

Acknowledgments

- Gouri Bhuyan, Dung Nguyen and Ken McLean, BCOGC
- Brian Thomson, BC OGRIS
- Adam Leece, Encana Services Company
- Scott Martens, Canadian Natural Resources
- Wesley Ferris and Lee Martin, Higher Ground Consulting
- Devon Aaroe, City of Dawson Creek
- Robert McLean, BC MFLNRORD

Objective

• Examine best practices for design and construction of dugout earth dams for fresh water storage

Questions

- Are existing recommendations being followed?
 - In what areas were they not?
- Are existing recommendations adequate or should they be changed?
- Should recommendations change to reflect what was observed or should existing recommendations be followed?
- What should be recommended based on observations?

5

Seven Key Areas of Dam Design and Construction

- Dam geometry and stability
- Freeboard and design flood
- Spillway and outlet
- Seepage and drainage
- Erosion Protection (covered in another presentation)
- Construction (covered in another presentation)
- Maintenance

Existing Best Practices

- Canadian Dam Association (2007, 2013)
 - Minimum factors of safety for slope stability for different loading conditions
 - Geotechnical considerations (filter design criteria)
 - Hydrotechnical considerations (inflow design flood)
 - and others
- BC MFLNRORD (2018)
 - Recommended upstream and downstream embankment slopes, minimum freeboard and spillway width
 - and others

7

Existing Best Practices

- Canadian
 - BC MoTI
 - BC Ministry of Energy and Mines
 - BC Ministry of Environment, Lands and Parks
 - Alberta Ministry of Agriculture and Forestry
 - Ontario Ministry of Agriculture, Food, and Rural Affairs
- International
 - USSD, USACE, USBR, USASDSO
 - ICOLD, FAO of the UN
 - Australian best practices documents

Construction • Foundation preparation • Compaction equipment and lift thickness • Degree of compaction and water content [More details in another presentation]

Summary of Investigated Dams

As-built

Da	ım	Max. Height (m)	Live Storage (m³)	Classification	Age (Years)	Soil Type	Slope U/S (H:V)	Slope D/S (H:V)	Regulator
1	L	9.1	64,060	significant	7	CL	3.3:1	2.3:1	OGC
2	2	7.7	75,517	significant	7	CL	2.7:1	3:1	OGC
3	3	6	200,000	high	1	CL	2.7:1	3.2:1	OGC
4	1	5.3	161,800	high	3	СН	2.7:1	4:1	OGC
	5	11.3	1.03x10 ⁶	high	2	CL	3:1	2.5:1	MFLNRORD
•	6	12	379,000	high	44	CL	3:1	3:1	MFLNRORD
7	7	9.6	107,000	significant	3	CL	3:1	3:1	MFLNRORD

11

Slope Recommendations

Slopes should not be steeper than these values unless careful analysis and justification is provided

Source	Upstream Slope	Downstream Slope
BC MFNLRORD	3:1	2.5:1
BC MEM	3:1	3:1
United Nations Food and Agriculture Organization	3:1	2:1
United States Bureau of Reclamation	3:1	2.5:1
Depart. Primary Industries and Water of Tasmania	3:1	3:1
Eyre Peninsula Natural Resources Management Board	3:1	3:1

Embankment Stability

- Stability is sensitive to the shear strength (c' and ϕ ') for both the foundation and the embankment
- Excess pore pressures can also be important

Crest Width Recommendations

Source	Equation	Min. W (m)
MFLNRORD (2018)	W = 0.2H + 3	3
Lewis (2014)	$W = \sqrt{H} + 1$	2.5
Stephens (2010)	W = 0.4H + 1	3

17

Inflow Design Flood and Spillway

- Watersheds are typically very small
- Inflow design flood easily handled by 4 m wide spillway
- Spillway capacity is ~10 m³/s, if spillway width is 4 m

Internal Seepage

- Key trench
- Filters (blanket and toe drains)

Key Trench

- Side slopes no steeper than 1:1 for a depth up to 3 m
- Minimum width equal to the width of a bulldozer or scraper

Key Trench

- Placed in layers with maximum 0.1 m thickness
- Well compact every layer
- Complete whole dam length at once, or each section must key into subsequent sections
- Remove water before placing fill

(Gerard Degoutte 2012, Small dams, guidelines for deign, construction and monitoring, ICOLD Bulletin 91)

Blanket Filter/Drain

Toe Drain

Seepage Cut-Off Collars on Low-Level Outlet

 Use of many types of seepage cut-off collars is no longer best practices

Surface Erosion Protection

- Wave action (upstream slopes)
- Precipitation runoff (crest and embankment slopes)

[More details in another presentation]

Erosion Protection

Maintenance

- Vegetation
- Slopes
- Spillways
- Animal activity
- Booms
- Riprap
- Instrumentation
- Etc.

29

Recommendations

- Dams should meet minimum CDA (2007) factors of safety for end-of construction, steady-state, seismic, and rapid drawdown conditions
- Soil strength characterization (e.g., cohesion) is critical for drained and undrained stability analyses
- Embankment slopes should be a maximum of 2.5:1 (d/s) and 3:1 (u/s)
- Blanket drains with geotextile should be used in dams higher than 4 m
- Seepage cut-off trenches (shear keys) should be used

Recommendations

- Minimum freeboard should be 1 m
- For dams with no or small watersheds, a 4 m wide spillway will pass the IDF (check IDF for watershed)
- Roads with culverts should not cross a spillway
- Surface erosion protection is required on upstream and downstream slopes
- Riprap is typically the most effective protection for wave erosion

31

Dam 3

 We will look at one typical dam located NW of Dawson Creek and west of the Alaska Highway

Dam Constructed in 2018

- Organic soil was removed
- Soil compacted in 25 cm lifts with a sheepsfoot roller (sheepsfoot is best for clay soils)
- Excess stripped silt and clay was stockpiled along with topsoil and hydro-seeded

Dam Geometry

- Maximum 6 m berm height
- 3H:1V design slopes (as-built differs)
- Horizontal blanket drain with geotextile used where berm height exceeds 2.5 m

Geometry Considerations

- Plan Submission Requirements for the Construction and Rehabilitation of Small Dams (MFLNRORD, 2018)
 - Minimum upstream slope 3:1
 - Minimum downstream slope 2.5:1
 - Minimum crest width = 0.2H+3 m (H = berm height)
- Dam slopes were designed to meet these slope requirements but the upstream slope is steeper at 2.7:1
- Design crest width of 5 m meets the minimum 4.2 m requirement, but the as-built crest width is ~4 m

Dam Operation

- High consequence dam
- 200,000 m³ water storage
- Water level and use is controlled by pumping in and out
- No watershed providing inflow

Spillway

- 4 m wide spillway lined with rip rap and non-woven geotextile
- Access road crosses spillway, with two
 760 mm CSP culverts

Spillway

- Inflow design flood ~2.3 m³/s
- But culverts limit the capacity to ~1.4 m³/s

39

Freeboard

- Maximum wave height <0.5 m
- 1 m freeboard is sufficient

Settlement Allowance

- Embankments will settle after construction
- Embankment height should be overbuilt an extra 5 to 10% to account for post-construction settlement
- Achieving a horizontal crest profile after construction is helpful for future monitoring

41

Riprap

- Class 25 kg riprap in the spillway is smaller than recommended using USACE method, but there is geotextile
- No other riprap in use except at the splash pad
- Riprap displaced off the geotextile

Soil Mineralogy • Bulk x-ray diffraction and clay speciation tests Calcite Wixed-layers Wixed-layers Wixed-layers Wixed-layers Wixed-layers Wixed-layers Abolowite Abo

Clay Mineralogy

- Dispersive smectite group clay minerals (e.g. bentonite and montmorillonite) not detected
- Inorganic clay of low to medium plasticity
- Soil activity is low

Swelling Potential

- Generally low swelling potential
- Cracks occur when the soil dries
- Impact of shrinkage cracking needs further research

Seepage Analysis

- Filter lowers the phreatic line and directs seepage into the blanket drain
- Blanket filter helps to relieve pore pressures generated in the foundation as the soils consolidate

Filter Design

- CDA (2007) filter criteria based on Sherard et al. (1984, 1989)
- Grain size analysis of filter (D15) and embankment (d85) soils

D ₁₅ (mm)	d ₈₅ (mm)	Sherard et al. Criterion (1984)	Meets Sherard Criterion?	Meets Terzaghi Criterion?
0.33	0.042	D ₁₅ ≤ 0.5 mm	Yes	No

 Non-woven geotextile is needed between the sand filter and the silty clay

Water in Ditch

 Water in ditch attributed to low spots, likely no relationship with seepage

51

Wave Erosion

- Scarp grew from 10-20 cm (Aug. 2018, left) to 50-60 cm (May 2019, right)
- Booms installed to dissipate wave energy

Vegetation

Vegetation is slowly starting to grow after one year

53

Decommission Planning

 Stockpiles east of the dam contain different soils strategically separated for infilling the reservoir when decommissioned

