Surface Erosion Control

Dwayne Tannant
University of British Columbia

Components of Surface Erosion

- 1 Wave erosion
- 2 Embankment runoff erosion
- 3 Spillway and ditch erosion

1 - Protection from Waves

- Shoreline berm
- Vegetation
- Rock riprap
- Geotextile
- Booms

Riprap

- Easy to install and repair
- Durable and flexible
- Little maintenance required
- May be expensive and impractical if suitable rock not available

https://www.freese.com/sites/default/files/styles/award_image/public/SIR2_IPG?itok=zis_3HTh

5

Rocks for Riprap

- Heterogeneous mixture of irregular shaped, angular rocks of sufficient size
- Use rock resistance to deterioration from weathering

http://www.sempertekinc.com/wp-content/uploads/photo-gallery/DSCF1495.JPG

Recommended Riprap Size

Wave height (m)	Layer thickness (m)	Rock diameter d ₅₀ (m)
0.30	0.3	0.20
0.55	0.4	0.25
0.80	0.5	0.30

Smallest rock ≥ 0.1 m

(Gerard Degoutte 2012, Small dams, guidelines for design, construction and monitoring, ICOLD Bulletin 91)

Displaced and Disintegrating Riprap

9

Geotextile Covers

Attach to groomed ground surface with stakes

Log Booms

 Logs should be tied end-to-end as close together as practical and with enough slack to allow the boom to adjust itself

Log Booms

- Place boom close to the upstream face for best results
- Log diameter \geq 0.3 m with holes bored at least 0.5 m from ends
- Boom chains or wire rope: 356 kN ultimate strength
- Anchors: buried lock blocks (min. 1.5 x 0.75 x 0.75 m, 2 t)

(FLNRO)

15

Booms

2 - Runoff Protection

- Topsoil and grass
- Mulch and seed
- Erosion control mats

Spread Topsoil

Topsoil

- Provides nutrients and organic soil to promote plant growth after seeding
- Reduces splash erosion by absorbing raindrop energy
- Reduces wide fluctuations in embankment moisture content
- Minimises surface cracking in the embankment

19

Topsoil

- Limited erosion control
- Not appropriate for slopes steeper than 2H:1V
- Dry topsoil may be removed by blowing wind

Mulch

- Straw, wood fibre, peat moss, wood chips...
- Provide temporary erosion protection
- Provides dust control and protection from wind erosion
- Relatively cheap
- May require spray-on method to apply mulch with tackifier to provide adhesion to steep slopes

21

Mulch

Note cracks

Hydroseed – Hydromulch

- Relatively cheap and efficient method of spraying seeds to promote plant growth
- Inspect mulched areas at least once per year or after significant storm events
- Regrade areas damaged by surface erosion and cover with mulch
- Reseed and cover small bare spots with mulch

23

Hydroseed

Coconut Fibre & Synthetic Mesh

• Hi-tech mulch

25

Grass

- Establish and maintain dense cover of grass
- Effectiveness increases with time as grass grows
- Use regular mowing to restrict grass height <0.2 m

No shrubs, trees

Excess Vegetation on Dam

27

Spillway and Ditch Erosion Protection

- Riprap
- Gabions
- Grass

Spillway Design Considerations

- Gradient should be as flat as possible
- Normal freeboard \geq 1 m, spillway width \geq 4 m (FLNRO)
- Side slopes no steeper than 2:1 (FLNRO), 4:1 (Alberta Agriculture and Forestry)

Spillway Design Considerations

- Place spillway on native ground rather than dam embankment if possible
- Spillway should direct flow away from the toe of the dam to avoid embankment erosion during floods

Riprap on Inlet

33

Outlet Erosion Protection

- Place rock (dia. > 300 mm) on a layer of crushed rock
- Construct effective outlet structure to dissipate the discharge flow energy

https://stormwater.pca.state.mn.us/index.php?title=File:Example_of_riprap_outlet_protection.jp

Riprap Missing Gravel or Filter Layer

35

Gabion Mats

• Use gabion mats if no large rocks are available

Ditch Erosion Control

- Riprap
- Gabions
- Check dams and energy dissipaters
- Erosion control mats
- Bio-engineering (vegetation)

37

Riprap Lining for Ditch Channel

- Thickness 1.5 to 2 \times largest rocks or 1.5 to 3 \times d50
- Thickness > 300 mm

Water Velocity	Mean Rock	
(m/s)	Diameter (mm)	
<2.0	80 – 100	
2.0 - 2.5	110 – 180	
2.5 - 3.0	180 – 220	
3.0 – 3.5	220 – 330	

(Nova Scotia Department of Environment)

Non-woven Geotextile Filter Fabric for Ditches

	Class 1M, 1 & 2	Class 3
Grab strength	650 N	875 N
Elongation (failure)	50%	50%
Puncture strength	275 N	550 N
Burst strength	2.1 MPa	2.7 MPa
Trapezoidal tear	250 N	350 N

Minimum fabric overlap = 0.3 m

Alberta Transportation

39

Geotextile Under Spillway Riprap

PROPERTY	TEST METHOD	<u>UNIT</u>	REQUIREMENT
Thickness	ASTM D5199	mm	3.5
Weight	ASTM D5261	g/m²	407
Tensile Strength	CAN 148.1 No.7.3	N	1470
Elongation at Break	CAN 148.1 No.7.3	%	50 – 150
Trapezoid Tear	CAN 4.2 No.12.2	N	600
Mullen Burst	CAN 4.2 No.11.1	kPa	3500
CBR Puncture	ASTM D6241	N	4000 (average value)
Puncture	ASTM D4833	N	850
UV Resistance	ASTM D4355	% / 500h	50
Permeability	CAN 148.1 No.4	cm/s	0.190
Permittivity	CAN 148.1 No.4	s ⁻¹	0.41
FOS	CAN 148.1 No.10	μm	40 - 110

Erosion Control Solutions Exist

- Select the most appropriate ones to use
- Install them properly

