.06E-02			
Soluble Na	mg/dscm	2.66E-04	2.56E-04	3.07E-04	2.76E-04	а	b	

 $a - 95\% \ confidence \ lower \ bound \ of \ the \ average \ concentration \ is \ less \ than \ the \ dilution \ sampler \ blank \ concentration.$

b - 95% confidence lower bound of the average concentration is less than the field blank concentration.

d - 95% confidence lower bound of the average concentration is less than the ambient concentration.

e - Insufficient data to calculate 95% confidence lower bound of the average concentration (i.e. zero or one valid run).

Table D-3: API reciprocating engine test results - 4SLB (2003).

Run	Units	Run 1	Run 2	Run 3	Average
Fuel Flow Rate (60 °F,					
14.5 psia)	1000 scfd	225.1	224.3	224.9	224.8
Fuel heat input	MMBtu/hr	9.94	9.89	9.96	9.93
Engine speed	RPM	924	933	934	930
Engine load	hp	1553	1546	1557	1552
Fuel HHV (Dry, 14.696 psia, 60 °F)	Btu/scf	1064.9	1066.2	1065.9	1065.7
Total fuel sulfur (STP)	gr/100 scf	0.039	0.003	0.009	0.0170
O ₂	%vol	12.5	12.3	12.1	12.3
Exhaust temperature	°F	703	721	718	714
Stack gas flow rate	dscfm	3650	3580	3530	3587
PM2.5 (TMF)	mg/dscm	5.47E+00	3.30E+00	2.25E+00	3.68E+00
PM2.5 (TMF)	lb/hr	7.39E-02	4.24E-02	2.90E-02	4.84E-02
PM2.5 (TMF)	lb/MMBtu	7.44E-03	4.29E-03	2.91E-03	4.88E-03
PM2.5 (TMF)	kg/GJ	3.20E-03	1.84E-03	1.25E-03	2.10E-03
PM2.5 (probe/venturi)	mg/dscm	ND	1.69E-01	1.85E-01	1.77E-01
PM2.5 (probe/venturi)	lb/hr	ND	2.16E-03	2.38E-03	2.27E-03
PM2.5 (TMF/probe/venturi)	mg/dscm	5.47E+00	3.47E+00	2.44E+00	3.79E+00
PM2.5 (TMF/probe/venturi)	lb/hr	7.39E-02	4.46E-02	3.14E-02	5.00E-02
PM2.5 (TMF/probe/venturi)	lb/MMBtu	7.44E-03	4.51E-03	3.15E-03	5.03E-03
PM2.5 (TMF/probe/venturi)	kg/GJ	3.20E-03	1.94E-03	1.35E-03	2.16E-03
Organic Carbon	mg/dscm	3.39E+00	2.98E+00	2.04E+00	2.80E+00
Elemental Carbon	mg/dscm	ND	1.66E-02	ND	1.66E-02 e
Backup OC	mg/dscm	2.34E-01	2.90E-01	2.71E-01	2.65E-01
Anthraquinone	mg/dscm	3.96E-04	7.45E-04	8.18E-04	6.53E-04
Anthrone	mg/dscm	ND	ND	ND	ND e
Benz(a)anthracene-7,12-dionene	mg/dscm	9.01E-05	ND	ND	9.01E-05 e
Benzanthrone	mg/dscm	1.17E-04	ND	ND	1.17E-04 e
Biphenyl	mg/dscm	1.34E-04	1.39E-04	ND	1.36E-04
Dibenzofuran	mg/dscm	2.17E-04	2.50E-04	1.65E-04	2.11E-04
C-dimethylphenanthrene	mg/dscm	5.75E-05	1.03E-04	7.52E-05	7.86E-05 a
D-dimethylphenanthrene	mg/dscm	ND	5.26E-05	4.75E-05	5.01E-05 a

Table D-3: API reciprocating engine test results - 4SLB (2003).

Run	Units	Run 1	Run 2	Run 3	Average			
1+2-ethylnaphthalene	mg/dscm	2.15E-04	2.01E-04	ND	2.08E-04			
Fluoranthene	mg/dscm	2.40E-05	3.65E-05	3.67E-05	3.24E-05			
9-fluorenone	mg/dscm	1.47E-03	1.88E-03	1.75E-03	1.70E-03			
D-MePy/MeFl	mg/dscm	ND	2.92E-06	3.60E-06	3.26E-06	а		
2-Methylbiphenyl	mg/dscm	4.70E-04	5.21E-04	5.19E-04	5.03E-04			
4-Methylbiphenyl	mg/dscm	2.65E-05	5.99E-05	ND	4.32E-05			
B-methylfluorene	mg/dscm	7.60E-05	7.89E-05	ND	7.75E-05	а		
2-methylnaphthalene	mg/dscm	6.84E-04	6.09E-04	3.57E-04	5.50E-04			
1-methylnaphthalene	mg/dscm	3.74E-04	3.16E-04	1.78E-04	2.90E-04			
C-methylphenanthrene	mg/dscm	7.66E-05	1.49E-04	1.43E-04	1.23E-04	а		
1-methylphenanthrene	mg/dscm	2.70E-05	3.51E-05	4.75E-05	3.65E-05	а		
2-methylphenanthrene	mg/dscm	3.90E-05	4.53E-05	1.08E-05	3.17E-05	а		
4-methylpyrene	mg/dscm	1.10E-05	2.87E-05	3.55E-05	2.51E-05	а		
Naphthalene	mg/dscm	3.37E-03	2.36E-03	2.39E-03	2.71E-03			
Phenanthrene	mg/dscm	1.56E-04	1.66E-04	9.44E-05	1.39E-04			
C-trimethylnaphthalene	mg/dscm	4.10E-05	4.72E-05	5.77E-05	4.87E-05			
B-trimethylnaphthalene	mg/dscm	4.55E-05	6.13E-05	3.85E-05	4.85E-05	а		
J-trimethylnaphthalene	mg/dscm	2.80E-05	3.80E-05	3.31E-05	3.30E-05	а		
E-trimethylnaphthalene	mg/dscm	3.05E-05	3.89E-05	2.29E-05	3.08E-05	а		
F-trimethylnaphthalene	mg/dscm	2.50E-05	3.07E-05	1.74E-05	2.44E-05	а		
2,4,5-trimethylnaphthalene	mg/dscm	2.25E-05	ND	1.62E-05	1.94E-05	а		
A-trimethylnaphthalene	mg/dscm	7.51E-06	1.56E-05	ND	1.16E-05			
2,3,5+I-trimethylnaphthalene	mg/dscm	4.00E-06	9.73E-06	ND	6.87E-06			
Xanthone	mg/dscm	3.04E-04	4.29E-04	4.42E-04	3.92E-04			
Ag	mg/dscm	6.96E-05	ND	ND	6.96E-05	е		
Al	mg/dscm	1.01E-02	ND	ND	1.01E-02	е		
Ва	mg/dscm	3.72E-04	3.41E-04	7.03E-04	4.72E-04		b	d
Br	mg/dscm	8.07E-05	2.35E-05	1.27E-05	3.90E-05			d
Ca	mg/dscm	1.45E-02	7.93E-03	8.38E-03	1.03E-02			
Cd	mg/dscm	1.12E-04	ND	ND	1.12E-04	е		
Cl	mg/dscm	3.29E-03	2.91E-04	6.32E-04	1.40E-03	а	b	d

Table D-3: API reciprocating engine test results - 4SLB (2003).

Run	Units	Run 1	Run 2	Run 3	Average			
Со	mg/dscm	2.14E-03	2.25E-05	4.60E-05	7.36E-04			
Cr	mg/dscm	6.31E-04	1.65E-05	5.44E-05	2.34E-04			
Cu	mg/dscm	2.82E-03	1.55E-03	7.92E-04	1.72E-03	а		d
Fe	mg/dscm	6.01E-01	1.62E-03	2.07E-04	2.01E-01	а		d
К	mg/dscm	2.68E-03	8.09E-05	6.94E-05	9.45E-04	а		d
La	mg/dscm	ND	3.91E-04	3.59E-04	3.75E-04			
Mg	mg/dscm	ND	2.44E-04	7.12E-04	4.78E-04		b	d
Mn	mg/dscm	1.65E-03	ND	ND	1.65E-03	е		
Мо	mg/dscm	1.77E-03	1.47E-03	1.57E-03	1.60E-03			
Na	mg/dscm	ND	ND	1.63E-03	1.63E-03	е		
Ni	mg/dscm	4.69E-04	3.13E-05	6.07E-05	1.87E-04			
Р	mg/dscm	ND	3.74E-04	7.34E-04	5.54E-04		b	
Rb	mg/dscm	2.67E-05	1.72E-05	ND	2.19E-05			
S	mg/dscm	5.47E-02	2.72E-03	2.95E-03	2.01E-02	a		d
Se	mg/dscm	5.60E-05	ND	ND	5.60E-05	е		
Si	mg/dscm	4.53E-02	2.49E-02	7.25E-03	2.58E-02	a		d
Sn	mg/dscm	9.72E-05	8.41E-05	ND	9.07E-05			
Sr	mg/dscm	4.19E-05	1.95E-05	ND	3.07E-05			
V	mg/dscm	2.66E-04	ND	ND	2.66E-04	е		
Υ	mg/dscm	1.09E-05	2.78E-05	ND	1.94E-05			
Zn	mg/dscm	4.96E-02	1.62E-03	1.58E-03	1.76E-02			d
Zr	mg/dscm	ND	1.81E-05	ND	1.81E-05	е		
Sulfate	mg/dscm	7.68E-02	5.57E-03	6.34E-03	2.96E-02	а		d
Nitrate	mg/dscm	1.29E-02	4.58E-03	8.50E-03	8.65E-03	а		
Chloride	mg/dscm	1.01E-02	2.61E-03	3.64E-03	5.47E-03	а	b	d
Ammonium	mg/dscm	1.34E-02	ND	ND	1.34E-02	е		
Soluble Na	mg/dscm	8.72E-04	3.23E-04	8.06E-04	6.67E-04	a	b	

a - 95% confidence lower bound of the average concentration is less than the dilution sampler blank concentration.

b - 95% confidence lower bound of the average concentration is less than the field blank concentration.

d - 95% confidence lower bound of the average concentration is less than the ambient concentration.

 $^{{\}sf e}$ - Insufficient data to calculate 95% confidence lower bound of the average concentration (i.e. zero or one valid run).

APPENDIX E CEPEI 2012 TECHNICAL MEMORANDUM

Fine Particulate Emissions from Natural Gas-Fired Combustion Sources: Alternative $PM_{2.5}$ Emission Factors

Technical Memorandum

Prepared for:

Prepared by:

innovative environmental solutions, inc.

October 2012

TABLE OF CONTENTS

Ex	ecutive Summary1
1.	Introduction
2.	Fine Particulate Emission Factors Background and U.S. EPA AP-42 Factors4
3.	Summary of the U.S. Collaborative PM _{2.5} Test Program
	3.1. Project Overview, Objectives and Summary of Conclusions
	3.2. Fine Particulate Test Methods Overview
	3.3. Summary of PM _{2.5} Test Results and Emission Factors and Comparison to AP-428
4.	Discussion and Recommended PM _{2.5} Emission Factors for Natural Gas-Fired Sources15
	4.1. Conclusions Regarding Dilution Tunnel Results
	4.2. Discussion and Recommended PM _{2.5} Emission Factors
<u>Ap</u>	<u>pendices</u>
A:	Summary of AP-42 Particulate Matter Emission Factors, Ratings, and Data Sources for Natural Gas-Fired Combustion
В:	Primary Technical Documents from the U.S. Collaborative PM _{2.5} Emissions Project (with links to documents on CEC's website)
	LIST OF TABLES
1.	Summary of PM _{2.5} Emissions Data from Dilution Tunnel Test for All Gas-Fired Units10
2.	Comparison of PM _{2.5} Emission Factors from Dilution Tunnel Tests by Unit Type and Fuel Type for Gas-Fired Boilers, Process Heaters, and Turbines
3.	Comparison of PM _{2.5} Emission Factors from Dilution Tunnel Tests for Natural Gas-Fired Boilers, Process Heaters, and Turbines
4.	Comparison of Dilution Tunnel $PM_{2.5}$ Emission Factors to AP-42 Emission Factors13
5.	Annual $PM_{2.5}$ emissions (kg per year) for example natural gas-fired equipment based on dilution tunnel emission factors (95% confidence upper bound) or AP-4214
	LIST OF FIGURES
1.	PM _{2.5} Speciaton for Gas-fired Boilers and Process Heaters

EXECUTIVE SUMMARY

There is very little data available on fine particulate (PM_{2.5}) emissions from natural gas-fired sources. Thus, emission factors from the U.S. EPA AP-42 document are the common reference when estimating PM_{2.5} emissions from natural gas-fired sources. Since PM_{2.5} emissions are low, there was little historical concern for these emissions and minimal effort expended to improve emission factors. However, as PM_{2.5} emissions are more closely scrutinized the accuracy of AP-42 emission factors gains importance, especially since it has been shown that results from traditional PM_{2.5} methods likely introduce significant positive bias when measuring the very low emissions from gas-fired sources. An assessment of these factors and review of alternative emission factors is warranted.

The only notable alternative data to that used for AP-42 emission factor development is from a U.S. collaborative project conducted from 2001 to 2005. The multi-party project included state and federal agencies and used advanced dilution tunnel methods to characterize PM_{2.5} emissions from natural gas-fired equipment. The project concluded that dilution tunnel results are more appropriate than emission factors based on conventional methods, such as the AP-42 emission factors. Based on the conclusions from the U.S. collaborative project, it is apparent that dilution tunnel results are the preferred alternative to AP-42 emission factors.

The U.S. collaborative project dilution tunnel tests measured $PM_{2.5}$ emissions, and present $PM_{2.5}$ mass rates as well as speciated data that identify the chemical components that comprise $PM_{2.5}$ emissions. An understanding of combustion chemistry and the species measured indicates that particulate from gas-fired sources is fine particulate (<2.5 μ m). Thus, coarser particulate was not measured in the collaborative project and results are not presented using protocol sometimes associated with conventional test methods (e.g., "filterable" or "condensable" emissions).

There are considerations that need to be addressed when defining the emission factor because the selection of the factor may have both policy and technical implications. In addition, the context for data use is important (e.g., source estimate, source emission limit, national inventory). AP-42 emission factors are typically the average of the emissions data used, and EPA cautions against using AP-42 factors for establishing permit limits. However, AP-42 factors are used for that purpose because alternatives are not available. This memorandum presents the 95% confidence limit upper bound or maximum value from dilution tunnel data as alternatives to AP-42 factors. Emission factors are presented for boilers, process heaters, and turbines, but there is little difference in the PM_{2.5} emissions for these different source types based on the data from the U.S. collaborative project. The differences in source-specific emission factors likely include measurement uncertainty as a significant contributor. Natural gas-fired reciprocating engine emissions are a data gap. The AP-42 data for reciprocating engines is based on three or fewer tests from Gas Research Institute testing that was not focused on particulate measurement, and dilution tunnel results are not available.

The summary of dilution tunnel PM_{2.5} emission factors for natural gas-fired sources includes:

- Boilers: 2.7 x 10⁻⁴ kg/GJ (0.27 g/GJ) based on the maximum (Note: kg/GJ units are used for other factors presented in this section);
 - The average emission factor is 1.4 x 10⁻⁴ kg/GJ and the value based on the 95% confidence upper bound is 2.3 x 10⁻⁴ kg/GJ;
- Process Heaters: 1.34 x 10⁻⁴ kg/GJ (based on the maximum);

- The average emission factor is 6.9 x 10⁻⁵ kg/GJ and the 95% confidence upper bound value is 1.4 x 10⁻⁴ kg/GJ (note that the 95% confidence interval upper bound emission factor is larger than the maximum due to the small number of samples i.e., three tests);
- Turbines: 2.3 x 10⁻⁴ kg/GJ (based on the maximum);
 - The average emission factor is 7.1×10^{-5} kg/GJ and the 95% confidence upper bound value is 1.1×10^{-4} kg/GJ;
- If all of the natural gas-fired data are considered as a single dataset, the maximum emission factor is 2.7 x 10⁻⁴ kg/GJ (0.27 g/GJ), and the average emission factor is 9.6 x 10⁻⁵ kg/GJ (0.096 g/GJ). The 95% confidence upper bound emission factor is 1.3 x 10⁻⁴ kg/GJ (0.13 g/GJ).

As shown in Table 1 of this memorandum, the range of the dilution tunnel test data is relatively narrow, especially when considering the very low level of mass emissions measured. To improve lower detection limits and improve performance when sampling streams with low mass emissions, dilution tunnel testing uses methods with detection limits commensurate with ambient test methods rather than stack test methods. For example, the mass measured with dilution tunnel tests would typically be below method detection limits for conventional exhaust stack reference methods.

Since the measurement results include uncertainty associated with the low levels measured and limited data is available (i.e., 32 tests), and the test results fall within a relatively narrow band without obvious outliers, the data imply similar emissions for gas-fired sources regardless of the source type. As noted in conclusions from the U.S. collaborative project reports:

- For gas-fired sources, dilution sampling indicates fine particulate mass emissions are extremely low and probably similar to ambient air PM_{2.5} concentrations in many cases.
- The most important factor affecting PM_{2.5} variability is *not* equipment type, operating condition, or emission controls, but rather due to test methods, with the method choice (i.e., traditional impinger methods versus dilution tunnel) and sampling artifacts related to sulfur species the most important factors affecting variability in PM_{2.5} emission results.

Conclusions regarding test methods indicate that dilution tunnel results for gas-fired sources are more representative of actual emissions than conventional test methods that serve as the basis for AP-42 emission factors. These conclusions also indicate that the test method from which emission estimates are derived may be a primary basis for perceptions about the significance of PM_{2.5} emissions from a source. If unit or facility emissions are assessed based on the lower emission factor from dilution tunnel tests, different conclusions may be reached regarding the significance of a source when compared to estimates based on AP-42 factors. Thus, care should be taken to ensure that test method flaws do not erroneously impact regulatory decisions.

Since the dilution tunnel results are significantly lower than AP-42 emission factors and uncertainty is inherent for such low measurements, conservatism may be desired for $PM_{2.5}$ emission estimates. Thus, the *maximum* emission factor from the data set or specific source type may be considered as a preferred alternative for emission estimates. The maximum emission factors for natural gas-fired sources include:

- Boilers: 2.7 x 10⁻⁴ kg/GJ (0.27 g/GJ);
- Process heaters: 1.3 x 10⁻⁴ kg/GJ (0.13 g/GJ); and
- Turbines: 2.3 x 10⁻⁴ kg/GJ (0.23 g/GJ).

1.0 Introduction

According to the U.S. EPA AP-42 document¹ (AP-42 document), an "emission factor is a representative value that attempts to relate the quantity of a pollutant released to the atmosphere with an activity associated with the release of that pollutant. ... Such factors facilitate estimation of emissions from various sources of air pollution." The AP-42 document is a primary reference used throughout the world for estimating emissions of common pollutants. In the AP-42 document, EPA cautions about the use of AP-42 emission factors, indicating:

"Emission factors in AP-42 are neither EPA-recommended emission limits (e. g., best available control technology or BACT, or lowest achievable emission rate or LAER) nor standards (e. g., National Emission Standard for Hazardous Air Pollutants or NESHAP, or New Source Performance Standards or NSPS). Use of these factors as source-specific permit limits and/or as emission regulation compliance determinations is not recommended by EPA."

However, AP-42 emission factors are commonly used for exactly this purpose when other information is not available, and AP-42 emission factors serve as de facto standards in many cases. For fine particulate emissions from natural gas-fired combustion, very little data is available. Thus, AP-42 emission factors have been the common reference when estimating fine particulate emissions from natural gas-fired sources. Since emissions are low, there was little historical concern for these emissions and minimal effort has been expended to conduct tests. However, as fine particulate emissions face additional scrutiny, the veracity of the AP-42 fine particulate emission factors has become more important. An assessment of these factors and review of alternatives is warranted.

Fine particulate matter is defined as particulate with an aerodynamic mean diameter of 2.5 microns or less ($PM_{2.5}$). Understanding $PM_{2.5}$ emissions is more complex than other conventional pollutants, because $PM_{2.5}$ is comprised of a mixture of chemical species. In some cases, the species are directly emitted as particulate, and in other cases (e.g., aerosols) the pollutants condense in the atmosphere as the stack plume cools. In addition, secondary $PM_{2.5}$ can be formed from atmospheric reactions (i.e., "direct" emissions are a $PM_{2.5}$ precursor).

For combustion sources, the common constituents of $PM_{2.5}$ include sulfate, nitrate, ammonium, elemental carbon, organic compounds, and other inorganic materials. In addition, sulfate, nitrate, and ammonium are formed in the atmosphere from SO_2 , NOx, and ammonia emissions. These emissions, which are considered $PM_{2.5}$ precursors, are not counted as "primary" emissions as represented in $PM_{2.5}$ emission factors. Elemental carbon, organic and inorganic compounds, and sulfate, nitrate and ammonium are the "direct" or primary emissions represented by emission factors, and this includes species that condense as the combustion exhaust plume cools to ambient temperature. Since it is a gaseous fuel, natural gas combustion has characteristically low particulate emissions with all of the particulate considered $PM_{2.5}$.

The Canadian Energy Partnership for Environmental Innovation (CEPEI) has recently investigated U.S. PM_{2.5} regulatory criteria, the U.S. EPA AP-42 document PM_{2.5} emission factors, challenges with measuring PM_{2.5} from gas-fired sources, and data other than the AP-42 emission factors, including a U.S. collaborative project that measured PM_{2.5} emissions using a

¹ AP-42, Compilation of Air Pollutant Emission Factors, Volume 1, Stationary and Area Point Source, U.S. EPA Office of Air Quality Planning and Standards (January 1995).

3 of 21

dilution tunnel test method. Other than the U.S collaborative project, AP-42 tests, and a handful of similar test results based on conventional test methods, review of available fine particulate emissions data and emission factors did not identify significant additional data. In an ongoing effort to improve $PM_{2.5}$ emission estimates for natural gas-fired combustion sources, this technical memorandum considers alternative $PM_{2.5}$ emission factors for natural gas-fired sources. The memo includes:

- Background on the U.S. EPA AP-42 emissions factor and similar data based on conventional test methods;
- Background on a U.S. collaborative project and its results, including a summary of test data
 acquired using a dilution tunnel test method, comparison to AP-42, and conclusions and
 recommendations regarding these results;
- Discussion and recommendations regarding alternative PM_{2.5} emission factors for natural gasfired turbines, boilers, and heaters.

Following this introductory section of the memo, Section 2 provides background on the AP-42 emission factors and potential biases in historical data. Section 3 provides a test methods overview, and also provides an overview of emissions data and emission factors from a collaborative multi-party project that included U.S. federal, state and industry participants. The U.S. collaborative project used a dilution tunnel to measure PM_{2.5} emissions from gas-fired and oil-fired sources. Section 4 discusses alternative PM_{2.5} emission factors for natural gas-fired sources and recommends alternatives based on available data.

2.0 Fine Particulate Emission Factors Background and U.S. EPA AP-42 Factors

PM_{2.5} is typically comprised of a number of constituents that include sulfate, nitrate, ammonium, elemental carbon, semi-volatile organic compounds, and other inorganic materials (e.g., ash from solid and liquid fuels). Natural gas is comprised of simple hydrocarbons and is typically 90% by volume or more methane (CH₄) with ethane, ethylene, propane, butane, carbon dioxide and nitrogen comprising the balance. Trace levels of higher hydrocarbons and contaminants (e.g., hydrogen sulfide, benzene) may also be present. Since it is a gaseous and ash free fuel, natural gas combustion emits very low levels of particulate that challenge test method detection limits. Trace levels of PM_{2.5} constituents including nitrate, sulfate, and semi-volatile organics can form in the byproducts from natural gas combustion.

Most available data on natural gas combustion PM_{2.5} emissions was acquired using conventional test methods that measure the total mass of all constituents that comprise fine particulate, with "filterable" particulate (i.e., constituents captured on a sample system filter) measured separately from "condensable" particulate, which passes through the filter and is captured in a cooled impinger train. These methods are available on the U.S. Environmental Protection Agency (EPA) website (e.g., see Method 5, Method 5I, and Method 202 at http://www.epa.gov/ttn/emc/promgate.html). A measurement bias has been demonstrated when using Method 202 for natural gas-fired sources due to a sampling artifact that can inappropriately categorize trace levels of SO₂ from fuel sulfur (i.e., from H₂S and mercaptans used as an odorant) as sulfate. Although the absolute level of this bias (i.e., absolute mass emissions) is small, the relative bias can be significant due to the low overall PM_{2.5} emissions. An advanced method used in recent testing can measure total mass from a *dilution tunnel system*, as well as the various constituents or species that comprise particulate.

"Dilution tunnel" methods simulate plume chemistry, and the method "separates" the resulting stream into a number of parallel sample lines and applies species-specific methods to measure and speciate the emissions using available refined sample collection and analytical techniques. For natural gas combustion, the trace emission levels challenge detection limits, even though methods analogous to ambient test methods are used for sample collection and analysis. As discussed in Section 3, the EPA supported a program that used a dilution tunnel to measure natural gas combustion $PM_{2.5}$ emissions.

The U.S. collaborative project dilution tunnel tests measured $PM_{2.5}$ emissions, and present $PM_{2.5}$ mass rates as well as speciated data that identify the chemical components that comprise $PM_{2.5}$ emissions. An understanding of combustion chemistry and the species measured indicates that particulate from gas-fired sources is fine particulate (<2.5 μ m). Thus, coarser particulate was not measured in the collaborative project and results are not presented using protocol sometimes associated with conventional test methods (e.g., "filterable" or "condensable" emissions).

For estimating emissions for permitting, project analysis, or other related activities, emission factors are used. For more common natural gas combustion pollutants such as NOx or CO, equipment providers (e.g., turbine or engine manufacturers) provide emissions factors for new equipment. Emission factors for trace pollutants such as natural gas combustion $PM_{2.5}$ will typically not be available from the equipment manufacturer. In this case, the most common reference for industrial equipment emissions factors is the EPA "AP-42 document". The document is titled "Compilation of Air Pollutant Emission Factors, Volume 1, Stationary Point and Area Sources," and source-specific sections are updated periodically. On-line access is available at: http://www.epa.gov/ttnchie1/ap42/.

For turbines and reciprocating engines, the most recent AP-42 updates were published in 2000, and 1998 for boilers and process heaters. Since the update process typically takes multiple years, this means the data and analysis are well over a decade old, and no revisions are anticipated in the next several years. The particulate emission factors include condensable and filterable fractions. Based on an understanding of natural gas constituents and combustion chemistry, condensable emissions should comprise the majority of fine particulate in natural gas combustion exhaust. That is, filterable particulate should be less than condensable particulate.

Previous memos discussed AP-42 PM_{2.5} emission factors in more detail, and an AP-42 overview is provided in Appendix A. The AP-42 document rates the emission factors and data used to develop the factors. The AP-42 emission factors for natural gas-fired sources are presented in Appendix A along with a discussion of the emission factor rating and the rating scheme. Sections 3 compares AP-42 factors with other factors from the U.S. collaborative project and shows the implications for emission rates for example combustion sources.

3.0 Summary of the U.S. Collaborative PM_{2.5} Test Program

3.1 Project Overview, Objectives and Summary of Conclusions

In response to uncertainties regarding PM_{2.5} emission factors for gas-fired sources, a collaborative U.S. program investigating technical issues associated with fine particulate emission factors and measurement methods was initiated in 2001 and completed in 2005 (hereinafter referred to as the "collaborative project"). The collaborative project was funded by the California Energy Commission (CEC), New York State Energy Research and Development Authority (NYSERDA), and Gas Research Institute (GRI). The project was integrated with a similar effort that included the U.S. Department of Energy (DOE) and American Petroleum Institute (API). Thus, five funding agencies that include the U.S. federal government, state governments, and industry trade associations played a vital role in project oversight, management, and execution. The project team also included the U.S. EPA in an advisory role and academic and scientific leaders on fine particulate measurement as team members or technical advisors. This information is delineated in the project reports discussed below.

The collaboration was initiated because NYSERDA and GRI were generally concerned with emission factor and measurement issues, and additional data were desired to better characterize emissions and source apportionment to inform policy. For California, a need for additional data was identified following 2000 – 2001 electricity shortages in the state (i.e., brownouts and rolling blackouts). This resulted in a number of energy project applications for new in-state capacity, with the capacity primarily based on natural gas-fired turbines. CEC was concerned that the associated emissions may exacerbate fine particulate nonattainment. Using AP-42 PM_{2.5} emission factors to estimate emissions raised concerns regarding marginal increases in in-state inventory that could result from larger turbines that would have replaced electricity imported from other states. There was also a concern that positive bias in AP-42 emission factors was artificially inflating the potential inventory and a better understanding of PM_{2.5} emissions and the cause of turbine PM_{2.5} emissions variability was desired.

The project objectives included:

- Development of improved dilution sampling methods for measuring total mass and speciated PM_{2.5} emissions;
- Completing a field test campaign to gather emissions data for gas-fired and oil-fired sources;
- Comparison of results obtained with dilution tunnels and traditional EPA methods (e.g., compare to AP-42 and other available results);
- Identification and characterization of PM_{2.5} emissions, and development of emission factors and speciation profiles, including precursors and organic aerosols, for use in source-receptor and source apportionment analysis; and
- Characterization of PM_{2.5} emissions variability and uncertainty for gas-fired units, including understanding the sources of emissions variations and the contribution of test method artifacts.

The testing was completed over two years, and multiple detailed, peer-reviewed technical reports were developed. The reports are available at CEC and NYSERDA websites, and significant additional detail is available in the reports. There are thirteen primary project reports, technical

memos, and host site test reports that comprise over 1,400 pages of material. The documents and weblinks to the CEC site are tabulated in Appendix B, and the general link to the CEC website is:

http://www.energy.ca.gov/pier/project_reports/CEC-500-2005-032_to_44.html

The primary reference used for this memo is the Final Report², which summarizes the program results. Additional documents (see Appendix B) include:

- A fine particulate dilution sampling test protocol.
- Four topical reports/memorandums addressing:
 - A literature review of source sampling and analysis methods for characterizing organic aerosols and fine particulate emission profiles;
 - The design and validation testing of a mini-dilution sampler;
 - An assessment of sources of PM_{2.5} emissions data variability in gas turbines; and
 - An assessment of the impact of operating parameters on PM_{2.5} emissions from natural gas-fired combined cycle and cogeneration power plants.
- Seven field test reports.

A summary of the project conclusions from the project reports and related summaries from the CEC and NYSERDA websites include:

- Traditional EPA test methods and the dilution tunnel method provide very different results;
- Data from traditional methods should not be mixed with speciation profiles from dilution sampling methods;
- PM_{2.5} emissions from gas-fired sources are extremely low and challenge the capability of test methods;
- For traditional impinger-based methods, tests confirmed a positive bias from SO₂ capture for the condensable test method (i.e., from Method 202 impingers) and "dissolved SO₂ to sulfate" liquid-phase conversion, where SO₂ from trace sulfur in natural gas is inappropriately captured as PM_{2.5};
- As expressed by NYSERDA, existing PM_{2.5} inventories (based on AP-42 emission factors) are inadequate for developing air quality management plans;
- The multi-million dollar collaborative project provides significant data, and emission factors
 from that project are recommended as alternatives to AP-42 factors. Nevertheless, additional
 efforts may be desired to develop source emission profiles and mass emission rates that serve
 as a basis for scientifically sound emission inventories.

These conclusions, which are supported by state and federal agencies focused on protecting the public interest, include compelling conclusions regarding dilution tunnel test results and historical (e.g., AP-42) data. In Section 4 of this memo, additional discussion and more detailed conclusions are presented regarding collaborative project results that address the technical veracity of the emissions data and its use for emission factors.

7 of 21

_

² England, G.C., "Development of Fine Particulate Emission Factors and Speciation Profiles for Oil and Gas-fired Combustion Systems", Final Report (October 2004).

3.2 Fine Particulate Test Methods Overview

Supplemental technical reports from the collaborative project include detailed discussion of traditional "impinger based" test methods and dilution tunnel methods. An overview is provided here.

The conventional test methods for measuring $PM_{2.5}$ are EPA Method 5 and EPA Method 202 (or equivalent or derivative methods) to measure filterable and condensable particulate, respectively. Filterable particulate is in particulate form as a solid or liquid at the elevated temperatures within the exhaust stack. Condensable particulate are those chemical compounds that are gaseous at stack temperatures but condense at ambient temperature to form particulate. The Method 202 sample train is intended to condense and measure those emissions. According to the U.S. EPA, condensable particulate is all considered to be less than one micron (i.e., $PM_{1.0}$ or smaller).

It has been demonstrated that potential biases in the Method 202 can result in trace levels of sulfur in natural gas that is emitted as SO_2 being "measured" as sulfate particulate rather than as SO_2 (a gaseous, non-particulate pollutant). Exhaust SO_2 from natural gas combustion is very low and results from trace amounts of hydrogen sulfide and sulfur from mercaptans that are used to odorize natural gas being converted to SO_2 during combustion. Although the low level of SO_2 emissions is not a regulatory concern from combustion of pipeline quality natural gas, since fine particulate emissions are also very low, the bias from SO_2 can comprise a significant portion of $PM_{2.5}$ "measured" from natural gas combustion. This is explained further in the project reports.

In recent years, "dilution tunnel" methods have been developed that measure fine particulate by simulating plume chemistry in a holding chamber before measuring the sample where condensation of particulate species has occurred. The stream from the holding chamber can then be measured in multiple parallel samples that apply species-specific methods to measure $PM_{2.5}$ mass and/or speciate the emissions using available refined sample collection and analytical techniques, including ambient measurement methods.

The collaborative project test team included members from the Desert Research Institute (DRI), a primary developer of "laboratory scale" dilution tunnel hardware and test methods. A more compact dilution sampler was developed and utilized for the project. The compact dilution tunnel results agreed well with the larger laboratory-scale dilution sampler and showed much lower results than conventional test methods.

The collaborative project concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM_{2.5} emission rate and chemical speciation. For natural gas combustion, the project also concluded that trace PM_{2.5} emission levels challenge detection limits and results are often similar to ambient air.

3.3 Summary of PM_{2.5} Test Results and Emission Factors

A primary goal of the collaborative project was to develop emission factors and speciation profiles using dilution sampling methods for PM_{2.5} emissions. Precursor emissions (i.e., NOx, VOCs) were also measured, but those emissions are not addressed in this memo.

Dilution tunnel methods were used for tests at seven different sites to characterize fine particulate emission rates and speciation. Fuels tested include natural gas, refinery gas, low sulfur diesel, and residual (no. 6) fuel oil. This report focuses on gas-fired sources, specifically natural gas-fired sources (i.e., excluding refinery gas). The project tested 32 gas-fired units and in total included the following types of units:

- Gas-fired boilers and steam generators,
- Gas-fired combined cycle and cogeneration power plants,
- Gas-fired process heaters,
- No. 6 oil-fired boilers, and
- Diesel engines.

The testing program and units tested were dependent upon available host sites and the sources tested and associated emission controls are not an ideal list. For example, turbines tested included exhaust emission control (selective catalytic reduction, oxidation catalyst), and a natural gas-fired reciprocating engine was not tested due to funding limitations. A detailed description of the sites and units tested are provided in the project reports. As noted in those reports, particulate emissions are so low that operational factors do not appear consequential when considering emissions impacts, and the results indicate similar PM_{2.5} emission rates for all gas-fired units tested. This is shown in results discussed below.

Although the list of tested sources is not ideal, the collaborative project provides the most robust emissions data available on trace $PM_{2.5}$ emissions from natural gas combustion. These data and results can be reviewed to identify appropriate emission factors.

Summary of Collaborative Project Results

Table 1 summarizes the PM_{2.5} emissions data from dilution tunnel testing of natural gas and refinery gas-fired emission sources including boilers, steam generators, process heaters, and turbine combined cycle and cogeneration power plants. The table lists the data from the lowest to highest emission factor, presented in kilograms per gigajoule (kg/GJ) and grams per gigajoule (g/GJ) where gigajoules are based on the heat input using the higher heating value (HHV) of the fuel. HHV is the convention for emission factors.

Thirty-two gas-fired units were tested, including 20 natural gas-fired units and 12 refinery gas-fired units. Many of the units were equipped with air pollution control equipment as indicated in the table. Refer to the final project report and related host site-specific reports for additional detail on the tests and $PM_{2.5}$ emissions data for gas-fired combustion sources.

The purpose of this memorandum is to assess alternative $PM_{2.5}$ emission factors for *natural gas-fired* sources, but results for both natural gas and refinery gas are presented in Table 1 and Table 2. All gas-fired data are shown so that the effect of fuel type and source type on emission factors can be reviewed to assess whether there are significant differences in the data.

Table 1 indicates an average $PM_{2.5}$ emission factor of 9.0 x 10^{-5} kg/GJ (0.09 g/GJ) when considering all of the gas-fired tests and an emission factor based on the 95% confidence interval upper bound of 1.2 x 10^{-4} kg/GJ (0.12 g/GJ). The maximum from all tests is 2.7 x 10^{-4} kg/GJ

(0.27 g/GJ). Additional discussion is provided below on the range of emission factors and considerations for emission factor choice for emission estimates.

Table 1. Summary of PM_{2.5} Emissions Data from Dilution Tunnel Tests for All Gas-Fired Units.

Source Category	Test Site	Source Description	PM _{2.5} EF in kg/GJ and [g/GJ]
Process Heaters	Site B	RG-fired Process Heater	3.0×10^{-6}
			[0.0030]
Boilers & Steam Gens	Site C	NG-fired Steam Generator	7.3×10^{-6}
			[0.0073] 9.9 x 10 ⁻⁶
Process Heaters	Site B	RG-fired Process Heater	[0.0099]
Process Heaters	Site Charlie	NG-fired Process Heater w/SCR	1.1 x 10 ⁻⁵ [0.011]
Process Heaters	Site Alpha	RG-fired Process Heater	1.9 x 10 ⁻⁵ [0.019]
Process Heaters	Site Alpha	RG-fired Process Heater	2.1 x 10 ⁻⁵ [0.021]
Combined Cycle (CC) & Cogen PPs	Site Bravo	NG-fired CCPP w/ supp firing, Ox catalyst & SCR	2.2 x 10 ⁻⁵ [0.022]
	Site C	NG-fired Steam Generator	2.4 x 10 ⁻⁵ [0.024]
Process Heaters	Site Alpha	RG-fired Process Heater	2.6 x 10 ⁻⁵ [0.026]
CC & Cogen PPs	Site Echo	NG-fired CCPP w/ lean premix comb, supp firing, Ox catalyst & SCR	3.6 x 10 ⁻⁵ [0.036]
Boilers & Steam Gens	Site C	NG-fired Steam Generator	4.1×10^{-5} [0.041]
CC & Cogen PPs	Site Echo	NG-fired CCPP w/ lean premix comb, supp firing, Ox catalyst & SCR	4.2 x 10 ⁻⁵ [0.042]
CC & Cogen PPs	Site Echo	NG-fired CCPP w/ lean premix comb, supp firing, Ox catalyst & SCR	4.7 x 10 ⁻⁵ [0.047]
Process Heaters	Site B	RG-fired Process Heater	5.6 x 10 ⁻⁵ [0.056]
CC & Cogen PPs	Site Echo	NG-fired CCPP w/ lean premix comb, supp firing, Ox catalyst & SCR	5.6 x 10 ⁻⁵ [0.056]
CC & Cogen PPs	Site Echo	NG-fired CCPP w/ lean premix comb, supp firing, Ox catalyst & SCR	6.4 x 10 ⁻⁵ [0.064]
CC & Cogen PPs	Site Echo	NG-fired CCPP w/ lean premix comb, supp firing, Ox catalyst & SCR	6.4 x 10 ⁻⁵ [0.064]
Process Heaters	Site Charlie	NG-fired Process Heater w/SCR	6.9 x 10 ⁻⁵ [0.069]
CC & Cogen PPs	Site Bravo	NG-fired CCPP w/ supp firing, Ox catalyst & SCR	6.9 x 10 ⁻⁵ [0.069]
CC & Cogen PPs	Site Echo	NG-fired CCPP w/ lean premix comb, supp firing, Ox catalyst & SCR	7.7 x 10 ⁻⁵ [0.077]
CC & Cogen PPs	Site Golf	RG-fired Cogen PP w/supp firing, Ox catalyst & SCR	9.0 x 10 ⁻⁵ [0.090]
Boilers & Steam Gens	Site A	RG-fired Boiler	1.2 x 10 ⁻⁴ [0.12]
Process Heaters	Site Charlie	NG-fired Process Heater w/SCR	1.3 x 10 ⁻⁴ [0.13]

Table 1. (continued)

Source Category	Test Site	Source Description	PM _{2.5} EF in kg/GJ and [g/GJ]
CC & Cogen PPs	Site Golf	RG-fired Cogen PP w/supp firing, Ox catalyst & SCR	1.4 x 10 ⁻⁴ [0.14]
CC & Cogen PPs	Site Golf	RG-fired Cogen PP w/supp firing, Ox catalyst & SCR	1.5 x 10 ⁻⁴ [0.15]
Boilers & Steam Gens	Site Delta	Dual Fuel Boiler (NG)	1.6 x 10 ⁻⁴ [0.16]
Boilers & Steam Gens	Site A	RG-fired Boiler	1.6 x 10 ⁻⁴ [0.16]
Boilers & Steam Gens	Site A	RG-fired Boiler	1.8 x 10 ⁻⁴ [0.18]
CC & Cogen PPs	Site Bravo	NG-fired CCPP w/ supp firing, Ox catalyst & SCR	2.3 x 10 ⁻⁴
Boilers & Steam Gens	Site Delta	Dual Fuel Boiler (NG)	$ \begin{array}{c} [0.23] \\ 2.4 \times 10^{-4} \\ [0.24] \end{array} $
Boilers & Steam Gens	Site Delta	Dual Fuel Boiler (NG)	[0.24] 2.5 x 10 ⁻⁴ [0.25]
Boilers & Steam Gens	Site Delta	Dual Fuel Boiler (NG)	2.7 x 10 ⁻⁴ [0.27]
Average (mean)			9.0 x 10 ⁻⁵
Upper Bound (at 95% C	[0.090] 1.2 x 10 ⁻⁴ [0.12]		

Table 1 includes all of the gas-fired units (i.e., boilers, process heaters and turbines with and without post-combustion controls) and includes both natural gas-fired and refinery gas-fired units. Table 2 segregates the results by fuel and unit type and presents the average emission factor, upper bound emission factor at a 95% confidence level, and maximum emission factor. The same AP-42 emission factor applies for boilers and process heaters, so those emission sources are presented grouped and individually in Table 2.

Since the dilution tunnel results are significantly lower than AP-42 emission factors and uncertainty is inherent to such low measurements, conservatism may be desired for $PM_{2.5}$ emission estimates. Tables below present *maximum* emission factors from the dataset, average emission factors, and/or emission factors based on a 95% confidence interval upper bound. The basis for the emission estimate (e.g., source permitting, national inventory, etc.) should be considered when evaluating the preferred emission factor for a particular analysis or estimate.

Table 2. Comparison of PM_{2.5} Emission Factors from Dilution Tunnel Tests by Unit Type and Fuel Type for Gas-Fired Boilers, Process Heaters, and Turbines.

Type of Unit	Fuel	Test Count	Average PM _{2.5} in kg/GJ and [g/GJ]	PM _{2.5} (95% CI) in kg/GJ and [g/GJ]	Maximum PM _{2.5} in kg/GJ and [g/GJ]
All	All Gas	32	9.0 x 10 ⁻⁵ [0.090]	1.2 x 10 ⁻⁴ [0.12]	2.7 x 10 ⁻⁴ [0.27]
All	Natural Gas	20	9.6 x 10 ⁻⁵ [0.096]	1.3 x 10 ⁻⁴ [0.13]	2.7 x 10 ⁻⁴ [0.27]
All	Refinery Gas	12	8.2 x 10 ⁻⁵ [0.082]	1.2 x 10 ⁻⁴ [0.12]	1.8 x 10 ⁻⁴ [0.18]
Boiler and Heater	All Gas	19	9.5 x 10 ⁻⁵ [0.095]	1.4 x 10 ⁻⁴ [0.14]	2.7 x 10 ⁻⁴ [0.27]
Boiler and Heater	Natural Gas	10	1.2 x 10 ⁻⁴ [0.12]	1.8 x 10 ⁻⁴ [0.18]	2.7 x 10 ⁻⁴ [0.27]
Boiler and Heater	Refinery Gas	9	6.7 x 10 ⁻⁵ [0.067]	1.1 x 10 ⁻⁴ [0.11]	1.8 x 10 ⁻⁴ [0.18]
Boiler	All Gas	10	1.5 x 10 ⁻⁴ [0.15]	2.1 x 10 ⁻⁴ [0.21]	2.7 x 10 ⁻⁴ [0.27]
Boiler	Natural Gas	7	1.4 x 10 ⁻⁴ [0.14]	2.3 x 10 ⁻⁴ [0.23]	2.7 x 10 ⁻⁴ [0.27]
Boiler	Refinery Gas	3	1.5 x 10 ⁻⁴ [0.15]	1.9 x 10 ⁻⁴ [0.19]	1.8 x 10 ⁻⁴ [0.18]
Process Heater	All Gas	9	3.7 x 10 ⁻⁵ [0.037]	6.2 x 10 ⁻⁵ [0.062]	1.3 x 10 ⁻⁴ [0.13]
Process Heater	Natural Gas	3	6.9 x 10 ⁻⁵ [0.069]	1.4 x 10 ⁻⁴ [0.14]	1.3 x 10 ⁻⁴ [0.13]
Process Heater	Refinery Gas	6	2.3 x 10 ⁻⁵ [0.023]	3.7 x 10 ⁻⁵ [0.04]	5.6 x 10 ⁻⁵ [0.056]
Turbine	All Gas	13	8.4 x 10 ⁻⁵ [0.084]	1.2 x 10 ⁻⁴ [0.12]	2.3 x 10 ⁻⁴ [0.23]
Turbine	Natural Gas	10	7.1 x 10 ⁻⁵ [0.071]	1.1 x 10 ⁻⁴ [0.11]	2.3 x 10 ⁻⁴ [0.23]
Turbine	Refinery Gas	3	1.3 x 10 ⁻⁴ [0.13]	1.6 x 10 ⁻⁴ [0.16]	1.5 x 10 ⁻⁴ [0.15]

To facilitate comparison, Table 3 summarizes the same information for natural gas-fired units (i.e., omits refinery gas). Table 4 compares the dilution tunnel average emission factor and 95% confidence upper bound emission factor to AP-42 emission factors for each unit type.

Table 3. Comparison of PM_{2.5} Emission Factors from Dilution Tunnel Tests for Natural Gas-Fired Boilers, Process Heaters, and Turbines.

Type of Unit	Fuel	Test Count	Average PM _{2.5} in kg / GJ and [g/GJ]	PM _{2.5} (95% CI) ¹ in kg / GJ and [g/GJ]
All	Natural Gas	20	9.6 x 10 ⁻⁵ [0.096]	1.3 x 10 ⁻⁴ [0.13]
Boiler and Heater	Natural Gas	10	1.2 x 10 ⁻⁴ [0.12]	1.8 x 10 ⁻⁴ [0.18]
Boiler	Natural Gas	7	1.4 x 10 ⁻⁴ [0.14]	2.3 x 10 ⁻⁴ [0.23]
Process Heater	Natural Gas	3	6.9 x 10 ⁻⁵ [0.069]	1.4 x 10 ⁻⁴ [0.14]
Turbine	Natural Gas	10	7.1 x 10 ⁻⁵ [0.071]	1.1 x 10 ⁻⁴ [0.11]

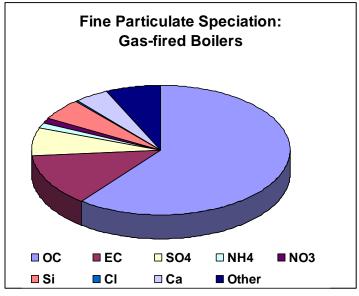
¹ Emission factor based on the 95% confidence interval upper bound is presented in Tables 3, 4 and 5.

Table 4. Comparison of Dilution Tunnel PM_{2.5} Emission Factors to AP-42 Emission Factors.

		Dilution Tunnel	Emission Factor	AP-42	EF Ratio:
Type of Unit	Fuel	Average PM _{2.5} in kg / GJ and [g/GJ]	PM _{2.5} (95% CI) in kg / GJ and [g/GJ]	PM _{2.5} EF in kg / GJ and [g/GJ]	AP-42 / Dil. Tunnel (95% CI)
Boiler and Heater	Natural Gas	1.2 x 10 ⁻⁴ [0.12]	1.8 x 10 ⁻⁴ [0.18]	3.2 x 10 ⁻³ [3.2]	18
Boiler	Natural Gas	1.4 x 10 ⁻⁴ [0.14]	2.3 x 10 ⁻⁴ [0.23]	3.2 x 10 ⁻³ [3.2]	14
Process Heater	Natural Gas	6.9 x 10 ⁻⁵ [0.069]	1.4 x 10 ⁻⁴ [0.14]	3.2 x 10 ⁻³ [3.2]	23
Turbine	Natural Gas	7.1 x 10 ⁻⁵ [0.071]	1.1 x 10 ⁻⁴ [0.11]	2.8 x 10 ⁻³ [2.8]	25

Table 5 provides another comparison by presenting the annual "potential to emit" (i.e., based on 8,760 annual operating hours) PM_{2.5} emissions in kilograms per year for types and sizes of typical equipment based on the AP-42 emission factor and 95% confidence upper bound emission factor from the collaborative project. This shows that emissions are much less than one metric ton annually for gas-fired units as large as 30 MW based on the dilution tunnel 95% confidence upper bound emission factor and lower if the average emission factor is used for the calculation.

Table 5. Annual PM_{2.5} emissions (kg per year) for example natural gas-fired equipment based on dilution tunnel emission factors (average and 95% confidence upper bound) or AP-42.


Unit Type	Example Size	PM _{2.5} Emissions ¹ (kg/year) Dil.Tun. (Average) EF	PM _{2.5} Emissions ¹ (kg/year) Dil.Tun. (95% CI) EF	PM _{2.5} Emissions ¹ (kg/year) AP-42 EF
Natural gas-fired boiler	10 MW	147	242	3364
Natural gas-fired boiler	0.5 MW	7	12	168
Natural gas-fired process heater	10 MW	73	147	3364
Natural gas-fired process heater	0.5 MW	4	7	168
Natural gas-fired turbine	4 MW	30	46	1177
Natural gas-fired turbine	10 MW	75	116	2943
Natural gas-fired turbine	30 MW	224	347	8830

¹Emission calculation based on potential to emit (8760 annual operating hours) and an assumed HHV-based heat rate of 12,000 kJ/kW-hr (8500 Btu/hp-hr).

These results demonstrate the significant difference between test results using dilution tunnel methods and conventional methods. Table 1 indicates relatively consistent emissions for boilers, process heaters, and turbines, including units with post-combustion emission controls -i.e., considering the challenges associated with measuring such low levels of particulate, the test data fall within a relatively narrow band and there are no outliers. The comparison to AP-42 demonstrates significantly different emission factors, and reinforces the conclusion in the collaborative project report on variability in gas-fired turbine test results. That report concluded that the most important factor affecting PM_{2.5} variability is *not* equipment type, operating condition, or emission controls, but rather due to test methods, with the method choice (i.e., traditional impinger methods versus dilution tunnel) and artifacts related to sulfur species the most important factors affecting variability in PM_{2.5} emission results. This is a significant conclusion, which confirms that the test method from which the emissions data is derived may be the primary basis for conclusions about the significance of PM_{2.5} emissions. If unit or facility emissions are assessed based on the lower emission factor from dilution tunnel tests, different conclusions may be reached regarding the significance of a source. Or, considering this from another perspective, care should be taken to ensure that test method flaws do not erroneously impact regulatory decisions.

Detailed discussion is provided in the project reports on chemical speciation for the dilution tunnel results and data using conventional impinger-based methods. An example, which is typical for the dilution tunnel results, is shown in Figure 1. This figure shows the composite speciation profile for the average emissions factor for boilers and process heaters. The primary constituents are organic carbon species, which is a logical expectation for natural gas-fired sources. These speciation data show a much smaller sulfate percentage, which is typically

reported as 50% to 70% of the total PM_{2.5} from conventional impinger based methods. More detailed discussion of sulfur artifacts is available in the collaborative project final report and test methods report³, and in the literature⁴.

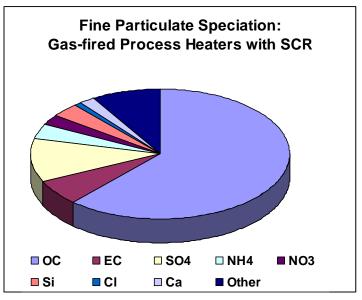


Figure 1. PM_{2.5} Speciaton for Gas-fired Boilers and Process Heaters.

4.0 Discussion and Recommended PM_{2.5} Emission Factors for Natural Gas-Fired Sources

4.1 Conclusions Regarding Dilution Tunnel Results

State and federal environmental and energy staff played a primary role in planning, managing, and executing the U.S. collaborative project, which supports the veracity of the results and conclusions. Government agencies that funded the project include CEC, NYSERDA, and DOE. EPA staff participated as advisors, and leading scientists in the field of PM emissions and measurement were team members or advisors. Findings, conclusions, and recommendations from the project reports: document the ultra-low levels of PM_{2.5} emission from natural gas-fired sources; document the technical superiority of dilution tunnel methods and high bias from sulfur species with conventional impinger based methods; and, conclude that due to the low levels being measured and associated method limitations, dilution tunnel emission factors are more representative than emission factors, such as AP-42 factors, that are based on conventional methods.

The conclusions in the collaborative project reports provide the foundation to recommend dilution tunnel data as preferable to AP-42 emission factors. A number of key conclusions from

³ Chang, O.M.C. and England, G.C., "Development of Fine Particulate Emission Factors and Speciation Profiles for Oil and Gas-fired Combustion Systems, Update: Critical Review of Source Sampling and Analysis Methodologies for Characterizing Organic Aerosol and Fine Particulate Source Emission Profiles." February 2004.

⁴ Wien, S., England, G., Loos, K., and Ritter, K., "Investigation of Artifacts in Condensable Particulate Measurements for Stationary Combustion Sources". Proceedings of the Air & Waste Management Association's 94th Annual Conference and Exhibition, Orlando, Florida, June 2001.

the collaborative project reports which support the technical superiority of dilution tunnel test results are summarized here:

- <u>PM_{2.5} mass</u> (for gas-fired sources).
 - For gas-fired sources, dilution sampling indicates fine particulate mass emissions are extremely low and probably similar to ambient air PM_{2.5} concentrations in many cases. [emphasis added]
 - These levels are difficult to *quantify* with high confidence using available test methods. The "measured" data are far below both the estimated minimum detection limit (MDL) and lower quantification limit (LQL) of traditional hot filter/iced impinger methods, and generally between the estimated MDL and LQL of the dilution sampling method.
 - Traditional methods for measuring filterable and condensable particulate matter
 previously have been shown to be subject to small systematic and random biases (due to
 sampling artifacts and biases) that are very significant at the extremely low particulate
 concentrations typical of gas-fired sources.
 - The in-stack MDL and LQL achieved with dilution sampling are far lower than can be achieved by traditional hot filter/iced impinger methods due to the avoidance of such biases and greater analytical sensitivity.
 - Therefore, the PM_{2.5} concentration in stack gases from gas-fired sources measured using dilution sampling is far lower than that measured by traditional methods. While a degree of systematic and random bias in the dilution sampling measurements remains (primarily due to background PM_{2.5} in the dilution air), these results for gas-fired sources are considered more representative of actual emissions. [emphasis added]
 - Many of the stack PM_{2.5} results could not be clearly distinguished from measurement background; in these cases, the true stack PM_{2.5} is difficult to quantify by any of the methods used in this study.
 - Background PM_{2.5} in the purified dilution air may be significant relative to the stack PM_{2.5} for sources with extremely low stack PM_{2.5} concentrations. This is more a consequence of the nature of the clean sources tested than of inherent limitations in the method.
 - The results from dilution sampling show that PM_{2.5} differences due to size, load, gas fuel composition, duct burners, and various other differences (design, location, weather, etc.) are very small especially in comparison to the wide PM_{2.5} range exhibited in existing data.
- Particle Size. The test results for gas-fired units indicate that substantially all of the particulate matter in the stack was smaller than 2.5 micrometers. In-stack cyclones with 10 and 2.5 μm cutpoints were used in most tests; however, the results are generally below the MDL.
- <u>Dilution Sampling Method Readiness</u>. Tests comparing the dilution sampler to an existing benchmark dilution sampler showed that the two samplers yield results that are the same at the 95 percent confidence level. However, further testing is needed to better quantify systematic and random variation, especially for applications with extremely low (less than approximately 1 to 2 mg/dscm) particulate concentrations. Measurement background levels in the dilution air were found to be significant in some tests relative to stack concentrations for gas-fired sources.

16 of 21

Use of PM_{2.5} Emission Factors and Speciation Profiles.

- The current population of data for each source category is small, but this project provided a
 good start toward developing robust emission factors and speciation profiles. To date, it is
 the most comprehensive study completed and similar projects have not been undertaken
 since this project was completed.
- However, because of the small number of units tested (one to three), the emission factors may not be representative of either any individual unit or the entire population of units in each category (although this is frequently a limitation of many published emission factors).

[Note that the data set from the collaborative project is larger and more robust than the data used for AP-42 emissions factors.]

4.2 <u>Discussion and Recommended PM_{2.5} Emission Factors</u>

Based on the conclusions from the U.S. collaborative project, it is apparent that dilution tunnel results are the preferred data that provide an alternative to AP-42 emission factors. There are considerations that need to be addressed when defining the emission factor because the selection of the factor may have both policy and technical implications, and the context for data use is important. For example, AP-42 emission factors typically average the relevant emissions data, and EPA cautions against using AP-42 factors for establishing permit limits. EPA notes that if AP-42 factors truly represent the population, it would be expected that half of the sources would emit at a level higher than the AP-42 average factor.

This memorandum presents the 95% confidence upper bound and maximum emission factors from dilution tunnel data as alternatives to using an average factor or AP-42 factor, and recommends using maximum emission factors from dilution tunnel tests. Emission factors are presented for boilers, process heaters, and turbines, but it appears that there is little difference in the PM_{2.5} emissions for different source types, and different values for source-specific emission factors likely include measurement uncertainty as a significant contributor. Although AP-42 factors are more than an order of magnitude higher than dilution tunnel-based factors (see Tables 4 and 5), the associated PM_{2.5} emissions for gas-fired sources are still relatively low.

The context and subsequent requirements associated with the emission factor choice are important. For example, conducting dilution tunnel tests are very costly and the methods are not main stream. Thus, "compliance tests" to validate compliance with an emission limit would be a difficult if not infeasible proposition at this time. Similarly, test methods and data sources cannot be mixed – e.g., results from conventional impinger-based methods should not be used to assess whether a unit meets an emission level based on dilution tunnel emission factors.

The summary of dilution tunnel PM_{2.5} emission factors (in kg/GJ) for natural gas-fired sources, as shown in Tables 2 and 3 follows, and use of the maximum emission factor by source type is recommended:

- Boilers: 2.7 x 10⁻⁴ kg/GJ (based on the maximum emission factor);
 - The average emission factor is $1.4 \times 10^{-4} \text{kg/GJ}$;
 - The 95% confidence interval upper bound emission factor is 2.3 x 10⁻⁴ kg/GJ;
- Process Heaters: 1.3 x 10⁻⁴ kg/GJ (based on the maximum emission factor);

- The average emission factor is 6.9 x 10⁻⁵ kg/GJ;
- The 95% confidence interval upper bound emission factor is 1.4 x 10⁻⁴ kg/GJ (note that the 95% confidence interval upper bound is larger than the maximum due to the small number of samples i.e., three tests);
- Turbines: 2.3 x 10⁻⁴ kg/GJ (based on the maximum emission factor);
 - The average emission factor is 7.1 x 10⁻⁵ kg/GJ;
 - The 95% confidence interval upper bound emission factor is 1.1 x 10⁻⁴ kg/GJ;
- If all of the natural gas-fired data are considered as a single dataset, the maximum emission factor is $2.7 \times 10^{-4} \, \text{kg/GJ}$, the 95% confidence upper bound emission factor is $1.3 \times 10^{-4} \, \text{kg/GJ}$, and the average emission factor is $9.6 \times 10^{-5} \, \text{kg/GJ}$.

APPENDIX A

Summary of AP-42 Particulate Matter Emission Factors, Ratings, and Data Sources for Natural Gas-Fired Combustion

A summary of the emission factors (MMBtu is HHV based), ratings, and data sources follow:

- Natural gas-fired Turbine:
 - 4.7 x 10⁻³ lb/MMBtu condensable
 - 1.9 x 10⁻³ lb /MMBtu filterable
 - 6.6×10^{-3} lb /MMBtu total (2.8×10^{-3} kg/GJ)
 - "C" rating from EPA rating for both filterable and condensable
 - Particulate test data from three tests of one, 86 MW ABB turbine in Wisconsin
- Natural gas-fired boiler / process heater:
 - 5.7 lb/10⁶ SCF natural gas condensable
 - 1.9 lb/10⁶ SCF natural gas filterable
 - 7.6 lb/10⁶ SCF natural gas total (3.2 x 10⁻³ kg/GJ assuming 1020 Btu/SCF natural gas HHV)
 - "B" rating for filterable and "D" rating for condensable
 - Particulate test data: 21 tests from multiple units for filterable; four tests for condensable
- Natural gas-fired two-stroke lean burn reciprocating engine:
 - 9.91 x 10⁻³ lb/MMBtu condensable
 - 3.84 x 10⁻² lb/MMBtu filterable
 - 4.83×10^{-2} lb/MMBtu total (2.1 x 10^{-2} kg/GJ)
 - "C" rating for filterable and "E" rating for condensable
 - Filterable particulate test data from three engine tests with one result more than an order of magnitude higher than the other two (note: based on the rating scheme discussed below, this should be D rather than C rating); condensable factor based on 4-stroke lean burn data
- Natural gas-fired four-stroke lean burn reciprocating engine:
 - 9.91 x 10⁻³ lb/MMBtu condensable
 - 7.71 x 10⁻⁵ lb/MMBtu filterable
 - -9.99×10^{-3} lb/MMBtu total (4.3 x 10^{-3} kg/GJ)
 - "D" rating for both filterable and condensable
 - Particulate test data from two tests at one site

The EPA rating scheme is subjective. In general, a factor rated lower than "B" is based on limited data and a limited source sample size. EPA describes these rating for the emission factor (A through E) and associated data (A through D), where the data ranking ranges from "sound methodology and validated results" for "A" data to "generally unaccepted methodology but may provide an order of magnitude estimate" for D quality data.

The ratings for data and emission factor ratings are described in the AP-42 document introduction (see http://www.epa.gov/ttn/chief/ap42/c00s00.pdf). For data ratings:

- A = Tests are performed by a sound methodology and are reported in enough detail for adequate validation.
- B = Tests are performed by a generally sound methodology, but lacking enough detail for adequate validation.
- C = Tests are based on an unproven or new methodology, or are lacking a significant amount of background information.
- D = Tests are based on a generally unacceptable method, but the method may provide an order-of-magnitude value for the source.

The related *emission factor* ratings are:

- A Excellent. Factor is developed from A- and B-rated source test data taken from many randomly chosen facilities in the industry population. The source category population is sufficiently specific to minimize variability.
- B Above average. Factor is developed from A- or B-rated test data from a "reasonable number" of facilities. Although no specific bias is evident, it is not clear if the facilities tested represent a random sample of the industry. As with an A rating, the source category population is sufficiently specific to minimize variability.
- C Average. Factor is developed from A-, B-, and/or C-rated test data from a reasonable number of facilities. Although no specific bias is evident, it is not clear if the facilities tested represent a random sample of the industry. As with the A rating, the source category population is sufficiently specific to minimize variability
- D Below average. Factor is developed from A-, B- and/or C-rated test data from a small number of facilities, and there may be reason to suspect that these facilities do not represent a random sample of the industry. There also may be evidence of variability within the source population.
- E Poor. Factor is developed from C- and D-rated test data, and there may be reason to suspect that the facilities tested do not represent a random sample of the industry. There also may be evidence of variability within the source category population.

With the exception of the B rating for boiler *filterable* emissions, which is paired with a D rating for *condensable* emissions, the AP-42 emission factors for natural gas-fired sources are rated C or lower. Thus, there is considerable uncertainty associated with the AP-42 fine particulate emissions factors for gas-fired sources, and biases (e.g., from sulfur) are likely in at least some of the data. Because of measurement limitations (e.g., positive bias, measurement of mass differential that is near instrument detection limits), it is likely that the AP-42 emission factors provide a conservative estimate of PM_{2.5} emissions for natural gas-fired sources. Caution should be used if it is concluded that equipment emissions based on AP-42 emission factors are significant enough to warrant further consideration. As discussed in this document, alternative emission factors based on a project that used dilution tunnel testing should be considered.

20 of 21

APPENDIX B

Primary Technical Documents from the U.S. Collaborative PM_{2.5} Emissions Project (with links to documents on CEC's website)

Report / Document Title	Page Count	File Size
Final Report:		
Final Report – Development of Fine Particulate Emission Factors and Speciation Profiles for Oil- and Gas-Fired Combustion Systems	130	0.9 MB
Supplemental Technical Reports:		
Critical Review of Source Sampling and Analysis Methodologies for Characterizing Organic Aerosol and Fine Particulate Source Emission Profiles	165	1.4 MB
Pilot-Scale Dilution Sampler Design and Validation Tests (Laboratory Study)	81	1.4 MB
Topical Reports / Technical Memos:		
Technical Memorandum: Conceptual Model of Sources of Variability in Combustion Turbine PM10 Emissions Data	65	0.7 MB
Impact of Operating Parameters on Fine Particulate Emissions from Natural Gas-Fired Combined Cycle and Cogeneration Power Plants	51	0.5 MB
Fine Particulate Test Protocol	38	0.5 MB
Site Test Reports:		
Test Results for a Gas-Fired Process Heater (Site Alpha)	114	1.0 MB
Test Results for a Combined Cycle Power Plant with Supplementary Firing, Oxidation Catalyst and SCR at Site Bravo	159	1.1 MB
Test Results for a Gas-Fired Process Heater with Selective Catalytic NOx Reduction (Site Charlie)	119	1.1 MB
Test Results for a Dual-Fuel-Fired Commercial Boiler (Site Delta)	176	1.3 MB
Test Results for a Combined Cycle Power Plant with Oxidation Catalyst and SCR at Site Echo	141	1.0 MB
Test Results for a Diesel Fuel-Fired Compression Ignition Reciprocating Engine with a Diesel Particulate Filter at Site Foxtrot	86	0.7 MB
Test Results for a Cogeneration Plant with Supplementary Firing, Oxidation Catalyst and SCR at Site Golf	91	0.7 MB