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BACKGROUND 

 

A significant % of wells leak, allowing gas and subsurface fluids to migrate to surface. This is despite 

>80 years of worldwide experience in primary cementing of oil & gas wells, together with significant 

evolution of industry no-how, equipment and materials. Leakage is common in Western Canada and 

presents both environmental and health/safety risks, as well as reducing well productivity. One widely 

acknowledged reason for surface casing vent flows is poor mud removal, on a bulk scale. Commonly, 

this manifests in a channel of drilling mud that is left behind in the annulus during the cementing 

process, typically stuck in the narrowest part of the annulus. Such features are routinely picked up at the 

evaluation stage in CBL readings, snaking upwards in the cemented annulus and providing a porous 

channel between reservoir zones.  

This multi-year project focuses at development of a computational model of the displacement process in 

the cemented annulus, following on from an established history of primary cementing model 

development at UBC. While the previous modelling work at UBC has focused at displacement flows that 

are in the laminar regime, the objective of this project is to extend previous work to develop a process 

model for annular flows of cementing materials that covers turbulent flow regimes, mixed flow regimes 

and weakly compressible fluids. Analysis of this model should produce simplified design 

recommendations for primary cementing operations, including guidance on when turbulent displacement 

is beneficial. 

 

SUMMARY OF ACTIVITIES & RESULTS 

The project has largely proceeded according to the plan outlined. Regarding the mathematical modelling, 

we have followed the approach of reducing the problem to 2D by averaging across the narrow annular 

gap. On the gap-scale this means representing the hydraulics in a simplified fashion that can be up-scaled 

into the 2D (azimuthal & length-wise) model. In modelling turbulent flows in this way, the approach is 

strictly valid only in the narrow annulus limit. In the first part of the year we therefore focused at 

approximating the hydraulics of flow of a turbulent shear-thinning yield stress fluid along a narrow 

channel (a local section of the annulus). We derived the appropriate closure expressions for the flow of 

Herschel-Bulkley fluids in turbulent flow.  

The main difference with this style of modeling (at leading order) for turbulent flows as opposed to 

laminar, is in mass transport rather than momentum. Here the turbulent diffusivity rapidly mixes the 

fluids across the annular gap, but it is the velocity field that advects the mixed fluids resulting in 

enhanced dispersion in the direction of the gap-averaged streamlines. We have derived this framework 

clearly and have used the hydraulics closures to provide approximations to the turbulent dispersion, 

transverse to the flow and Taylor-dispersion in the streamwise direction.  

The above modelling of the underlying hydraulics and dispersivity was completed in year 1 and is 

currently published in J. Non-Newtonian Fluid Mechanics.  
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Subsequent modelling work has focused on deriving the 2D model for flows in axial and azimuthal 

directions along the annulus. The model derived comprises a nonlinear elliptic Poisson-type equation for 

the gap-averaged streamlines, coupled to a complex advection-diffusion-dispersion equation for the 

concentration of fluids in the annulus. This model  

 Considers all fluid to be Herschel-Bulkley fluids. 

 Accounts for geometry variations: inclination, radius and eccentricity of the annulus 

 Includes turbulent diffusion and dispersion 

The model has also been derived in such a way that it blends seamlessly with the previous work on 

laminar displacements. 

 

In the modelling context we are currently working on the following. 

 A robust algorithm for solving the equation for streamlines. Our numerical experiments show that 

basic methods in solving nonlinear elliptic equations (based on fixed point iterations) may not 

converge. Instead, we hope to take advantage of the convexity of the equation and develop an 

augmented Lagrangian algorithm which would be both robust and accurate.  

 Finding an accurate scheme for solving the equation for concentration. The challenge here is to 

develop a scheme which is capable of transporting a sharp interface. Although mixing is prevalent in 

turbulent flows, we want to make sure that the computed smearing of th interface is due to physical 

effects (diffusivity and dispersivity) rather than a numerical artifact.  

The aim is to have a prototype computation implemented by Q4 2016, and then refine/improve the 

procedure in year 2 of the project. A paper is in preparation that describes this work.  

We have also been working collaboratively to secure data for validation of our model approach. The 

following activities are in progress in this regard. 

 We have received data from laboratory experiments carried out within Schlumberger 

 We have a limited amount of data from previous laboratory experiments carried out within UBC 

 Amir Maleki (PhD researcher) has visited the BCOGC offices in Kelowna to understand how to use 

data stored in the BCOGC database 

 Ian Frigaard (PI) has initiated collaborative research with SINTEF (Trondheim, Norway) and IRIS 

(Stavanger, Norway) focused at primary cementing of irregular wellbores. A part of this project 

includes eccentric annular displacement experiments in a 10m long flow loop. We hope to 

collaborate in using this data for validation purposes and follow the project subsequently, including 

some collaborative research exchanges. 

 Ian Frigaard is Co-investigator on a CFI/BCKDF proposal to fund infrastructure at UBC that will 

include provision to construct 2 annular flow loops targeted specifically at cementing displacement 

flows.  

In summary, we are very active in this regard. Not all of the above efforts will mature but we expect in 

year 2 to be able begin both the validation phase and an expansion of our local infrastructure towards 

industry-targeted cementing displacement experiments.  

We have also conducted preliminary studies towards the year 2 objective of initiating work on 

compressible fluids. Emile Schachter, a Mitacs Intern, worked with Amir Maleki on developing 1D 

model for displacement of foamed cements inside the casing. A new masters student Nikoo Rahimzadeh 

will start in September 2016 to work on annular displacements of foamed cements and other weakly 

compressible fluids. 

The main PhD researcher (Amir Maleki) proceeded to candidacy during the year.  

 



  

 

  BCOGRIS project EI-2016-10: Displacement Fluid Mechanics in Primary Cemented 

Annuli 

3 

 

PRESENTATIONS & PUBLICATIONS 

Results from the project to date have been presented in the following forums.  

[1] Axial dispersion in weakly turbulent flows of yield stress fluids. A. Maleki, I.A. Frigaard. Poster 

presented at the Unconventional Gas Technical Forum, April 4-5, 2016, Victoria, BC, Canada. 

[2] Annular turbulent cement displacement during primary cementing. A. Maleki, I.A. Frigaard. Poster 

presented at the Unconventional Gas Technical Forum, April 4-5, 2016, Victoria, BC, Canada. 

[3] Axial dispersion in weakly turbulent flows of yield stress fluids. A. Maleki, I.A. Frigaard. Journal of 

Non-Newtonian Fluid Mechanics, 235, pp. 1-19 2016,  

[4] Annular Cement Displacement in Weakly Turbulent Regime. A. Maleki, I.A. Frigaard. Poster and 

proceedings paper at the 17th International Congress on Rheology (ICR), August 8-13, 2016, Kyoto, 

Japan. 

[5] Axial dispersion in weakly turbulent flows of yield stress fluids. A. Maleki, I.A. Frigaard. Poster and 

proceedings paper at the 24th International Congress on Theoretical and Applied Mechanics 

(ICTAM), August 21-26, 2016, Montreal, Canada, 

 

 

FUTURE ACTIVITIES & MILESTONES 

In year 2 of the project we plan to continue along the original project plan, as follows. 

 Complete displacement flow prototype model, Q4 2016  (AM) 

 Refine/improve the algorithm/computational procedure: ongoing in year 2 of project   (AM) 

 Complete and submit paper on modelling, Q1 2017   (AM/IF) 

 Develop plan for model validation with laboratory data Q4 2016   (AM) 

 Collaborate with BCOGC, Schlumberger, SINTEF & IRIS as needed   (IF/AM) 

 Collaborate in infrastructure development at UBC, according to success of grant application   (AM) 

 Develop weakly compressible displacement model for foamed cements (NR) 

 

TEAM 

Those funded partly from this project include: 

 Amir Maleki, lead researcher, PhD student responsible  (AM) 

 Nikoo Rahimzadeh, MASc student, starting September 2016   (NR)  

Involved in a supervisory capacity are:  

 Dr I.A. Frigaard, PI, faculty member at UBC,  (IF) 

 

BUDGET 

Budget of $40,000 for year 1 of the project is projected to be 83% spent up until end of project year (Sept 

30th 2016). Salary commitments will use remaining budget before end 2016. Approximate breakdown to 

Sept 30th 2016: salary costs $26,000; equipment, materials and other supplies $1,000; travel and 

conference expenses $6,000. 

 

 

APPENDIX 

Axial dispersion in weakly turbulent flows of yield stress fluids. A. Maleki, I.A. Frigaard. Journal of Non-

Newtonian Fluid Mechanics, 235, pp. 1-19 2016. 
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a b s t r a c t 

We analyze turbulent flows of shear-thinning yield stress fluids in both pipe and channel geometries. We 

lay down a consistent procedure for hydraulic calculation of Herschel-Bulkley fluids; i.e. finding the rela- 

tionship between the mean velocity and the wall shear stress. We show that for weakly turbulent flows 

it is necessary to include an analysis of wall layers in studying dispersion. In pipe flows, we observe an 

O(10) increase in Taylor dispersion coefficients, compared to highly turbulent values. This arises from a 

combination of large velocity and small turbulent dispersivity, acting over a wall layer that can represent 

� 20% of the pipe area. In channel flows the wall layer effect is more modest, but still represents an O(1) 

increase in Taylor dispersion coefficient. The preceding effects are negated for small power law index, due 

to rapid reduction of the wall layer, and are observed to reduce modestly as the yield stress increases. 

Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved. 

1. Introduction 

The aim of this paper is to explore the effects of the yield stress 

on dispersion of mass in weakly turbulent duct flows. The motiva- 

tion comes from studying the dispersive flows that are found in 

the primary cementing of oil and gas wells. During primary ce- 

menting a sequence of different fluids are successively pumped 

into the well, travelling downwards within the casing (pipe) and 

returning upwards along the outside of the casing (narrow ec- 

centric annulus); see [42] . The initial stages of wells are vertical. 

Within the past 10–20 years the industrial trend has been towards 

wells that are longer and frequently drilled horizontally. Extended 

reach drilling leads to larger frictional pressure drops and horizon- 

tal wells mean that frictional pressure is more important in rela- 

tion to violating pore-frac pressure bounds. Together, these have 

meant that modern wells are less frequently cemented in highly 

turbulent flow regimes. Laminar, transitional and weakly turbulent 

flow regimes are more usual. 

The fluids used in primary cementing are drilling fluids, 

washes, spacer fluids and cement slurries, all of which are char- 

acterised within the industry as shear-thinning yield stress fluids, 

e.g. Herschel-Bulkley fluids. If water-based, these fluids are mis- 

cible. In turbulent flows they rapidly mix transversely and then 

∗ Corresponding author. 

E-mail addresses: amaleki@interchange.ubc.ca (A. Maleki), frigaard@math.ubc.ca 

(I.A. Frigaard). 
1 Tel.: +1-604-822-3043. 

disperse longitudinally, presumably driven by the Taylor dispersion 

mechanism, [58,59] . Although Zhang and Frigaard [69] have con- 

sidered dispersion of such fluids in laminar regimes, for laminar 

flows primary cementing does not typically fall into the Taylor- 

regime. 

Axial dispersion in turbulent flows of Newtonian fluids was ini- 

tially studied by Taylor [59] . Upon applying the Reynolds analogy 

to model the turbulent dispersivity, he then integrated the relative 

velocity profile across the pipe to calculate the axial bulk disper- 

sivity. Taylor used tabulated data from the universal distribution of 

velocity which is known to be valid only at high Reynolds num- 

ber and therefore his results significantly deviate from experimen- 

tal data [12,33,61] . Taylor’s analysis was later revisited by Tichacek 

et al. [61] and Flint and Eisenklam [16] who utilized experimental 

velocity profiles to give better estimates. Nonetheless, both these 

studies deviate from experimental results at low Reynolds num- 

ber ( Re < 10 4 ) mainly because the experimental velocity profile 

was unable to capture the wall layer. In another study Ekambara 

and Joshi [12] estimated the axial dispersion with a velocity pro- 

file obtained computationally using the k − ε model. A comparison 

of these approaches with the experimental data can be found in 

Hart et al. [33] . 

Alternative approaches to that of Taylor can be found in the lit- 

erature. For example, Aris [3] developed a concentration moment 

equation which described the distribution of solute. Chikwendu 

[6] divided the flow into N well mixed zones of parallel flows and 

found the dispersion of each zone separately, then solving the N 

coupled dispersion equations to give an estimate of the dispersion 

coefficient. Hart et al. [33] compared the results of this method 

http://dx.doi.org/10.1016/j.jnnfm.2016.07.002 

0377-0257/Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved. 
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with their experimental data and the results of Taylor. Dispersion 

in unsteady problems has been studied by Gill and Sankarasubra- 

manian [21] , Sankarasubramanian and Gill [53] , Vedel and Bruus 

[63] and others. Other Taylor dispersion studies have focused on 

natural flows, e.g. Fischer [15] , Day [7] . 

For inelastic non-Newtonian fluids, axial dispersion in lami- 

nar [1,2,5,69] and turbulent [39,57,64] flows has been studied. In 

the case of turbulent regimes, Krantz and Wasan [39] , Wasan and 

Dayan [64] studied dispersion of power-law fluids using the turbu- 

lent velocity profile of Bogue and Metzner [4] . Wasan and Dayan 

[64] predicted the axial dispersion to increase with Reynolds num- 

ber, contradicting Taylor’s model for dispersion. Krantz and Wasan 

[39] modified the earlier results by adding a wall layer to the ve- 

locity profile. However, the validity of their results is questionable 

since the velocity scale used appears to be different from that of 

Bogue and Metzner [4] . 

As noted by Ekambara and Joshi [12] , Hart et al. [33] , Krantz 

and Wasan [39] , Tichacek et al. [61] , good estimation of the Tay- 

lor dispersion demands an accurate velocity profile. Laminar ve- 

locity profile are integrable from the constitutive law, and the 

Metzner-Reed generalised Reynolds number provides an econom- 

ical description of the hydraulic closure relationship. Hydraulic- 

style calculations for turbulent shear-thinning and yield stress flu- 

ids have studied since the 1950’s; see e.g. [26–28,31,32,52] . Al- 

though not universally accepted, the phenomenological method of 

Dodge-Metzner-Reed [9,40] is popular in many process industries. 

In this method a generalised Reynolds number is defined based on 

the local power-law parameters. Then, a closure relationship is es- 

tablished for the frictional pressure drop as a function of the gen- 

eralised Reynolds number, calibrated with the available data. The 

Dodge-Metzner-Reed approach was intended to apply to all gener- 

alised Newtonian fluids. The extension to yield stress fluids can be 

found in [17,46,48] , as well as internally within technical literature 

of many petroleum companies. Tests against experimental data are 

described by [23] . More recently, comparisons with direct numeri- 

cal simulation data were made by [51] . 

In the context of dispersion the Dodge-Metzner-Reed approach 

is attractive in that the hydraulic calculations (and closure) are 

linked to a universal log-law velocity profile, proposed by Dodge 

and Metzner [9] . Such profiles may be used directly to calculate 

Taylor dispersion coefficients. However, two common deficiencies 

occur: (i) the log-law is not valid at the centreline of the pipe/duct; 

(ii) the log-law must be matched/patched to a different veloc- 

ity approximation close to the wall. Various centreline corrections 

have been suggested, including the correction of [49] and exponen- 

tial correction of [4] . Near the wall, Krantz and Wasan [38] argued 

that Reynolds stresses decay as the cube of the distance, and there- 

fore suggested that the wall layer effect could be significant. Krantz 

and Wasan [39] developed the analysis framework to evaluate the 

wall layer for power-law fluids. 

In this paper we consider dispersion of yield stress fluids. In 

laminar flows, increasing the yield stress tends to flatten the veloc- 

ity profile and hence reduce Taylor dispersion. In turbulent flows it 

is generally thought that the yield stress has little influence on the 

velocity profile in the turbulent core, but is known to retard tur- 

bulent transition. Equally, since the yield stress contributes to the 

effective viscosity we might expect that wall-layer effects are sig- 

nificant as the yield stress increases. Hence the interest in weak 

turbulence where wall-layers are thicker and occupy a larger pro- 

portion of the duct area, also where the velocity changes are great- 

est. Our study explores the subtlety of this relationship. 

An outline of our paper is as follows. In Section 2 we out- 

line the dimensionless numbers and hydraulic calculation for pipe 

flows of Herschel-Bulkley fluids. This leads in Section 3 to the tur- 

bulent velocity profile, corrected at the centreline and wall. Using 

Reynolds analogy we find the turbulent diffusivity and finally we 

give estimates for the Taylor dispersion coefficient. In Section 4 we 

outline analogous results and analysis for channel flows (modelling 

a section of the narrow annulus in cementing). The paper is closed 

with a discussion and conclusions in Section 5 . 

2. Pipe flow 

Consider fully developed steady flow of a Herschel-Bulkley fluid 

along a pipe. The axial momentum balance relates the axial gra- 

dient of frictional pressure ˆ p f to the wall shear stress ˆ τw 

, which 

is then described in terms of the inertial stress scale ˆ ρ ˆ W 

2 
0 
/ 2 and 

(Fanning) friction factor f f : 

−
ˆ D 

4 

∂ ̂  p f 

∂ ̂  z 
= ˆ τw 

= 

ˆ ρ ˆ W 

2 
0 

2 

f f , (1) 

where ˆ W 0 is the mean velocity and ˆ ρ is the fluid density. 2 

Herschel-Bulkley fluids are defined rheologically by three param- 

eters: the yield stress ˆ τY , the consistency ˆ κ, and the power law 

index n . In the hydraulic calculations that are generally performed, 

the fluid properties: ˆ ρ, ˆ τY , ˆ κ, n , and the pipe diameter ˆ D are 

known. The aim is to define the closure relationship between the 

wall shear-stress ˆ τw 

and the mean velocity ˆ W 0 for the different 

flow regimes. 

A widely used approach is that of Dodge and Metzner [9] in 

defining f f as a function of the generalised (Metzner-Reed) 

Reynolds number and power law index, with an additional di- 

mensionless parameter needed to quantify yield stress effects. Al- 

though we are concerned with turbulent flows, the Metzner-Reed 

approach requires the laminar flow relations. The Metzner-Reed 

generalized Reynolds number is defined: 

Re MR = 

8 ̂  ρ ˆ W 

2 
0 

ˆ κ ′ ( ̂  ˙ γN ) n 
′ (2) 

where the primed variables are: 

ˆ κ ′ = 

ˆ τw 

( ̂  ˙ γL ) n 
′ , n 

′ = 

d ln ̂  τw 

d ln 

ˆ ˙ γL 

. (3) 

The Newtonian strain rate at the wall is ˆ ˙ γN and 

ˆ ˙ γL is the laminar 

strain rate: 

ˆ ˙ γN = 

8 

ˆ W 0 

ˆ D 

, ˆ ˙ γL = 

8 

ˆ W L 

ˆ D 

. (4) 

The velocity ˆ W L , used to define ˆ ˙ γL , is the mean velocity that the 

fluid would have in a laminar flow, driven by the wall shear-stress 

ˆ τw 

. Note that ˆ W L and 

ˆ ˙ γL are defined by the wall shear stress ˆ τw 

across all flow regimes, but will only equal ˆ W 0 and 

ˆ ˙ γN in the case 

that the flow is laminar. 

For laminar flows, the Buckingham-Reiner equation can be de- 

rived, which is an algebraic equation relating the flow rate to the 

wall shear stress. The Rabinowitsch-Mooney procedure results in 

the same expression. For Herschel-Bulkley fluids the result is: 

ˆ ˙ γL = 

4 n 

3 n + 1 

(1 − r Y ) 
1 /n +1 

[
ˆ τw 

ˆ κ

]1 /n 

×
[
(1 − r Y ) 

2 + 

2(3 n + 1)(1 − r Y ) r Y 
2 n + 1 

+ 

(3 n + 1) r 2 Y 

n + 1 

]
. (5) 

Here r Y = ˆ τY / ̂  τw 

, which also represents the dimensionless radial 

position of the yield surface. Combining (3) with (5) we find: 

n ′ = n (1 − r Y ) 
(n + 1)(2 n + 1) + 2 n (n + 1) r Y +2 n 2 r 2 Y 

(n + 1)(2 n + 1) + 3 n (n + 1) r Y + 6 n 2 r 2 
Y 

+ 6 n 3 r 3 
Y 

, (6) 

2 In this paper we denote dimensional quantities with a ̂  · symbol and dimension- 

less quantities without. 



A. Maleki, I.A. Frigaard / Journal of Non-Newtonian Fluid Mechanics 235 (2016) 1–19 3 

Fig. 1. a) n ′ ( n, r Y ) for n = 0 . 1 , 0 . 2 , . . . 0 . 9 , 1 ; b) E ( n, r Y ) for n = 0 . 1 , 0 . 2 , . . . 0 . 9 , 1 . 

and hence can define Re MR etc. Note that the expression for n ′ in 

Zamora and Bleier [68] is incorrect. Fig. 1 a illustrates the variation 

of n ′ with ( n, r Y ): increasing the yield stress (and hence r Y ) reduces 

n ′ and the laminar velocity profiles become increasingly plug-like. 

The complicated derivation of Re MR has the virtue of ensuring 

that f f = 16 /Re MR in the laminar regime for all generalized Newto- 

nian fluids. The original derivation was for power law fluids, where 

n ′ = n and 

ˆ ˙ γL = 

4 n 

3 n + 1 

[
ˆ τw 

ˆ κ

]1 /n 

⇒ ˆ κ ′ = ˆ κ
[ 

3 n + 1 

4 n 

] n 
. (7) 

Thus, for power law fluids, in all flow regimes, Re MR is explicitly 

defined in terms of the mean velocity, making it straightforward 

to work with f f , Re MR and n in defining the mapping between ˆ τw 

and 

ˆ W 0 . The simplicity of the Metzner-Reed formulation however 

is lost once we move more complex generalized Newtonian fluids 

and study different flow regimes. 

2.1. Choice of dimensionless groups 

From dimensional considerations, we expect the relation be- 

tween ˆ τw 

and 

ˆ W 0 to be expressible in terms of n and 3 other 

dimensionless groups. Although different expressions have been 

used to define f f in terms of n ′ & Re MR , when these are expressed 

in terms of ˆ W 0 the definition is typically implicit, which makes 

these variables less appealing for characterising ˆ τw 

� −→ 

ˆ W 0 . Instead, 

we feel it is more convenient to work with a Reynolds number that 

can be defined explicitly in terms of ˆ W 0 and that is independent of 

ˆ τw 

. Motivated by (7) we use a rescaled consistency ˆ κp , referred to 

as the power-law consistency , and use n , to define the power law 

Reynolds number Re p , as follows: 

Re p = 

8 ̂  ρ ˆ W 

2 
0 

ˆ κp ( ̂  ˙ γN ) n 
, ˆ κp = ˆ κ

[ 
3 n + 1 

4 n 

] n 
. (8) 

For a power-law fluid, Re MR = Re p , and Re p is always an explicit 

function of ˆ W 0 . The Buckingham-Reiner Eq. (5) may now be sim- 

plified to: 

ˆ κp ̂
 ˙ γ n 
L 

ˆ τw 

= E(n, r Y ) : (9) 

E(n, r Y ) = (1 − r Y ) 
1+ n 

×
(

(1 − r Y ) 
2 + 

2(3 n + 1)(1 − r Y ) r Y 
2 n + 1 

+ 

(3 n + 1) r 2 Y 

n + 1 

)n 

, 

see Fig. 1 b. 

It is common to represent yield effects with either the Bingham 

number, with r Y or with the Hedström number. The Bingham num- 

ber involves ˆ W 0 , and r Y involves ˆ τw 

. Thus, we select the Hedström 

number, the definition of which varies in the literature for n � = 1 . 

We choose to normalize so that the Hedström number has a linear 

variation in yield stress and use ˆ κp for later convenience: 

He = ˆ τY 

(
ˆ ρn ˆ D 

2 n 

ˆ κ2 
p 

)1 / (2 −n ) 

. (10) 

This definition agrees with other common definitions at n = 1 . 

Finally, for a dimensionless group that depends on ˆ τw 

, but is 

independent of ˆ W 0 we mimic the definition of He , replacing yield 

stress with wall shear stress: 

H w 

= ˆ τw 

(
ˆ ρn ˆ D 

2 n 

ˆ κ2 
p 

)1 / (2 −n ) 

, (11) 

noting that r Y = He/H w 

. 

Our aim has been to isolate effects of ˆ τw 

and 

ˆ W 0 from other 

targeted physical effects (e.g. ˆ τY ) in our dimensionless description, 

achieved with ( Re p , H w 

, He ), which independently represent the 

effects of increasing ˆ W 0 , ˆ τw 

and ˆ τY . Other variables (such as f f , 

Re MR and r Y ) may be economical for expressing specific analyti- 

cal or empirical relationships, but their utility has partially eroded 

with the advent of modern computing power and there is no gain 

in simplicity once we consider yield stress fluids and different flow 

regimes. It is also worth mentioning here that He is a system de- 

pendent parameter (depends only on pipe diameter and the fluid 

properties), whereas Re p and H w 

are flow dependent and thus the 

relationship between them uniquely specifies the problem. 

2.2. Flow regimes 

As the flow rate (and wall shear stress) increases the flow 

changes from laminar through a transitional regime to fully tur- 

bulent flow. In each regime the mapping between ˆ τw 

and 

ˆ W 0 is 

to be defined, represented dimensionlessly by the mapping be- 

tween H w 

and Re p . For laminar flows ˆ ˙ γN = 

ˆ ˙ γL , and from (8) : ˆ ˙ γL = 

[8 ̂  κp Re p,Lam 

/ ( ̂  ρ ˆ D 

2 )] 1 / (2 −n ) , and on using (9) we have: 

(8 Re p,Lam 

) n/ (2 −n ) 

H w 

= E(n, r Y ) = E 

(
n, 

He 

H w 

)
. (12) 

This defines Re p, Lam 

explicitly in terms of H w 

and vice-versa if 

Re p, Lam 

is specified, solving (12) iteratively, e.g. by finding r Y ∈ [0, 

1] to any required precision. Thus, we may readily compute the 
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mapping Re p, Lam 

←→ H w 

, after which we may define: 

f f = 

2 ̂  τw 

ˆ ρ ˆ W 

2 
0 

= 

16 ̂  τw 

8 ̂  ρ ˆ W 

2 
0 

= 

16 

Re p,Lam 

E 
(
n, He 

H w 

) = 

16 

Re MR,Lam 

. (13) 

For fully turbulent flows, following Dodge and Metzner [9] : 

1 √ 

f f 
= 

4 . 0 

(n 

′ ) 0 . 75 
log (Re MR f 

1 −n ′ / 2 
f 

) − 0 . 4 

(n 

′ ) 1 . 2 . (14) 

We will use (14) (and its counterpart for channel flow (62) ) in the 

following analysis wherever needed. Noting that: 

ˆ ˙ γN = 

[
Re p 

8 ̂  κp 

ˆ ρ ˆ D 

2 

]1 / (2 −n ) 

and 

ˆ ˙ γL = 

[
E 

(
n, 

He 

H w 

)
ˆ τw 

ˆ κp 

]1 /n 

, 

after a little algebra we find: 

Re MR = 

8 

n −n ′ 
2 −n Re 

2 −n ′ 
2 −n 

p E 
(
n, He 

H w 

)n ′ /n 

H 

1 −n ′ /n 
w 

, f f = 

2 H w 

8 

2 −2 n 
2 −n 

Re 
2 

2 −n 
p 

. (15) 

Substituting into (14) and simplifying leads to: 

Re p = H 

1 − n 
2 

w 

2 

4 − 7 n 
2 

×
[ 

4 . 0 

(n 

′ ) 0 . 75 
log 

( 

2 

4 − 7 n ′ 
2 E 

(
n, 

He 

H w 

) n ′ 
n 

H 

n ′ 
n −n ′ 

2 
w 

) 

− 0 . 4 

(n 

′ ) 1 . 2 

] 2 −n 

(16) 

Again, in the case that H w 

is specified (i.e. ˆ τw 

), then (16) defines 

Re p explicitly. If instead Re p is specified (i.e. ˆ W 0 ), then H w 

is found 

iteratively from (16) . 

Note that the 2 nonlinear equations that must be solved in the 

case that Re p is specified, (12) & (16) , can be straightforwardly 

written as monotone functions of H w 

within specified bounds. 

Such equations can be solved with simple but robust root-finders 

such as the bisection method, Ridder’s method, Brent’s method etc. 

Transitional flows are found for Re 1 ( n 
′ ) < Re MR < Re 2 ( n 

′ ). The 

choice of Re 1 ( n 
′ ), Re 2 ( n 

′ ) and turbulent transition is discussed at 

length in Appendix A . Recall that n ′ = n ′ (n, He/H w 

) , and since Re MR 

depends on ( n, He ) and either of H w 

or Re p , the critical values Re 1 
and Re 2 can be used to define critical (transitional) values of either 

H w 

or f f , e.g. we solve the equation: 

Re 1 (n, He/H w 

) = Re MR (n, He, H w 

) , (17) 

by iterating with respect to H w 

and using the laminar flow closure 

expression, thus defining f f , 1 and H w , 1 . Similarly, on solving: 

Re 2 (n, He/H w 

) = Re MR (n, He, H w 

) , (18) 

by iterating with respect to H w 

and using the turbulent flow clo- 

sure expression, we define f f , 2 and H w , 2 . 

For representing hydraulic quantities in transitional flows it is 

common to use some form of interpolation. Here we choose to in- 

terpolate log f f linearly with respect to log Re MR . More explicitly: 

log f f = 

log f f, 1 [ log Re 2 − log Re MR ] + log f f, 2 [ log Re MR − log Re 1 ] 

log Re 2 − log Re 1 
. 

(19) 

Fig. 2 a illustrates the 3 flow regimes in ( Re MR , f f )-space at He = 500 

for n = 0 . 2 , 0 . 4 , . . . 0 . 8 , 1 . We observe the usual collapse of data in 

the laminar regime. For n closer to 1 we see a sharp change in f f at 

transition, but not for smaller n . The transitional curves are linear 

in the log-log plot, as shown. Fig. 2 b & c plots Re p and Re MR against 

(H w 

− H w, 1 ) / (H w, 2 − H w, 1 ) for n = 0 . 2 , 0 . 4 , . . . 0 . 8 , 1 at He = 500 , 

i.e. this is the same data as Fig. 2 a. We see large relative differ- 

ence between Re p and Re MR at smaller values of n and H w 

(laminar 

and transitional), which corresponds to those parameters where n ′ 
is smallest. Qualitatively similar plots are found at other He . 

3. Dispersion and diffusion of passive scalars 

The main aim of our paper is to estimate streamwise disper- 

sion and diffusion effects, focusing on fully turbulent flows. Prag- 

matically, we are unable to easily model diffusion and dispersion 

in transitional flow regimes and in the laminar flows of industrial 

interest we are typically far from the laminar Taylor dispersion 

regime. In fully developed turbulent flows the dominant trans- 

port mechanism is invariably Taylor dispersion, which is modelled 

straightforwardly once the turbulent diffusivity and velocity profile 

are known. 

3.1. Turbulent velocity profiles 

Dodge and Metzner [9] derive the following velocity profile in 

the turbulent core: 

ˆ W ( ̂ r ) 

ˆ W ∗
= A DM 

log ̃  y + + B DM 

, (20) 

where the friction velocity ˆ W ∗ is defined by: ˆ W ∗ = 

√ 

ˆ τw 

/ ̂  ρ = √ 

f f / 2 ̂  W 0 , and 

˜ y + = (1 − r) n 
′ ˆ R 

n ˆ ρ ˆ W 

2 −n 
∗

ˆ κ
= (1 − r) n 

′ 
f 

1 − n 
2 

f 
Re p 

[ 
3 n + 1 

4 n 

] n 8 

n −1 

2 

1+ n 2 

, (21) 

for r = ̂  r / ̂  R . This velocity profile, when averaged across the pipe 

should give an expression equivalent to (14) , thus defining A DM 

& B DM 

. More precisely, since the dimensionless velocity W ( r ) has 

mean value 1, we have: 

1 = 2 

∫ 1 

0 

r W (r ) d r 

= 

√ 

f f 

2 

2 

∫ 1 

0 

r[ A DM 

log 

(
(1 − r) n 

′ 
f 

1 − n 
2 

f 
Re p 

[ 
3 n + 1 

4 n 

] n 8 

n −1 

2 

1+ n 2 

)
+ B DM 

]d r (22) 

In order that (22) is equivalent to (14) , we find: 

A DM 

= 

4 . 0 

√ 

2 

(n 

′ ) 0 . 75 
, (23) 

B DM 

= −0 . 4 

√ 

2 

(n 

′ ) 1 . 2 

− A DM 

(
log 

(
f 

n ′ −n 
2 

f 

Re p 

Re MR 

2 

n 
2 −4 

(
3 + 

1 

n 

)n 
)

− 3 n 

′ 
2 ln (10) 

)
, (24) 

which can be verified 

3 with those in Dodge and Metzner [9] for a 

power law fluid ( n ′ = n ). With a little algebra, the Dodge-Metzner 

velocity profile is given in terms of r by: 

W (r) = 

√ 

f f 

2 

[
A DM 

(
log [(1 − r) n 

′ 
f 

1 − n ′ 
2 

f 
Re MR ] + 

3 n 

′ 
2 ln (10) 

)

− 0 . 4 

√ 

2 

(n 

′ ) 1 . 2 

]
(25) 

Two common deficiencies of such log-law profiles are the centre- 

line behaviour and a correction for the wall layer, as we now de- 

scribe. 

3 Note that there is an errata to the formula in equation (48) of Dodge and Met- 

zner [9] ; the corrected coefficients in the velocity profile may be found in Dodge 

and Metzner [10] . 
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Fig. 2. Examples for He = 500 and n = 0 . 2 , 0 . 4 , . . . 0 . 8 , 1 : a) f f vs Re MR ; b) Re p against (H w − H w, 1 ) / (H w, 2 − H w, 1 ) ; c) Re MR against (H w − H w, 1 ) / (H w, 2 − H w, 1 ) . Regimes are 

denoted: laminar (green), transitional (red), turbulent (black). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

3.1.1. Centreline correction 

Firstly, it is common to adjust the profile near the pipe centre 

so that the mean turbulent velocity W ( r ) has zero gradient at cen- 

treline. This correction is purely empirical and there are many sug- 

gested forms in the literature. As these different corrections work 

on the derivative of a smooth velocity profile at the pipe centre, 

it is hard to differentiate between these expressions by comparing 

with experimental data, even for Newtonian fluids. The condition 

that any correction function c ( r, f f , n 
′ ) should satisfy is: 

d 

d r 
c(0 , f f , n 

′ ) = 

√ 

f f 

2 

n 

′ A DM 

ln 10 

, (26) 

which ensures that the corrected velocity has zero derivative at the 

pipe centre. We also expect that the maximum velocity is at the 

pipe centre (an inequality constraint on the 2nd derivative of c ), 

and that the correction remains relatively small for r ∈ [0, 1]. 

We consider the following 2 candidates for the centreline cor- 

rection function and proceed our analysis: 

c 1 (r, f f , n 

′ ) = 

√ 

f f 

2 

n 

′ A DM 

ln 10 

(
0 . 375e 

0 . 04 −(r−0 . 2) 2 

0 . 15 

)
(27) 

as suggested by Bogue and Metzner [4] , and 

c 2 (r, f f , n 

′ ) = 

√ 

f f 

2 

n 

′ A DM 

ln 10 

r(1 − r) 2 . (28) 

which is a modified version of the one suggested by Reichardt [49] . 

Although the correction is assumed small relative to the dominant 

term in (25) , it still contributes to the flow rate. This contribution 

must be subtracted from the constant B DM 

, to balance the flow rate 

of the corrected profile. The corrected dimensionless turbulent core 

velocity becomes W (r) = W 0 (r) : 

W 0 (r) = 

√ 

f f 

2 

[ A 0 ln (1 − r) + B 0 + B 0 ,c (r)] (29) 

A 0 = 

A DM 

n 

′ 
ln 10 

(30) 

B 0 = −0 . 4 

√ 

2 

(n 

′ ) 1 . 2 + A 0 

(
1 

n 

′ ln ( f 
1 − n ′ 

2 

f 
Re MR ) + 

3 

2 

)
(31) 

where B 0, c ( r ) is a zero-mean correction: 

B 0 ,c (r) = A 0 

(
0 . 375e 

0 . 04−(r−0 . 2) 2 

0 . 15 − 0 . 1581529 

)
, associated with (27) , 

B 0 ,c (r) = A 0 

(
r(1 − r) 2 − 1 

15 

)
, associated with (28) . 

We shall see in Section 3.2 that these small corrections may have 

a significant effect on the turbulent diffusivity. Below, unless oth- 

erwise stated, all the figures are based on the correction function 

of (28) . 

3.1.2. Wall-layer correction 

The second correction concerns the pipe wall, where viscous ef- 

fects come into play. The velocity (29) clearly does not satisfy the 
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boundary conditions at r = 1 . Equally (14) is based on a velocity 

profile such as (29) , that ignores the wall layer but conserves the 

flow rate. These approximations are reasonable in highly turbulent 

flows where we expect the wall layers to be very thin. However, 

in weakly turbulent flows we expect thicker wall layers to emerge, 

that may affect both the flow rate and the Taylor dispersion coef- 

ficient. To analyse these effects we follow the approach of Krantz 

and Wasan [38 , 39] . 

We first introduce wall coordinates, ˆ y = 

ˆ R − ˆ r . Using the wall 

shear stress we define a wall shear rate scale ˆ ˙ γ∗ to satisfy the con- 

stitutive law, i.e. 

ˆ ˙ γ∗ = 

[
ˆ τw 

− ˆ τY 

ˆ κ

]1 /n 

= 

[
ˆ τw 

ˆ κ

]1 /n 

[1 − r Y ] 
1 /n . (32) 

The viscous wall layer length-scale ˆ y ∗ is then defined using ˆ ˙ γ∗ and 

the friction velocity ˆ W ∗, i.e. ˆ y ∗ = 

ˆ W ∗/ ̂  ˙ γ∗. The wall layer length and 

velocity variables are: 

y + = 

ˆ y 

ˆ y ∗
, W 

+ (y + ) = 

ˆ W ( ̂ r ) 

ˆ W ∗
= W (r) 

ˆ W 0 

ˆ W ∗
= 

√ 

2 

f f 
W (r) . (33) 

The pressure gradient is independent of ˆ r and consequently we 

may integrate the axial momentum equation with respect to ˆ r to 

give: 

ˆ R − ˆ y 

2 

∂ ̂  p f 

∂ ̂  z 
= − ˆ ρ ˆ u 

′ ˆ w 

′ + ˆ τ zr (34) 

−
(

1 − ˆ y ∗
ˆ R 

y + 
)

= −u 

′ w 

′ + (y + ) − (1 − r Y ) 

[(
∂W 

+ 

∂y + 

)n 

+ 

r Y 
1 − r Y 

]
. 

(35) 

Note here that the Reynolds stress term, ˆ u ′ ˆ w 

′ , has been scaled with 

ˆ W 

2 ∗ . Eq. (34) is valid across the wall layer and into the turbulent 

core. Only in the wall layer are we justified in evaluating ˆ τ zr in 

terms of the mean turbulent velocity using the leading order con- 

stitutive laws, i.e. because the wall layer is dominated by shear. 

Within the wall layer we may deduce that u ′ w 

′ + → 0 as (y + ) 3 . 
We expand velocity profile and Reynolds stress in wall layer as 

polynomial series in y + : 

W (y + ) = W 0 + W 1 y 
+ + W 2 (y + ) 2 + W 3 (y + ) 3 + W 4 (y + ) 4 + W 5 (y + ) 5 

(36) 

u 

′ w 

′ + = u 

′ w 

′ + 
3 (y + ) 3 + u 

′ w 

′ + 
4 (y + ) 4 (37) 

Upon substituting (36) and (37) in (35) we get: 

0 = 1 − ψy + − ( u 

′ w 

′ + 
3 (y + ) 3 + u 

′ w 

′ + 
4 (y + ) 4 + ... ) + r Y − (1 − r Y ) 

×
(
W 

+ 
1 + 2 W 

+ 
2 y 

+ + 3 W 

+ 
3 (y + ) 2 + 4 W 

+ 
4 (y + ) 3 

+ 5 W 

+ 
5 (y + ) 4 + ... 

)n 
(38) 

where ψ = ˆ y ∗/ ̂  R gives the wall layer scaling, and the various coef- 

ficients are constants with subscript denoting the power of y + in 

the expansions. Equating at successive powers of y + we find: 

W 

+ 
0 = 0 , W 

+ 
1 = 1 , W 

+ 
2 = − ψ 

2 n (1 − r Y ) 
, 

W 

+ 
3 = (1 − n ) 

ψ 

2 

6 n 

2 (1 − r Y ) 2 
. (39) 

These expressions match those in Krantz and Wasan [38] for r Y = 

0 . The scaling parameter ψ is defined 

4 by: 

ψ = 

ˆ y ∗
ˆ R 

= 

2 

4 /n −1 / 2 

(1 − r Y ) 1 /n (3 + 1 /n ) 

[ 
Re p f 

1 − n 
2 

f 

] −1 /n 

. (40) 

4 Note a factor of n different in our ψ , compared to Krantz and Wasan [38] . 

Fig. 3 plots representative ψ for wall shear stresses just above 

and below full turbulence. We see that ψ < 10 −2 , and that ψ de- 

creases rapidly with wall shear stress, particularly for smaller n . 

Note that H w , 2 � 1, and therefore He = 5 ( Fig. 3 a) is close to 

power law fluid behaviour: ψ is only sensitive to H w 

for smaller n 

< 0.3. As the yield stress becomes significant ( Fig. 3 b & c), we see 

that for n ≤ 0.5, ψ becomes extremely small. Again this is largely 

the effect of the yield stress on n ′ that we are seeing. Certainly, the 

very thin wall layers predicted at small n ′ are physically unrealistic. 

Values within the transitional regime that are plotted in Fig. 3 in- 

dicate that choices of other Re 2 in place of (A.2) are still likely to 

result in very small ψ at modest n for any significant yield stress. 

The wall layer ends at r = r c = 1 − y c = 1 − y + c ˆ y ∗/ ̂  R = 1 − ψy + c . 

This is to be found by matching with the core velocity. First how- 

ever, on integrating the core velocity W 0 ( r ) across the pipe we de- 

duce that the wall layer perturbs the flow rate by a term of order √ 

f f 
2 y 

+ 
c [ ψy + c ] . This suggests that the core velocity (29) must itself 

be corrected to take account of the flux in the wall layer. More 

explicitly: 

W (r) = W 0 (r) + 

√ 

f f 

2 

B w,c . 

where we expect B w, c to scale with the critical layer thickness, 

y c = [ ψy + c ] . The term W 0 ( r ) also satisfies: 

2 

∫ 1 

0 

r W 0 (r ) d r = 1 . 

Subtracting W 0 ( r ) from W ( r ) and integrating across the pipe, we 

find: 

r 2 c B w,c = 2 

∫ 1 

r c 

r[ A 0 ln (1 − r) + B 0 + B 0 ,c (r)] d r 

− 2 ψ 

5 ∑ 

j=1 

(
[ y + c ] 

j+1 

j + 1 

− ψ 

[ y + c ] 
j+2 

j + 2 

)
W 

+ 
j 

(41) 

= r 2 c [ B w,core − B w,wall ] 

B w,core = 

A 0 [ ψy + c ] 

[
(2 − [ ψy + c ]) ln [ ψy + c ] − 2 + 

[ ψy + c ] 

2 

]
(1 − [ ψy + c ]) 

2 

+ 

B 0 [ ψy + c ] ( 2 − [ ψy + c ] ) + 2 ̄B 0 ,c [ ψy + c ] 

(1 − [ ψy + c ]) 
2 

, (42) 

B w,wall = 

2 ψ 

(1 − [ ψy + c ]) 
2 

5 ∑ 

j=1 

(
[ y + c ] 

j+1 

j + 1 

− ψ 

[ y + c ] 
j+2 

j + 2 

)
W 

+ 
j 

, (43) 

B̄ 0 ,c = 

1 

ψy + c 

∫ 1 

r c 

r B 0 ,c (r ) d r (44) 

The correction term B̄ 0 ,c is generally small. The leading order terms 

come from A 0 [ ψ y + c ] ln [ ψ y + c ] and the term [ ψy + c ] log ( f 
1 − n ′ 

2 

f 
Re MR ) , 

contained within B 0 . The corrected core velocity is: 

W (r) = 

√ 

f f 

2 

[ A 0 ln (1 − r) + B 0 + B 0 ,c (r) + B w,core − B w,wall ] , (45) 

which we note is defined in terms of y + c and the coefficients of the 

wall velocity, W 

+ 
j 

, which are as yet unknown for j > 3. 

To find y + c we follow the procedure outlined by Krantz and 

Wasan [38 , 39] , using the above core velocity. We match W 

+ (y + ) 
and the first 2 derivatives at the edge of the viscous sublayer: 

y + = y + c : 
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Fig. 3. The wall-layer scaling parameter ψ for n = 0 . 2 , 0 . 4 , . . . 0 . 8 , 1 : a) He = 5 ; b) He = 100 ; c) He = 20 0 0 . The red part of the curves shows the transitional regime. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

A 0 ln [ ψy + c ] + B 0 ,c | r=1 −ψy + c 
+ B 0 + B w,core − B w,wall = 

5 ∑ 

j=1 

[ y + c ] 
j W 

+ 
j 

(46a) 

A 0 

y + c 

− ψ 

d B 0 ,c 

d r 
| r=1 −ψy + c 

= 

5 ∑ 

j=1 

j[ y + c ] 
j−1 W 

+ 
j 

(46b) 

− A 0 

(y + c ) 
2 

+ ψ 

2 d 

2 B 0 ,c 

d r 2 
| r=1 −ψy + c 

= 

5 ∑ 

j=1 

j( j − 1)[ y + c ] 
j−2 W 

+ 
j 

(46c) 

The last 2 of these equations are used to express the unknown 

W 

+ 
4 

and W 

+ 
5 

in terms of y + c : 

W 

+ 
4 = 1 . 25 A 0 (y + c ) 

−4 − ψ(y + c ) 
−3 d B 0 ,c 

d r 
| r=1 −ψy + c 

− 0 . 25 ψ 

2 (y + c ) 
−2 d 

2 B 0 ,c 

d r 2 
| r=1 −ψy + c 

− (y + c ) 
−3 

3 ∑ 

j=1 

j[ y + c ] 
j−1 W 

+ 
j 

+ 0 . 25(y + c ) 
−2 

3 ∑ 

j=1 

j( j − 1)[ y + c ] 
j−2 W 

+ 
j 

, 

W 

+ 
5 = −0 . 8 A 0 (y + c ) 

−5 + 0 . 6 ψ(y + c ) 
−4 d B 0 ,c 

d r 
| r=1 −ψy + c 

+ 0 . 2 ψ 

2 (y + c ) 
−3 d 

2 B 0 ,c 

d r 2 
| r=1 −ψy + c 

+ 0 . 6(y + c ) 
−4 

3 ∑ 

j=1 

j[ y + c ] 
j−1 W 

+ 
j 

− 0 . 2(y + c ) 
−3 

3 ∑ 

j=1 

j( j − 1)[ y + c ] 
j−2 W 

+ 
j 

. 

These expressions are substituted into the first equation to give a 

single nonlinear equation for y + c , which may be solved iteratively. 

Fig. 4 shows the results of this calculation, in terms of y c = ψy + c , 

for the same ( He, n, H w 

) as in Fig. 3 . 

Although for smaller n < 0.3 the critical layer is insignificant, 

in full turbulence we see that the critical layer thickness can be 

5–15% of the pipe radius. This radial thickness (at the wall) corre- 

sponds to a larger area fraction of the pipe and may significantly 

affect Taylor dispersion, being close to the wall where the veloc- 

ity variation is maximal. Note that in the transitional regime, it is 

to be expected that the log-law profile loses validity progressively 

with decreasing flow rate; for Fig. 4 we have simply extended the 

calculations into the transitional regime. Again it is observed that 

an increasing yield stress ( He ) reduces the effective power law in- 

dex and hence reduces the critical layer thickness, so that for sig- 

nificant yield stresses, we see wall layers at 5–15% of the pipe ra- 

dius only for n ≥ 0.5. Note however, that y + c increases with He , but 

this is masked by the decrease in ψ . 

Having found y + c we can evaluate W 

+ 
4 

& W 

+ 
5 

and hence the 

contributions to the Reynolds stresses in the wall layer, u ′ w 

′ + 
3 & 

u ′ w 

′ + 
4 : 
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Fig. 4. The critical layer thickness y c = ψy + c , for n = 0 . 2 , 0 . 4 , . . . 0 . 8 , 1 : a) H e = 5 ; b) H e = 100 ; c) H e = 20 0 0 . (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

u 

′ w 

′ + 
3 = −4 

(
n (1 − r Y ) W 

+ 
4 + ψ 

3 2 n 

2 − 3 n + 1 

24 n 

2 (1 − r Y ) 2 

)
, (47) 

u 

′ w 

′ + 
4 = −5 

(
n (1 − r Y ) W 

+ 
5 − 0 . 8(n − 1) ψW 

+ 
4 

+ ψ 

4 2 n 

3 − 9 n 

2 + 10 n − 3 

120 n 

3 (1 − r Y ) 3 

)
. (48) 

These expressions are now used to define the turbulent diffusivity 

within the wall layer. 

In Fig. 5 we plot some example velocity profiles, lying just 

within the fully turbulent regime: H w 

= 1 . 05 H w, 2 (i.e. with wall 

shear stress 5% larger than that required for full turbulence), 

for He = 5 , 100 , 2000 , and n = 0 . 2 , 0 . 4 , . . . 0 . 8 , 1 . The main differ- 

ences within the wall layer profiles as He is increased are found 

for smaller n , which is of course also where the layer thickness is 

insignificant. The turbulent core profiles appear to vary only mod- 

estly with He , being mostly dependent on n . This coincides with 

both computational and experimental observations, Güzel et al. 

[24] , Rudman et al. [51] . 

There is little data regarding the velocity distribution in the 

wall-layer for shear-thinning fluids. However, we have compared 

the velocity profile with Newtonian fluid data from the DNS com- 

putations of [67] . Fig. 6 shows this comparison. We can see that 

velocity profiles are matched very well, both close to the wall and 

in the core. They deviate at the edge of the wall layer, which is 

partly to be expected, as we have simply “patched” the wall layer 

to the core region here. 

3.2. Diffusivity and dispersivity 

We now follow a classical path towards estimating streamwise 

spreading of a passive tracer by the turbulent flow via diffusive and 

dispersive mechanisms, e.g. Taylor [59] . The net diffusivity is de- 

noted 

ˆ D D = 

ˆ D m 

+ 

ˆ D t , representing molecular and turbulent terms 

respectively. The turbulent diffusivity ˆ D t is usually modelled using 

the Reynolds analogy for the turbulent transport of mass and mo- 

mentum, and the axial momentum balance to evaluate the shear 

stress, i.e. 

ˆ D t = 

1 

S c t 
ˆ D e = 

1 

S c t ˆ ρ

∣∣∣∣d 

ˆ W 

d ̂

 r 

∣∣∣∣
(

ˆ r 

ˆ R 

ˆ τw 

− | ̂  τzr | 
)

. (49) 

Here ˆ D e and Sc t are the eddy diffusivity and the turbulent Schmidt 

number respectively, and on the right-hand side we have the total 

shear stress minus the mean viscous shear stress. 

We work primarily with dimensionless diffusivities, scaled by 
ˆ W 0 ̂

 D . In the wall layer we can evaluate (49) directly from our ap- 

proximate solution: 

D D (y + ) = D m 

+ 

ψ 

2 S c t 

(
f f 

2 

)1 / 2 

[ 
1 − ψy + − r Y − (1 − r Y ) 

∣∣ d W 

+ 
d y + 

∣∣n 
] 

∣∣ d W 

+ 
d y + 

∣∣
(50) 
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Fig. 5. Example velocity profiles in wall coordinate ( W 

+ (y + /y + c ) ) for H w = 1 . 05 H w, 2 and n = 0 . 2 , 0 . 4 , . . . 0 . 8 , 1 . Insets show velocity profiles in global coordinate. The black 

dots show the case of n = 0 . 2 . Velocity profiles within the wall layer are marked red. a) He = 5 ; b) He = 100 ; c) He = 20 0 0 . (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Comparison of Newtonian velocity profile in the wall layer obtained in this study (solid lines) with those of [67] (dashed lines). a) Re = 5300 and b) Re = 440 0 0 . 

In the turbulent core the velocity is given by (45) . The velocity gra- 

dient and D t are continuous at r = r c . However for r < r c , the av- 

eraged viscous stress ˆ τzr in (49) , is not simply defined by inserting 

the strain rates of the averaged velocity into the constitutive law, 

(it is the average of the shear stress, not the shear stress of the 

average). In the core we expect that velocity fluctuations will be 

of size ˆ W ∗ ∼
√ 

f f ˆ W 0 , which would be the same size as the strain 

rate evaluated from the mean flow. Since the strain rate tensor is 

assumed locally isotropic, at most we get an order of magnitude 

for ˆ τzr . It is unclear how to approximate this term. 

Krantz and Wasan [38] argue that there is no theoretically jus- 

tified form for the molecular diffusion of vorticity in the turbulent 

core for the power law fluids they consider, so they simply neglect 

ˆ τzr . On the other hand this seems at odds with the significant ef- 

fects of n on the mean velocity profile and of both ( n, He ) in af- 

fecting transition. In Güzel et al. [24] it is shown that full turbu- 

lence waits for the average Reynolds stresses to exceed the yield 
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Fig. 7. Example profiles of D t ( r ) for H w = 1 . 05 H w, 2 and n = 0 . 2 , 0 . 4 , . . . 0 . 8 , 1 , with Sc t = 1 : a) He = 5 ; b) He = 100 ; c) He = 20 0 0 . Solid and broken lines are associated with 

centreline corrections (28) and (27) , respectively. Profiles within the critical wall layer are marked red. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

stress, i.e. breaking the laminar plug. Thus, at least close to tran- 

sition and for weak turbulence, there are suggestions that viscous 

stresses are still relevant within the core. For simplicity, we assume 

that ˆ τzr vanishes at the centreline (from symmetry) and approxi- 

mate (49) by assuming that 
(

ˆ r ̂  τw 

/ ̂  R − | ̂  τzr | 
)

varies linearly with r 

across the core. We then use values as r → r −c to match with the 

wall layer: 

D D (r) = D m 

+ 

1 

2 Sc t 

(
f f 

2 

)1 / 2 
r 

r c 

1 

G (r) 

×
[ 

r c − r Y − 8 

Re p 

[ 
n 

3 n + 1 

] n 
[ G (r c )] n 

(
f f 

2 

)n/ 2 −1 
] 

, (51) 

G (r) = 

∣∣∣∣− A 0 

1 − r 
+ 

d 

d r 
B 0 ,c (r) 

∣∣∣∣ = 

∣∣∣∣d W 

d r 

∣∣∣∣
√ 

2 

f f 
. (52) 

For numerical robustness, in the case of very small ψ , for r → r −c 
we evaluate at r = 0 . 99 r c . Note also that G ( r ) vanishes at r = 0 , due 

to the centreline correction. Thus, a Taylor series and l’Hôpital’s 

rule are used to resolve D t ( r ) as r → 0. In (51) D m 

is the dimension- 

less molecular diffusivity, equal to the inverse of the Péclet num- 

ber, Pe = 

ˆ W 0 ̂
 D / ̂  D m 

� 1 (for our flows of interest). 

Examples of D t ( r ) are illustrated in Fig. 7 for the same parame- 

ters as the velocity profiles in Fig. 5 . We observe that D t is reduced 

both by decreasing n and by increasing He . The wall layer variation 

is characteristically cubic with y + . The variation of D t ( r ) is curious. 

Via the Reynolds analogy (49) and our assumed linear variation of 

stresses with r , this variation is clearly related to dividing through 

by the velocity gradient. Since the velocity gradient vanishes as r 

→ 0, we see that the variation in D t ( r ) close to the pipe centreline 

is directly related to the choice of centreline correction function. 

The first derivative of the correction function is fixed and the size 

of correction is small. Thus, it is essentially the second derivative 

of the correction function that is important! 

We remark that the existence of a local maximum in the radial 

profile of turbulent diffusivity somewhere away from the centre- 

line is found in the literature; see e.g. [37,54,62] . It seems the cor- 

rection function (28) captures this feature qualitatively. The more 

exotic variations in D t ( r ) that correspond to the correction function 

(27) of Bogue and Metzner [4] are not supported by any computa- 

tional or experimental data that we have found. Of course, this is 

not conclusive, but favours (28) . 

It may be of concern that the correction function can influence 

D t ( r ) to this extent. A more rudimentary analyses would simply 

approximate D t ( r ) as constant, perhaps evaluated from the wall 

layer, (hence vanishing for small n and large He as ψ → 0). Al- 

ternatively, if we ignore the centreline and wall layer corrections, 

just using the Reynolds analogy and the logarithmic velocity pro- 

file leads to a variation: D t (r) ∝ r(1 − r) . This clearly does not rep- 

resent either the expected diffusivity behaviour at the centreline, 

nor can it resolve any effects of weak turbulence on wall layers as 
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Fig. 8. Examples of D̄ t for n = 0 . 2 , 0 . 4 , . . . 0 . 8 , 1 , with Sc t = 1 : a) He = 5 ; b) He = 100 ; c) He = 20 0 0 . Broken and solid lines are associated with the centreline correction 

functions (27) and (28) , respectively. 

the cubic variation is gone. Practically speaking, although the cor- 

rection function can influence D t ( r ), the effects are primarily in the 

central part of the pipe, which does not contribute greatly to either 

the averaged turbulent diffusivity nor to the Taylor dispersivity. 

In computing mean dispersive and diffusive transport along the 

pipe, 3 components contribute. The first component is the molec- 

ular diffusivity ( D m 

), which is typically much smaller than the sec- 

ond component, the radially averaged turbulent diffusivity D t : 

D t = 2 

∫ 1 

0 

r D t (r ) d r = 2 

∫ r c 

0 

r D t (r ) d r + 2 ψ 

∫ y + c 

0 

(1 − ψy + ) D t (y + ) d y + . 

= 

1 

Sc t 

(
f f 

2 

)1 / 2 

[
r c − r Y − 8 

Re p 

[
n 

3 n +1 

]n 
[ G (r c )] n 

(
f f 
2 

)n/ 2 −1 
]

r c 

∫ r c 

0 

r 2 

G (r) 
d r 

+ 

ψ 

2 

Sc t 

(
f f 

2 

)1 / 2 ∫ y + c 

0 

(1 − ψy + ) 

[
1 − ψy + − r Y − (1 − r Y ) 

∣∣∣ d W 

+ 
d y + 

∣∣∣n 
]

∣∣∣ d W 

+ 
d y + 

∣∣∣ d y + 

(53) 

Both integrals above must be evaluated numerically. Although po- 

tentially time consuming, the integrands have been normalised and 

are well-behaved. Thus, a relatively coarse mesh can be used for 

the integration with a high order approximation, e.g. Simpson’s 

rule. 

The calculation of D̄ t is sensitive to the approximation of ˆ τzr in 

(49) and also to the velocity gradient, hence correction function. 

Examples of the variations in D t are shown in Fig. 8 . We see that 

D t is not particularly sensitive to either wall shear stress nor He 

(yield stress) over these ranges. The main variation is with n . 

The third (and usually dominant) component is the Taylor dis- 

persion coefficient, which is defined as: 

D T = 

ˆ D T 

ˆ W 0 ̂
 D 

= 

1 

2 

∫ 1 

0 

(∫ r 

0 

[ W ( ̃ r ) − 1] ̃ r d ̃ r 

)2 

r D D (r ) 

d r = I c (r c ) + ψ 

3 I + (y + c ) 

I c (r c ) = 

1 

2 

∫ r c 

0 

(∫ r 

0 

[ W ( ̃ r ) − 1] ̃ r d ̃ r 

)2 

r D D (r ) 
d r 

I + (y + c ) = 

1 

2 

∫ y + c 

0 

(∫ y + 

0 

[ 
√ 

0 . 5 f f W 

+ (s ) − 1](1 − ψs ) d s 

)2 

(1 − ψy + ) D D (y + ) 
d y + (54) 

Both these terms require numerical integration. However, the in- 

tegral terms in the numerator can be evaluated explicitly, which 

accelerates computation, i.e. only one numerical integration is 

needed; see Appendix B . 

Examples of the variations in D T are shown in Fig. 9 a-c. The 

main observations that we see are: (i) D T decreases significantly 

with n ; (ii) D T decreases with the yield stress He ; (iii) for larger 

n we see a very significant rise in D T as the wall shear stress ap- 

proaches its transitional value. The overall trend of increasing D T 

with n and the size of D T are similar to those of Krantz and Wasan 

[38] for power law fluids. In computing D T we divide by the dif- 
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Fig. 9. Examples of D T for n = 0 . 2 , 0 . 4 , . . . 0 . 8 , 1 , with Sc t = 1 & D m = 10 −6 ; a) He = 5 ; b) He = 100 ; c) He = 20 0 0 . Broken and solid lines are associated with centreline 

correction functions (27) and (28) , respectively. d) Newtonian fluid ( He = 0 , n = 1 ). Broken and solid lines: our results for centreline correction functions (28) and (27) ; solid 

thick line: Taylor’s prediction [59] ; black point-line; numerical results of Ekambara and Joshi [12] ; diamonds: experimental results of Flint and Eisenklam [16] ; filled squares: 

experimental results of Hart et al. [33] ; hollow squares: experimental results of Keyes [36] ; circles: experimental results of Fowler and Brown [18] . All data taken from Hart 

et al. [33] . 

fusivity [ D t (r) + D m 

] in the integrands. Although we have seen sig- 

nificant differences in the turbulent diffusivities D t ( r ) within the 

core, according to the choice of centreline correction function, the 

numerator in the core involves integrals of [ W (r) − 1] , which is 

of order 
√ 

f f , and these terms scale with r 4 . Thus, the choice be- 

tween corrections functions such as (27) & (28) is not critical inso- 

far as calculating D T is concerned. 

In the original work on dispersion, Taylor [59] used a coarse 

approximation of the (universal) velocity distribution taken from 

available measurements and performed a numerical integration. 

This gave ˆ D T = 10 . 06 ̂  W ∗ ˆ D / 2 and 

¯̂
 D t = 0 . 052 ̂  W ∗ ˆ D / 2 , giving D T / ̄D t ≈

193 . A comparison of Taylor’s coefficients with ours for n = 1 

and He = 0 (Newtonian fluid) is shown in Fig. 9 d for increasing 

Reynolds number in the weak turbulent range. Our computed D T 

is significantly larger than that of Taylor in the weak turbulent 

range, but converges as the wall layers thin. The main reason for 

the difference is (of course) including our analysis of the wall lay- 

ers, where we expect to have a significant contribution to D T for 

weakly turbulent flows. 

It is interesting to understand where the main contributions to 

D t and D T come from. This is explored in Fig. 10 for He = 10 (al- 

though analogous effects are found at other He ). Firstly, Fig. 10 a 

shows that the contribution of the core region to D t is always 

dominant; typically at least 90%. This explains the large differences 

in D t according to the corrections functions. On the other hand, 

Fig. 10 b shows the wall-layer contribution to computing D T . The 

wall layers correspond to regions where [ W (r) − 1] is of order 1 

and where the diffusivity is small. In the core, [ W (r) − 1] is of or- 

der 
√ 

f f and the diffusivity is of size D̄ t . Thus we see an interest- 

ing transition in Fig. 10 b. Where the wall layer is relatively thick, it 

gives the dominant contribution to D T . As n decreases sufficiently, 

or simply as we move further into the fully turbulent regime, the 

wall layer scaling parameter ψ becomes extremely small and the 

wall layer contribution reduces significantly due to the small thick- 

ness of the wall layer. This effect occurs at more moderate n for 

larger yield stresses, He . We see a corresponding effect on D T , 

which decreases significantly as n decreases at any fixed He . As H w 

increases the wall layer effects diminish, but relatively slowly for n 

≈ 1. 

Fig. 9 and the comparison with Taylor [59] and other data in 

Fig. 9 d indicate clearly the importance of modelling the wall lay- 

ers in estimating streamwise dispersion in weakly turbulent flows. 

Although the effects are significant we must regard our analy- 

sis as approximate. Quantitative values rely on the mean veloc- 

ity profile. Earlier authors, e.g. Taylor [59] , Tichacek et al. [61] , 

have used empirical values of the mean turbulent velocity pro- 

file. These profiles are available for Newtonian fluid flows, but are 

lacking for non-Newtonian fluids (for which one must consider at 

least some range of dimensionless ( n, He / H w 

)). Partly this is be- 

cause experimental studies use real fluids for which rheological 

models like the Herschel-Bulkley model have limitations at high 

shear rates. Also experimental studies with such fluids in order 
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Fig. 10. a) D̄ t for n = 0 . 2 , 0 . 4 , . . . 0 . 8 , 1 and He = 10 . Broken lines show contribution of the core region. b) D T for n = 0 . 2 , 0 . 4 , . . . 0 . 8 , 1 and He = 10 . Broken lines show the 

contribution of the wall layer. 

to accurately measure pointwise velocity values are time intensive 

and often involve a degree of rheological degradation (and/or other 

rheological effects that deviate from simple model descriptions). 

Thus, we are pushed towards expressions such as the log-law, 

which do arise naturally from a dimensional analysis, but never- 

theless need correcting. The matching procedure used to define the 

wall layer thickness (and hence the velocity coefficients) is depen- 

dent on the core velocity profile. 

4. Plane channel flows 

A broadly similar analysis to that for the pipe can be performed 

for a plane channel flow. This flow is often used to locally approxi- 

mate flow along a narrow annulus. We outline here only the main 

results, highlighting any differences with the pipe flow. 

4.1. Channel hydraulics, dimensionless groups and flow regimes 

We consider axial flow in a 2D channel of width 2 ̂  H . In order 

to define Metzner-Reed and power law Reynolds numbers as well 

as Hedström numbers we need to replace ˆ D with 2 ̂  H and the pref- 

actor 8 with 6; i.e. 

Re MR = 

6 ̂  ρ ˆ W 

2 
0 

ˆ κ ′ ( ̂  ˙ γN ) n 
′ Re p = 

6 ̂  ρ ˆ W 

2 
0 

ˆ κp ( ̂  ˙ γN ) n 
(55) 

He = ˆ τY 

(
ˆ ρn (2 ̂

 H ) 2 n 

ˆ κ2 
p 

)1 / (2 −n ) 

H w 

= ˆ τw 

(
ˆ ρn (2 ̂

 H ) 2 n 

ˆ κ2 
p 

)1 / (2 −n ) 

(56) 

where κ ′ and n ′ are still defined as (3) and 

ˆ ˙ γN = 

6 

ˆ W 0 

2 ̂

 H 

, ˆ ˙ γL = 

6 

ˆ W L 

2 ̂

 H 

. (57) 

The power law consistency is defined similarly to (8) as: 

ˆ κp = ˆ κ
(

2 n + 1 

3 n 

)n 

(58) 

The Rabinowitsch-Mooney procedure applied to the laminar flow 

results in the following expressions for n ′ ( n, y Y ) and E ( n, y Y ): 

n 

′ = n (1 − y Y ) 
ny Y + n + 1 

2 n 

2 y 2 
Y 

+ 2 ny Y + n + 1 

(59a) 

E = 

ˆ κp ̂
 ˙ γ n 
L 

ˆ τw 

= ( 1 − y Y ) 
(n +1) 

(
n 

n + 1 

y Y + 1 

)n 

(59b) 

where y Y = ˆ τY / ̂  τw 

represents the dimensionless (laminar) plug 

width. 

In the laminar regime, the mapping from H w 

↔ Re p (i.e. ˆ τw 

↔ 

ˆ W 0 ) is: 

(6 Re p,Lam 

) n/ (2 −n ) 

H w 

= E(n, r Y ) , (60) 

from which we then define 

f f = 

2 ̂  τw 

ˆ ρ ˆ W 

2 
0 

= 

12 ̂  τw 

6 ̂  ρ ˆ W 

2 
0 

= 

12 

Re p,Lam 

E 
(
n, He 

H w 

) = 

12 

Re MR,Lam 

. (61) 

In fully turbulent regime, the Dodge-Metzner relation is 

1 √ 

f f 
= 

4 . 0 

n 

′ 0 . 75 
log 

(
Re MR f 

1 − n ′ 
2 

f 

)
− 0 . 395 

n 

′ 1 . 2 (62) 

which leads to the following equation defining H w 

↔ Re p : 

Re p =H 

1 − n 
2 

w 

6 

1 −n 2 

1 − n 
2 

[ 
4 . 0 

n 

′ 0 . 75 
log 

(
6 

1 −n ′ 2 

1−n ′ 
2 E 

n ′ 
n H 

n ′ 
n −n ′ 

2 
w 

)
− 0 . 395 

n 

′ 1 . 2 
] 2 −n 

. 

(63) 

As with the laminar flows, this must be solved iteratively if Re p is 

specified, but is explicit if H w 

is specified. 

The limits of the laminar and turbulent regimes are given again 

by Re 1 and Re 2 , but now specific to the channel, as defined in 

Appendix A . These may be used to define transitional values of H w 

, 

i.e. H w , 1 & H w , 2 . Examples of the hydraulic quantities for channel 

flow are given in Fig. 11 , which are qualitatively similar to those 

for the pipe flow. 

4.2. Velocity profile 

Following the same procedure explained in Section 3.1 , we cor- 

rect the velocity profile near the centreline and the wall. To do 

so, we introduce the wall layer coordinate ˆ x = 

ˆ H − ˆ y , x + = ˆ x / ̂ x ∗ and 

W 

+ (x + ) = 

ˆ W ( ̂  y ) / ̂  W ∗ = 

√ 

2 / f f W (y ) , where ˆ W ∗ is the friction veloc- 

ity and 

ˆ x ∗ = 

ˆ W ∗
˙ γ∗

, ˙ γ∗ = 

[
ˆ τw 

ˆ κ

] 1 
n 

( 1 − y Y ) 
1 
n 

We eventually find the core velocity profile: 

W (y ) = 

√ 

f f 

2 

[ A 0 ln (1 − y ) + B 0 + B 0 ,c (y ) + B w,core − B w,wall ] , (64) 

where 

A 0 = 

A DM 

n 

′ 
ln 10 

, A DM 

= 

4 . 0 

√ 

2 

(n 

′ ) 0 . 75 
(65a) 
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Fig. 11. Example of the hydraulic quantities for channel flow He = 200 and n = 0 . 2 , 0 . 4 , . . . , 1 . a) f f against Re RM . Regimes are denoted: laminar (green), turbulent(black). 

broken line is extrapolation into transitional range; b) f f against Re M R Regimes are denoted: laminar (green), transitional (red) and turbulent(black); c) Re p against (H w −
H w, 1 ) / (H w, 2 − H w, 1 ) ; d) Re MR against (H w − H w, 1 ) / (H w, 2 − H w, 1 ) ; e) f f against (H w − H w, 1 ) / (H w, 2 − H w, 1 ) . (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

B 0 = A 0 

(
1 

n 

′ ln 

(
Re MR f 

1 − n ′ 
2 

)
+ 1 

)
− 0 . 395 

√ 

2 

n 

′ 1 . 2 (65b) 

B 0 ,c (y ) = A 0 

(
y (1 − y ) 2 − 1 

12 

)
(65c) 

B 0 ,c = 

1 

1 − y c 

∫ 1 

y c 

B 0 ,c d y (65d) 

B w,core = 

ψx + c 

1 − ψx + c 

[
A 0 

(
ln (ψx + c ) − 1 

)
+ B 0 + B 0 ,c 

]
(65e) 

B w,wall = 

ψ 

1 − [ ψx + c ] 

5 ∑ 

j=1 

[ x + c ] 
j+1 

j + 1 

W 

+ 
j 

(65f) 

Note that the centreline correction function we used here is of 

form (28) . The wall scaling parameter in the channel flow is: 

ψ = 

6 

1 
n . 2 

1 
n − 1 

2 

2 + 

1 
n 

(
(1 − y Y ) Re p f 

1 − n 
2 

f 

)− 1 
n 

(66) 

We are left to determine the position of the wall layer thickness 

( x + c ) using an analogous matching procedure to that of (46) . Exam- 

ples of the wall layer thickness and scaling parameter ψ are shown 

below in Fig. 12 at two values of He . We again observe significant 

wall layers for weakly turbulent flows provided n ′ is not too small. 

The scaling parameter decreases rapidly at small n or as He is in- 

creased significantly. 

Example velocity profiles are shown in Fig. 13 for wall shear 

stresses just above full turbulence ( H w 

= 1 . 05 H w, 2 ), for the same 

He and n as in Fig. 12 . The trends observed are quite similar to 

those in the pipe flow. 

4.3. Dispersion 

A similar approach as in Section 3 is taken here. Using the 

Reynolds analogy, the turbulent diffusivity ˆ D t can be written as: 

ˆ D t = 

1 

Sc t 
ˆ D e = 

1 

Sc t ˆ ρ

∣∣∣∣d 

ˆ W 

d ̂

 y 

∣∣∣∣
(

ˆ y 

ˆ H 

ˆ τw 

− | ̂  τzy | 
)

. (67) 

We scale ˆ D t with 

ˆ W 0 ̂
 H , to give dimensionless expressions in the 

core and wall layers, as follows: 

D t (x + ) = 

ψ 

2 Sc t 

(
f f 

2 

)1 / 2 

[ 
1 − ψx + − y Y − (1 − y Y ) 

∣∣ d W 

+ 
d x + 

∣∣n 
] 

∣∣ d W 

+ 
d x + 

∣∣ , (68) 
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Fig. 12. Critical wall layer thickness x c = ψx + c for n = 0 . 2 , 0 . 4 , . . . 0 . 8 , 1 : a) He = 10 ; b) He = 400 . Inset figures show the wall-layer scaling parameter ψ . The black dot is 

associated with n = 0 . 2 . 

Fig. 13. Example velocity profiles in wall coordinate ( W 

+ (y + /y + c ) ) for H w = 1 . 05 H w, 2 and n = 0 . 2 , 0 . 4 , . . . 0 . 8 , 1 . Insets show velocity profiles in global coordinate. The black 

dots show the case of n = 0 . 2 . Velocity profiles within the wall layer are marked red. a) He = 10 ; b) He = 400 . (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

and 

D t (y ) = 

1 

2 Sc t 

(
f f 

2 

)1 / 2 
y 

y c 

1 

G (y ) 

×
[ 

y c − y Y − 6 

Re p 

[ 
n 

2 n + 1 

] n 
[ G (y c )] n 

(
f f 

2 

)n/ 2 −1 
] 

, (69) 

G (y ) = 

∣∣∣∣− A 0 

1 − y 
+ 

d 

d y 
B 0 ,c (y ) 

∣∣∣∣ = 

∣∣∣∣d W 

d y 

∣∣∣∣
√ 

2 

f f 
. (70) 

Integrating D t ( y ) across the channel gives the average turbulent 

diffusivity ( ̄D t ), exploiting symmetry: 

D t = 

∫ 1 

0 

D t (y ) d y = 

∫ y c 

0 

D t (y ) d y + ψ 

∫ x + c 

0 

D t (x + ) d x + . 

= 

1 

Sc t 

(
f f 

2 

)1 / 2 

[
y c − y Y − 6 

Re p 

[
n 

2 n +1 

]n 
[ G (y c )] n 

(
f f 
2 

)n/ 2 −1 
]

y c 

×
∫ y c 

0 

y 

G (y ) 
d y 

+ 

ψ 

2 

Sc t 

(
f f 

2 

)1 / 2 ∫ x + c 

0 

[ 
1 − ψx + − y Y − (1 − y Y ) 

∣∣ d W 

+ 
d x + 

∣∣n 
] 

∣∣ d W 

+ 
d x + 

∣∣ d x + 

(71) 

The Taylor dispersion coefficient is also evaluated straightforwardly 

from the velocity profile and turbulent diffusivity, as below. 

D T = 

ˆ D T 

2 

ˆ W 0 ̂
 H 

= 

1 

2 

∫ 1 

0 

(∫ y 

0 

[ W ( ̃  y ) − 1] d ̃

 y 

)2 

D D (y ) 

d y = I c (y c ) + ψ 

3 I + (x + c ) 

I c (y c ) = 

1 

2 

∫ y c 

0 

(∫ y 

0 

[ W ( ̃  y ) − 1] d ̃

 y 

)2 

D D (y ) 
d y 

I + (x + c ) = 

1 

2 

∫ x + c 

0 

(∫ x + 

0 

[ 
√ 

0 . 5 f f W 

+ (s ) − 1] d s 

)2 

D D (x + ) 
d x + (72) 

Again the calculations involved in D t and D T involve a single nu- 

merical integration in core and wall layer. 

The Taylor dispersion term is again dominant in diffus- 

ing/dispersing mass axially. Computed examples are shown in 

Fig. 14 . Again we see the main sensitivity is to n although He does 

decrease the dispersivity slightly (acting through n ′ ). In the weakly 

turbulent regime we again see a significant increase in D T , associ- 

ated with the wall layers. This is an O(1) increase in D T , but is a 

smaller effect than in the pipe flows. The reasons for this differ- 

ence are largely geometric. First, computed x c are slightly smaller 

than y c (pipe). Secondly, thick wall layers in the pipe represent a 

larger area fraction than in the channel flow. We can also compare 

the expressions for the core contributions to the D T integrals, close 
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Fig. 14. Examples of D T for channel flow, with n = 0 . 2 , 0 . 4 , . . . 0 . 8 , 1 , Sc t = 1 & D m = 10 −6 : a) He = 10 ; b) He = 400 . 

to the centrelines: in pipe flow we effectively integrate r 3 f f / D D and 

in channel flow we integrate y 2 f f / D D . 

5. Conclusions 

We have explored the effects of the yield stress on turbu- 

lent transport of mass along pipes and plane channels, within the 

Dodge-Metzner-Reed framework. The yield stress produces com- 

peting effects in the wall layers. The critical layer thickness in wall 

coordinates is increased, but the scaling parameter ψ decreases 

rapidly with n ′ . Thus, we find that for very large yield stresses ( He ) 

and small n the wall layer thickness is vanishingly small, indeed 

unrealistically so. This is however dictated by the friction factor 

closure and delayed transition. 

The method we have presented appears effective in predicting 

the mean velocity profile and its variation in the wall layer. We 

do however acknowledge several limitations in predicting the tur- 

bulent diffusivity. Firstly, there is the influence of the centreline 

correction function discussed earlier ( Fig. 7 ). Secondly, applying 

the Reynolds analogy in the wall layer is questionable, due to the 

different boundary conditions for mass and momentum transport. 

Thirdly, the coefficients of the Reynolds stress are sensitive to the 

matching procedure, which is crude. However, the aim of the study 

is to approximate the Taylor dispersion which is known to be the 

dominant effect, and in particular in weak turbulent regimes. This 

calculation is less sensitive to variations of D t in the core, where 

the relative velocity is small. In the wall layers the relative velocity 

contributions to D T are largest, but here D t is constrained to decay 

cubicly to zero from matched values in the core. The precise shape 

of D t has minor effect. 

Ideally, a direct prediction of D t should be used to improve the 

methodology. However, we are not aware of data or a model that 

would adequately cover the range of rheological parameters. Ex- 

perimental studies exist, but they use real fluids which have other 

rheological characteristics than the inelastic Herschel-Bulkley pa- 

rameter fit, e.g. some elasticity. It is not known how such features 

may effect D t . In our view, less ambiguous data comes from DNS 

studies, e.g. [51] . A useful future research direction would be to 

generate D t from such studies. 

For larger n ≤ 1 and a wide range of practical He the wall layer 

thickness can be over 10% of the pipe radius. Following the proce- 

dure of Wasan & Krantz we have developed approximations to the 

velocity and turbulent diffusivity in the wall region, and for these 

parameter ranges we show a significant increase in the (dominant) 

Taylor dispersivity in weakly turbulent flows. In pipe flows this ef- 

fect can be an O(10) increase, compared to values of highly turbu- 

lent regimes where the wall layers thin. In plane channel flows it 

is a more modest O(1) increase. 

This demonstrates that in weakly turbulent regimes (as found 

in the primary cementing applications of interest), it is necessary 

to include the effects of the wall layers. Our predictions, when 

applied to Newtonian fluids in weakly turbulent regimes, bound 

above the available data and show similar variation with Re (see 

Fig. 9 d). The classical expression of Taylor under-predicts the same 

data. 
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Appendix A. Turbulent transition in generalized Newtonian 

fluids 

The question of transition from laminar into fully turbulent 

flows has received considerable attention. Yield stress fluids were 

first considered by Hedström [34] who advocated a criterion based 

on the point of intersection of the laminar and turbulent friction 

factor curves (intersection method). 

The Dodge-Metzner-Reed approach was to use f f ≈ 0.0076, f f 
being friction factor, as the transition parameter (expressed equiva- 

lently with generalised Reynolds number); Dodge and Metzner [9] , 

Metzner and Reed [40] . This concept was extended to the Bingham 

model by Govier and Aziz [22] and can be applied to any purely 

viscous non-Newtonian fluids, assuming transition takes place at 

f f ≈ 0.0076. A related approach followed more recently is due to 

Desouky and Al-Awad [8] , which combines the Metzner-Reed and 

intersection methods. A number of approaches have evolved that 

balance stabilising and destabilising effects on the flow, setting a 

criterion based on when this balance exceeds some critical value. 

Two identical predictions of transitional Reynolds numbers have 

been made by Ryan and Johnson [52] and by Hanks & co-workers 

[26–32] , although arrived at using different rationale. A slightly dif- 

ferent balance approach is advanced by Mishra and Tripathi [41] , 

balancing the mean kinetic energy and the wall shear stress. Güzel 

et al. [25] have developed amother local balance approach that 

shares similarities. Wilson & Thomas [60,65,66] have evolved anal- 

yses based on estimates of the viscous sub-layer, postulating that 

transition depends only on He . Other approaches have evolved that 

are industry-specific, e.g. those of Slatter [55] , Slatter and Wasp 

[56] are predominantly developed for mining applications. Pile- 

hvari and co-workers have reviewed available data and many of 
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the existing phenomenological criteria [46,48] and advocate a type 

of intersection method using the Metzner-Reed approach. 

It is noteworthy that many of the above non-Newtonian ap- 

proaches have developed from roots 40–60 years old. Over this 

same period our understanding of Newtonian fluid transition has 

evolved considerably. Although transitional Re for Newtonian fluids 

are typically quoted at Re ≈ 2100, theoretically pipe flow is subcrit- 

ical and believed to be linearly stable at all Re . Indeed, with careful 

control it has been possible to achieve stable laminar pipe flows at 

Re in the 20 , 0 0 0 − 60 , 0 0 0 range; [11,35] , so that the transitional 

Re essentially gives a measure of the quality of the experimental 

flow loop. Thus, the common engineering perspective that “transi- 

tion” (meaning the end of the laminar regime) will occur at a given 

Re is flawed, even for a Newtonian pipe flow. 

More detailed experimental studies of transition in non- 

Newtonian fluids have appeared e.g. Draad et al. [11] , Escudier 

et al. [13] , Esmael and Nouar [14] , Güzel et al. [24] , Peixinho et al. 

[44] , 45 ], Pinho and Whitelaw [47] . Coupled to these are a range of 

theoretical and computational studies, e.g. Esmael and Nouar [14] , 

Frigaard and Nouar [19] , Frigaard et al. [20] , Nouar and Frigaard 

[43] , Rudman et al. [50] , 51 ]. This list covers only those stud- 

ies focused at inelastic fluids. Although by comparison to Newto- 

nian fluids, our understanding of transition in shear-thinning yield 

stress fluids remains limited, it has significantly evolved in the past 

20 years. Some aspects of this understanding can now be applied 

pragmatically to improve the common descriptions of transition. 

Firstly, despite the existence of stability at elevated Re for New- 

tonian flows, application requires criteria that are approximately 

correct for typical hydraulic settings, i.e. industrial pumps and 

pipes. In essence, there is a critical flow parameter at which sta- 

bility of the laminar flow is lost. Secondly, it is observed that tran- 

sition occurs over an extended range of Re for shear-thinning yield 

stress fluids. Thirdly, all this is modulated by realization of exper- 

imental factors not all known 40–60 years ago, including the fol- 

lowing. (i) The initial loss of stability is often hard to detect at the 

pipe centre, but is visible at the walls. (ii) Sharp changes in f f are 

also not always evident, especially in more strongly shear-thinning 

fluids. (iii) A wide range of different phenomena are found in tran- 

sitional flows (e.g. puffs & slugs, coherent structures, flow asym- 

metry... ) and these specific phenomena have rheological depen- 

dencies that are not fully explored. However, eventually all flows 

transition into full turbulence. 

In the above context, we advocate an approach that uses 2 crit- 

ical Re : the smaller one reflecting loss of stability and the larger 

reflecting onset of full turbulence. Although we dismiss the inter- 

section method (as it predicts only a single transition), we must 

recognise that such approaches are in some sense robust as the 

friction factor relationships extrapolated are based on data valid 

over ranges of laminar and turbulent flow rates, instead of at a 

particular transition point which may be hard to detect at smaller 

n . 

There are in fact a number of approaches is usage that adhere 

to the above picture, and this is reasonably common in oilfield ap- 

plication; e.g. Nelson and Guillot [42] . Here we assume 2 critical 

Reynolds numbers: Re 1 ( n 
′ ) < Re 2 ( n 

′ ), depending only on the local 

power law index n ′ = n ′ (n, He/H w 

) , and use these critical values to 

delineate laminar, transitional and turbulent flow regimes. The first 

critical value is given by: 

Re 1 (n 

′ ) = 3250 − 1150 n 

′ , (A.1) 

as advocated by Nelson and Guillot [42] , i.e. laminar flow for Re MR 

≤ Re 1 ( n 
′ ). For the second critical Reynolds number, one option is 

that of Founargiotakis et al. [17] , Guillot and Denis [23] , which 

is algebraically similar to (A.1) . Unfortunately, although well be- 

haved for power law fluids ( He = 0 ), as the yield stress ( He ) is in- 

creased the Dodge-Metzner expression (14) loses monotonicity for 

smaller n and eventually ceases to be single valued, as illustrated 

in Fig. A.1 a. Thus, expressions that extend (A.1) algebraically such 

as that of Founargiotakis et al. [17] , Guillot and Denis [23] tend to 

fail to produce physically realistic transition criteria at small n once 

we have an significant yield stress. 

Mathematically, at fixed ( n, He ) the variable n ′ varies with Re MR . 

The expression (14) gives f f monotone with respect to Re MR only 

for fixed n ′ . This behaviour does not agree with experimental ob- 

servation. Consequently if (14) represents the frictional behaviour 

for fully turbulent flows, it is necessary to restrict the transitional 

range approximately to those for which (14) is well-behaved. An 

expression which does this effectively is the following: 

Re 2 (n 

′ ) = 

{ 

1 . 328529 × 10 

(6 . 00 −7 . 84 n ′ ) n 

′ < 0 . 31 , 

30 0 0 + 

[
1 

a (n ′ ) 
] 1 

1+ b(n ′ ) −
[

1 
a (n ′ =1) 

] 1 
1+ b(n ′ =1) n 

′ ≥0 . 31 , 

(A.2) 

a (n 

′ ) = 0 . 078504 + 0 . 0098085 log n 

′ , (A.3) 

b(n 

′ ) = −0 . 24984 + 0 . 059646 log n 

′ . (A.4) 

The dependency of Re 1 and Re 2 on n and r Y = He/H w 

is shown in 

Fig. A.1 b & c. Note that the effects of the yield stress at fixed n are 

felt wholly through n ′ . In particular full turbulence ( Re MR ≥ Re 2 ) 

is significantly delayed by a strong yield stress, as is observed ex- 

perimentally. An example of the flow regimes, plotted as f f vs Re MR 

and computed using Re 1 and Re 2 defined above, has been given 

in Fig. 2 a. This figure illustrates the effectiveness of (A .2) –(A .4) in 

truncating the fully turbulent regime, ensuring a single-valued f f . 

For channel flows ( Section 4 ), the same issues arise with ex- 

trapolating the turbulent f f ( Re MR ) at small n and large He . The cri- 

terion (A .2) - (A .4) is replaced by: 

Re 2 (n 

′ ) = 

{ 

1 . 106969 × 10 

(6 . 00 −8 . 19 n ′ ) n 

′ < 0 . 28 , 

30 0 0 + 

[
24 

a (n ′ ) 
] 1 

1+ b(n ′ ) −
[

24 
a (n ′ =1) 

] 1 
1+ b(n ′ =1) n 

′ ≥0 . 28 , 

(A.5) 

a (n 

′ ) = 0 . 5 

b(n ′ ) ×
[
0 . 096045 + 0 . 0082711 log n 

′ ], (A.6) 

b(n 

′ ) = −0 . 27103 + 0 . 063985 log n 

′ . (A.7) 

The same expression (A.1) is used for Re 1 . 

A final comment regarding transitional flows is more pragmatic. 

On the one hand, applications involve real fluids. Frequently, mod- 

els such as the Herschel-Bulkley model only describe a limited 

range of shear rates and are fitted to rheological data from vis- 

cometric flows. Although shear-thinning and yield stress aspects 

may be the dominant rheological behaviours observed over these 

shear rate ranges, invariably the fluids used experimentally have 

other rheological behaviours depending on the flow history and 

fluid micro-structure. As fully turbulent shear flows are character- 

ized by broad ranges of time and length-scales it is unknown if 

and how smaller-order rheological features may influence turbu- 

lence phenomena. Analytical and computational study of inelastic 

generalised Newtonian fluid models is one approach that explicitly 

removes other rheological influences. On the other hand, for in- 

dustrial application even the use of models such as the Herschel- 

Bulkley fluid presents problems. Rheological measurements in ap- 

plication are frequently dictated by industry protocol and standard- 

ization. Thus, the fitting of rheological parameters to application 

data is an imperfect science, and these errors propagate into what- 

ever predictions we make. 
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Fig. A1. a) f f vs Re MR for He = 20 0 0 and n = 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 . Regimes are denoted: laminar (green), turbulent (black); broken line is an extrapolation into transitional 

range using the turbulent closure. b) Re 1 ( n 
′ ( n, r Y )) for n = n = 0 . 1 , 0 . 2 , . . . 0 . 9 , 1 . c) Re 2 ( n 

′ ( n, r Y )) for n = n = 0 . 1 , 0 . 2 , . . . 0 . 9 , 1 . (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Appendix B. Evaluating the Taylor dispersion 

For the core integral I c ( r c ), the velocity is given by (45) , so that 

we see: 

∫ r 

0 

[ W ( ̃ r ) − 1] ̃ r d ̃

 r = 

√ 

f f 

2 

∫ r 

0 
[ A 0 ln (1 − ˜ r ) + B 0 

+ B 0 ,c ( ̃ r ) + B w,core − B w,wall 

]
˜ r d ̃

 r 

= 

( √ 

f f 

2 

[ B 0 + B w,core − B w,wall ] − 1 

) 

r 2 

2 

+ 

√ 

f f 

2 

∫ r 

0 
[ A 0 ln (1 − ˜ r ) + B 0 ,c ( ̃ r ) ] ̃ r d ̃

 r (B.1) 

∫ r 

0 

A 0 ̃  r ln (1 − ˜ r ) d ̃

 r = A 0 
1 

4 

(
2 r 2 ln (1 − r) − (r + 2) r − 2 ln (1 − r) 

)
(B.2) 

∫ r 

0 

˜ r B 0 ,c ( ̃ r ) d ̃

 r = 

∫ r 

0 

A 0 ̃  r 

(
0 . 375e 

0 . 04 −( ̃ r −0 . 2) 2 

0 . 15 − 0 . 1581529 

)
d ̃

 r (B.3) 

= 

3 A 0 

1600 

(
2 

√ 

15 πe 4 / 15 

[
erf 

(
10 r − 2 √ 

15 

)
− erf 

(
2 √ 

15 

)]
− 15e (8 r −20 r 2 ) / 3 + 1 5 

)
+ 0 . 079076 A 0 r 

2 (B.4) 

which is associated to the centreline correction function (27) and ∫ r 

0 

˜ r B 0 ,c ( ̃ r ) d ̃

 r = 

∫ r 

0 

A 0 

[ 
˜ r 2 (1 − ˜ r ) 2 − 1 

15 

˜ r 

] 
d ̃

 r = A 0 

(
r 5 

5 

− r 4 

2 

+ 

r 3 

3 

− r 2 

30 

)
(B.5) 

which is associate to the centreline correction function (28) . In the 

wall layer integral I + (y + c ) : ∫ y + 

0 

[ 
√ 

0 . 5 f f W 

+ (s ) − 1](1 − ψs ) d s = 

√ 

f f 

2 

5 ∑ 

j=1 

W 

+ 
j 

(y + ) j+1 

j + 1 

− y + 

+ ψ 

( 

(y + ) 2 

2 

−
√ 

f f 

2 

5 ∑ 

j=1 

W 

+ 
j 

(y + ) j+2 

j + 2 

) 

(B.6) 

Note that the molecular diffusivity contributes very close to the 

wall in removing a logarithmic singularity from the calculation of 

I + (y + c ) , i.e. the eddy viscosity terms in the denominator vanish cu- 

bically and the numerator vanishes quadratically as y + → 0 . 
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