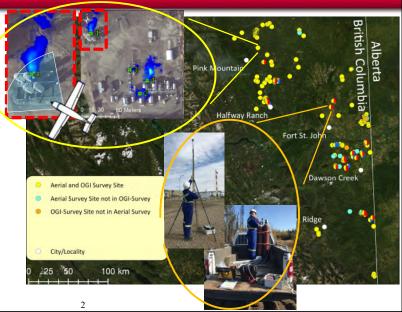
Where the Methane Is – New Insights from Novel Airborne LiDAR Measurements combined with Ground Survey Data

BC MERC TAC, March 23, 2021

David R. Tyner and Matthew R. Johnson

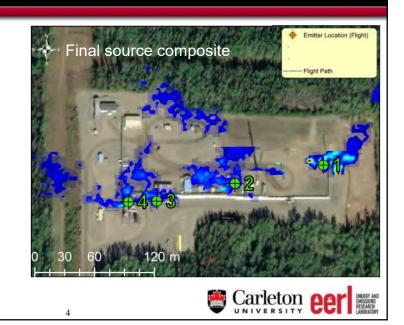


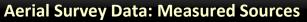
Energy & Emissions Research Lab., Mechanical & Aerospace Engineering, Carleton University, Ottawa, ON

September 2019 British Columbia Aerial Methane Study

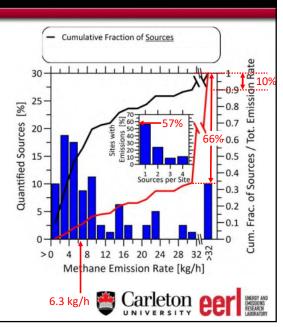
- Aerial survey of 167 oil and gas sites in BC in 2019
 - Bridger Photonics Ltd.'s plane mounted Gas Mapping LiDAR
 - Wells, single and multiwell batteries, and gas plants
 - 140 sites in prior 2018 OGI-survey
- EERL deployed wind sensors and fully-blinded controlled releases
 - Determine detection limits
 - Identify / quantify sources and emission distributions
 - Comparison with prior OGI-survey

Bridger Photonics Gas Mapping LiDAR (GML)

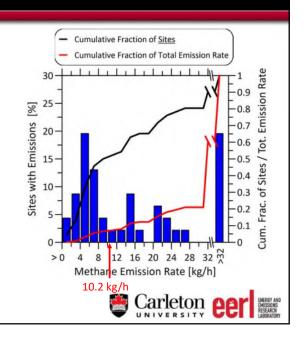

- Aerial methane measurements
 - Bridger Photonics Ltd. Gas Mapping LiDAR™ (GML) technology
 - Patented LiDAR technology developed through ARPA-E program
- Measures a ~128-m wide swath on the ground at resolution of ~2 m
 - A sensor field of view of 31° and nominal flight altitude of 230 m



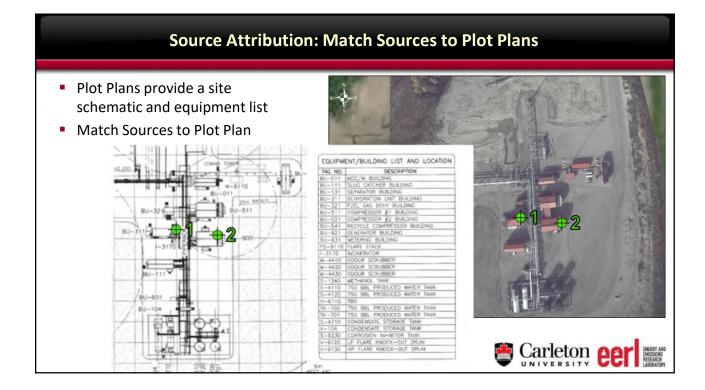
- Path-integrated methane concentrations within the laser swath are combined to produce 2D imagery of detected plumes
- 3D information of the gas plume location plus with wind speed and other topographic information used to compute methane emission rates in a proprietary method


Flight data: Post-Processing Example

- Sites have one or more passes
- Flights with detected emissions are revisited in a subsequent day
- Source quantification for inventory development purposes requires interpretation of data from each pass

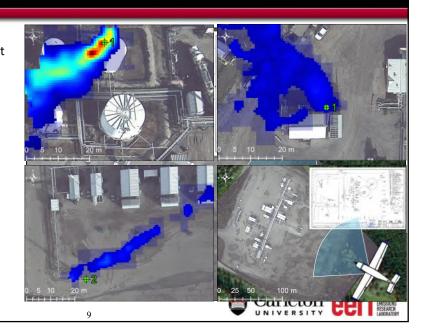


- 28% of sites had measurable sources
 - 80 sources totaling 1802 kg/h
 - 57% of sites with emissions had a single source
- Skewed/long tailed source distribution
 - Median 6.3 kg/h (Mean 22.3 kg/h)
- 10% of sources > 32 kg/h
 - total 66% of emissions

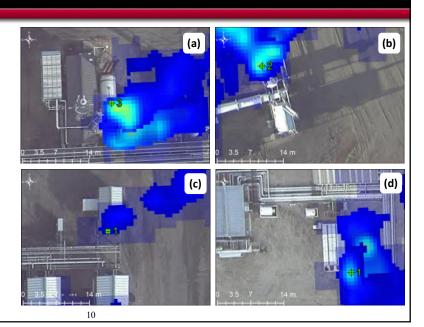


Aerial Survey Data: Measured Sources and Sites

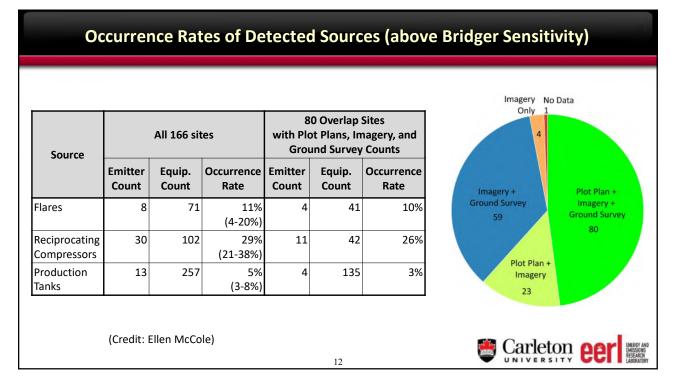
- 28% of sites had measurable sources
 - 80 sources totaling 1802 kg/h
 - 57% of sites with emissions had a single source
- Skewed/long tailed source distribution
 - Median 6.3 kg/h (Mean 22.3 kg/h)
- 10% of sources > 32 kg/h
 - Total 66% of emissions
- Site emissions similarly skewed
 - 9 sites had rates > 32 kg/h (median 10.2 kg/h)
 - Gini coefficient of 0.76 in the range of other oil and gas emission studies


<section-header><section-header><list-item><list-item>

Aerial Survey Data: Largest Identifiable Sources


- 95% of sources (87% of emissions) attributed to specific major equipment types
- 64% of sources (78% of emissions) attributed to tanks, compressor buildings, and unlit flares
- Tanks: 13 sources, 2.2-399 kg/h
 Median 13.7 kg/h
- Compressors: 30 sources, 1.5-53 kg/h
 - Median 8.3 kg/h
 - > expected rod packing vent 0.01-3.0 kg/h*
 - Combustion slip
- Unlit Flares: 8 sources: 0.5-330 kg/h
 - Median 5.5 kg/h

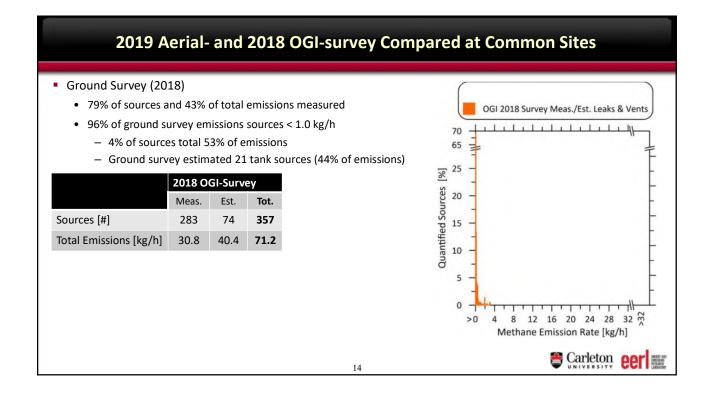
*Prior 2018 OGI-survey with Highflow sampler


Aerial Survey Data: Other Identifiable Sources

- 31% of sources (9% of emissions) attributed to other sources
 - a) Amine boiler unit
 - b) Dehydrator
 - c) Generator
 - d) Cooler
 - e) Etc.

Occurre	nce Ra	tes by Facility 1	Type (above	Bridger Sensitivity)
Aerial Survey Site type	Count	Sites with Emissions	Sites with Emissions [%]	Imagery No Data Only 1
Off-Site Well locations	80	3	4% (0-9%)	
Single Well Battery	15	3	20% (0-40%)	Imagery + Ground Survey
Multi-Well Battery	57	32	56% (44-68%)	59 Gr
Gas Plant	8	5	63%	
Compressor Station / Gas Gathering System	4	2	50%	Plot Plan + Imagery
Unknown/Liquids hub	2/1	1	33%	23
Total	167	46	28%	

 Excluding off-site wells, half of facilities (C.I. 39-60%) had detectable emissions above the Bridger sensitivity limit of ~1 kg/h

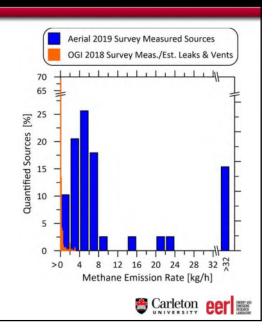

lan + ery + Survey

> ENERGY AND EMISSIONS RESEARCH LABORATORY

Carleton eer

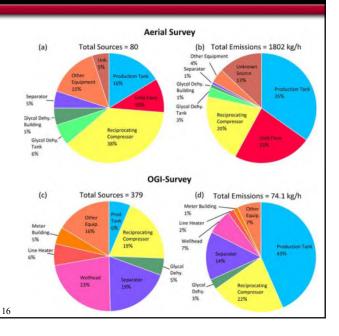
2019 Aerial- and 2018 OGI-survey Compared at Common Sites Ground Survey (2018) quantified (high flow sampler) or estimated (visual observation) emissions OGI 2018 Survey Meas./Est. Leaks & Vents • Fugitive sources: connectors, values, and other components 70 and controlled tanks (e.g. tied to a flare) 65 • Venting sources: compressor seals (rod-packing), wellhead 25 tank and surface casing vents, tanks without controls. % compressor seal 20 **Quantified Sources** 2018 OGI-Survey emissions 15 Meas. Est. Tot. >1 kg/h Sources [#] 283 74 357 10 30.8 Total Emissions [kg/h] 40.4 71.2 5 < half of total emissions measured</p> 96% of ground survey emissions sources < 1.0 kg/h</p> 0 >0 • 4% of sources total 53% of emissions 2 Methane Emission Rate [kg/h] • Estimated 21 tank sources (44% of emissions) 🖀 Carleton eer

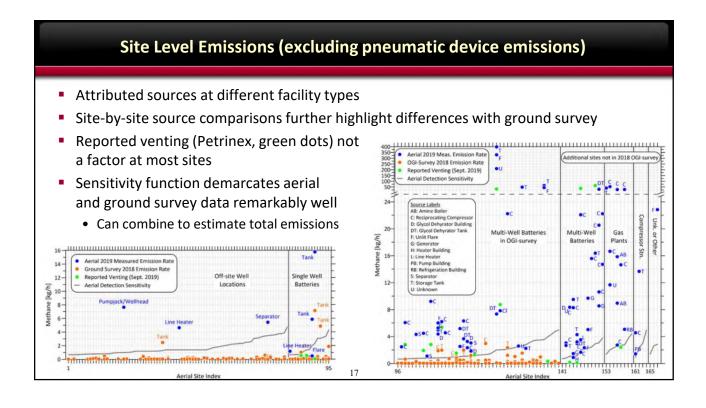
13



2019 Aerial- and 2018 OGI-survey Compared at Common Sites

- Ground Survey (2018)
 - 79% of sources and 43% of total emissions measured
 - 96% of ground survey emissions sources < 1.0 kg/h
 - 4% of sources total 53% of emissions
 - Ground survey estimated 21 tank sources (44% of emissions)


	2018 O	GI-Surve	ey	2019 Aerial Survey
	Meas.	Est.	Tot.	
Sources [#]	283	74	357	39
Total Emissions [kg/h]	30.8	40.4	71.2	1296

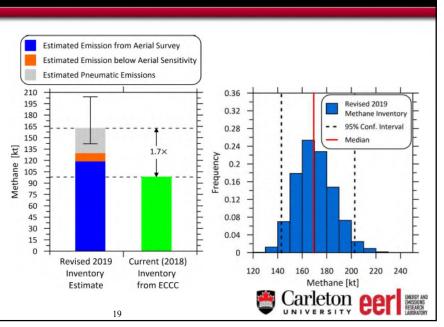

- Aerial survey (2019) measured 5-18× more emission
 - All sources measured over two days
 - ~60% of sources, 79-84% of emissions, from unlit flares, compressors, and tanks
- OGI and aerial surveys finding different types/magnitudes of sources at the same sites

2019 Aerial- and 2018 OGI-survey: Sources and Emissions

- Most frequent detected sources:
 - Aerial:
 - Compressors, tanks, other equip., unlit flares
 - OGI:
 - Wellheads, separators, compressors, other
 - 73% "fugitives", 27% "Vents"
- Largest emissions contributors:
 - Aerial:
 - Tanks, unlit flares, compressors ~3/4 of total
 - OGI (incl. estimates)
 - Tanks (estimates), compressors, separators

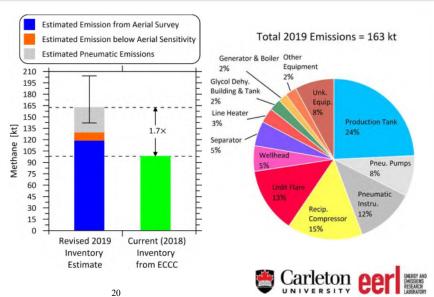
Site Level Emissions (excluding pneumatic device emissions)

- Measurement-based emission estimates by site type (excluding pneumatics)
 - Combines direct aerial measurement data and *portion* of ground survey data below the aerial sensitivity limit
 - First-ever direct measurement based methane estimates by facility type
- 95% confidence limits represent Monte Carlo derived uncertainties in Bridger measurement data
 - Uses uncertainty data from blinded controlled releases (Paper 1)

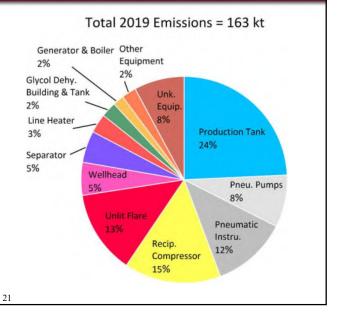

Aerial Survey Site type	Count	Total Aerial Emissions [kg/h]	Total OGI Emissions below Aerial Sensitivity [kg/h]	Estimated Emission Rate [kg/h/site] ^b
Wells at Off-Site Well locations	105	17.8	9.5	0.26 (0.21,0.35)
Single Well Battery	15	23.4	9.2	2.2 (1.6,3.2)
Multi-Well Battery	57	1491.7	31.3ª	26.7 (19.1,38.1)
Gas Plant	8	227.0	4.4 ^a	28.9 (27.3,38.4)
Compressor Station/Gas Gathering System	4	19.6	2.2ª	5.5 (4.9,7.8)
Unknown/Liquids hub	2/1	0/22.8	NA	NA

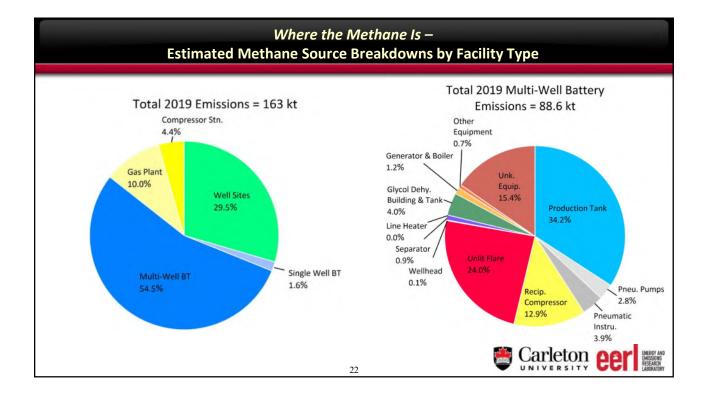
18

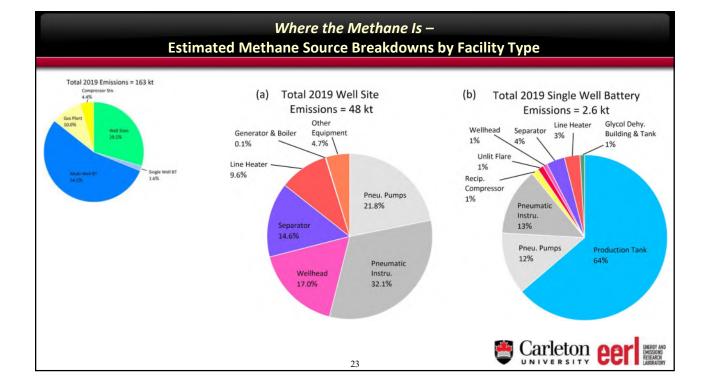
New (First-ever) Measurement-Based Methane Inventory

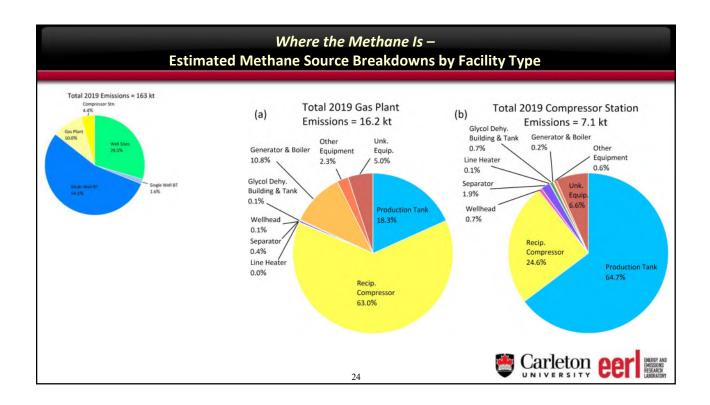

 Comparison with ECCC Inventory

- Measured sources by Bridger
- Measured/estimated sources below sensitivity from OGI
- Pneumatics based on actual count & manufacturer data
- Uncertainty in Bridger measurements from Monte Carlo analysis
- 1.5-2.1× higher is consistent with other recent Western Canada Studies (ECCC≈2×)


New (First-ever) Measurement-Based Methane Inventory


- Comparison with ECCC Inventory
 - Measured sources by Bridger
 - Measured/estimated sources below sensitivity from OGI
 - Pneumatics based on actual count & manufacturer data
 - Uncertainty in Bridger measurements from Monte Carlo analysis
- 1.5-2.1× higher is consistent with other recent Western Canada Studies (ECCC≈2×)




"Where the Methane Is"

- Best estimate breakdown of upstream methane sources in BC
 - Likely the first-ever comprehensive, measurement-based source distribution at this scale
- Some implications:
 - Pneumatics appear less of a concern than thought
 - Compressors and tanks are more important than thought
 - Unlit flares are a possible wild card but should be easily addressed with quick benefit

Comments and Recommendations

- Tanks are a critical source as seen in both surveys
 - · Character of tank emissions is largely unknown and poorly quantified
 - Variability in flux (both methane and total gas flow)? Implications for mitigation?
 - A study to characterize the transient nature of tank emissions through direct connection on-site measurements as we have proposed would be very valuable
- Recommend a second survey with larger sample size (under more efficient routing), planned based on what we have learned
 - Tracking mitigation progress since Jan. 2020
 - Would support new inventories, gas certification, policy review, and equivalency renewal
- Analysis shows power of this approach in better understanding source breakdown of emissions and doing what was not even possible just 5 years ago

25

• Many ways to extend!

