
  
 

  BCOGRIS project EI-2016-10: Displacement Fluid Mechanics in Primary Cemented 
 

1 
 

Annual report: BCOGRIS EI-2016-10, year 2 
Displacement Fluid Mechanics in Primary Cemented Annuli 
 
 
BACKGROUND 

A significant % of wells leak, allowing gas and subsurface fluids to migrate to surface. This is despite 
>80 years of worldwide experience in primary cementing of oil & gas wells, together with significant 
evolution of industry no-how, equipment and materials. Leakage is common in Western Canada and 
presents both environmental and health/safety risks, as well as reducing well productivity. One widely 
acknowledged reason for surface casing vent flows is poor mud removal, on a bulk scale. Commonly, 
this manifests in a channel of drilling mud that is left behind in the annulus during the cementing 
process, typically stuck in the narrowest part of the annulus. Such features are routinely picked up at the 
evaluation stage in CBL readings, snaking upwards in the cemented annulus and providing a porous 
channel between reservoir zones.  

This is year 2 of this multi-year project which focuses at development of a computational model of the 
displacement process in the cemented annulus, following on from an established history of primary 
cementing model development at UBC. While the previous modelling work at UBC has focused at 
displacement flows that are in the laminar regime, the objective of this project is to extend previous work 
to develop a process model for annular flows of cementing materials that covers turbulent flow regimes, 
mixed flow regimes and weakly compressible fluids. Analysis of this model should produce simplified 
design recommendations for primary cementing operations, including guidance on when turbulent 
displacement is beneficial. 

SUMMARY OF ACTIVITIES & RESULTS 

This second year of the project has involved advances in: (i) numerical modelling of displacement flows 
in fixed annuli; (ii) initial observations and analysis of the interaction of density effects (buoyancy) and 
turbulent stresses in displacement flows; (iii) advances in model validation; (iv) model development for 
foamed cementing simulation. Additionally, we have commenced design work on two experimental 
annular displacement flow loops.  

(i) Numerical modelling of displacement flows in fixed annuli: we completed our numerical modelling 
during this past year and are now able to simulate sequences of fluids displacing one-another through a 
fixed geometry annulus. The model includes all flow regimes and rheologically models each fluid as a 
Herschel-Bulkley fluid. Thus, the model covers the main fluid combinations used in the primary 
cementing of wells in Western Canada. This contribution is described in [6] 

In so far as mass transport is concerned the fluids are miscible and are transported via a mix of advection, 
diffusion and dispersion. The frictional pressure closures and descriptions of diffusivity/dispersivity are 
as we derived in [3]. The algorithm used is a variant of an augmented Lagrangian method, as has been 
used before. The discretization of the stream function equation has been modified to ensure consistency. 
At present the annulus flow is decoupled from that within the casing, for which other models developed 
at UBC are available. This simulation code is written in Matlab, which is advantageous for portability, 
maintenance, graphical output and GUI possibilities, but executes a little slower than e.g. C/C++. Most 
of the above has been the work of PhD student A. Maleki. During Summer 2017 we have also developed 
a basic GUI for the simulator, allowing the manual entry of well and operational design data, as well as 
the previous data-file method (N. Heim & A. Maleki).  
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(ii) Initial observations and analysis of the interaction of density effects (buoyancy) and turbulent 
stresses in displacement flows. Using the developed model we have begun to analyze turbulent 
displacement flows. Two effects appear very interesting. Firstly, just as in laminar displacements certain 
combinations of parameters lead to displacements that are (nearly) “steady”. A steady displacement has a 
front that moves at the pumping speed all around the annulus and consequently is very effective at 
removing the drilling mud. In a turbulent flow these displacement front in these flows spreads axially 
due to turbulent dispersion, so that these flows are perhaps best termed steady dispersive flows. We are 
beginning to understand how to predict when these flows occur, i.e. what design parameters to select?  

Secondly, there is a common perception in the industry that turbulent regimes are the best for primary 
cementing. Our work casts some doubts on this. It seems that in order to have a steady dispersive 
displacement, turbulent stresses should not dominate the buoyant stresses. When this happens the (usual) 
eccentricity of the annulus ensures that an unsteady displacement results. In other words, in a vertical 
well too much turbulence can become detrimental. In a horizontal well there is no compensating axial 
buoyancy and turbulent flows are likely to be unsteady. A paper is in preparation to explain these results. 

(iii) Advances in model validation studies. 
In the past year and ongoing, we have been pursuing model validation studies with the aid of different 
data sets available to us. These data sets vary in degree of completeness.  

a) Comparisons with laboratory experiments from 2 previous UBC masters theses on a small scale 
annulus are generally good (uniform eccentric annuli with rheometry measured accurately and 
image analysis from experimental videos). 

b) Displacement experiments performed at SINTEF on a full scale annulus with an irregular 
wellbore section. Fluid presence is measured via a series of conductivity probes spaced 
azimuthally and in sections along the annulus. Comparisons are again reasonable, although the 
experimental annulus is no longer a narrow gap annulus. A paper proposal has been submitted 
for the SPE/IADC meeting in March 2018 describing this comparison [7]. 

c) A relatively large data set of laboratory experiments carried out within Schlumberger in the early 
1990s has been provided. These measure fluid conductivity and its azimuthal distribution at the 
exit of a long annulus. Comparisons/analysis are still ongoing. 

d) We are studying cementing of surface casing on a small number of ARC wells cemented in BC, 
using data from the BCOGC database.  

We expect to complete these studies and publish in 1-2 papers in the coming year. These studies have 
been collaborative with partners and have involved 2 PhD students and 1 intern at UBC (A. Maleki, A. 
Renteria & N. Heim). 

(iv) Model development for foamed cementing simulation. 

We have developed a model for foamed cementing comprising a 1D model for the casing flow and a 2D 
model for the annular flow (N. Rahimzadeh, with A. Maleki). The 1D model allow insights into the mass 
fraction and quality distribution in the hydraulics setting, as influenced by different operational control 
conditions, e.g. fixed inflow rates vs applied back-pressure control at outflow. The 1D model can also be 
applied to the annulus as a lumped parameter model e.g. assuming no azimuthal variations.  

The annular model predicts the distribution of fluids in the annulus. This is a 2-phase mixture model that 
results from extending both the momentum and mass transport equations of our 2D incompressible 
models to a compressible mixture flowing in laminar regime. We apply similar scaling simplifications as 
in the incompressible annular models, resulting again in an elliptic equation for a (mass) stream function, 
and additional conservation laws for mass flow. We solve the elliptic equation in a simplified format – a 
so-called slice model, to increase computational speed. Preliminary results suggest that a density driven 
instability may result within the foamed slurry as it enters the annulus. We are studying this further.   
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COLLABORATIVE ACTIVITIES 

We continue to working collaboratively with other organizations and funding bodies to improve our 
understanding of well integrity and related issues, and disseminate this knowledge publicly as well as to 
our sponsors. Complementary activities and research projects include the following. 
• NSERC/Schlumberger: we have been studying primary cementing and related problems with the aid 

of a CRD grant for the past 4 years. This activity is planned to be renewed and to continue for the 
next 4 years 

• IRIS/SINTEF, irregular wellbores. As part of the above CRD project we have been studying 
cementing in irregularly shaped wellbores since 2013. This has been extended by collaboration with 
IRIS (Stavanger, Norway) and SINTEF (Trondheim, Norway) via participation in an ongoing project 
that is studying these flows experimentally.  

• SINTEF:  A new collaboration with SINTEF is focused at the tracking of interfaces during the 
cementing of CO2 storage wells, which will involve both modelling and small-scale experimentation.  

• PTAC Gas migration: an ongoing project looks at the fluid mechanical causes of gas migration.  
• CFI/BCKDF: A recent grant application has provided funds to construct to two lab-scale annular 

displacement flow loops. One is targeted at laminar flows and will be fully inclinable. The second is 
targeted at turbulent flows and is horizontal. Construction begins in September 2017 

• PTAC: we have recently been awarded a grant to start up collaborative research activities on plug 
and abandonment (collaborative with S.M. Taghavi, Laval & I. Karimfazli, Concordia). We see this 
as a challenging new research area that will grow in importance in the coming years. We are in the 
process of applying to NSERC for matching funds. Activity starts September 2017. 

 
PRESENTATIONS & PUBLICATIONS 

Results from the project to date have been presented in the following forums.  
[1] Axial dispersion in weakly turbulent flows of yield stress fluids. A. Maleki, I.A. Frigaard. Poster 

presented at the Unconventional Gas Technical Forum, April 4-5, 2016, Victoria, BC, Canada. 
[2] Annular turbulent cement displacement during primary cementing. A. Maleki, I.A. Frigaard. Poster 

presented at the Unconventional Gas Technical Forum, April 4-5, 2016, Victoria, BC, Canada. 
[3] Axial dispersion in weakly turbulent flows of yield stress fluids. A. Maleki, I.A. Frigaard. Journal of 

Non-Newtonian Fluid Mechanics, 235, pp. 1-19 2016,  
[4] Annular Cement Displacement in Weakly Turbulent Regime. A. Maleki, I.A. Frigaard. Poster and 

proceedings paper at the 17th International Congress on Rheology (ICR), August 8-13, 2016, Kyoto, 
Japan. 

[5] Axial dispersion in weakly turbulent flows of yield stress fluids. A. Maleki, I.A. Frigaard. Poster and 
proceedings paper at the 24th International Congress on Theoretical and Applied Mechanics 
(ICTAM), August 21-26, 2016, Montreal, Canada, 

[6] Primary cementing of oil and gas wells in turbulent and mixed regimes. A. Maleki, I.A. Frigaard, J 
Eng Math DOI 10.1007/s10665-017-9914-x 

[7] Primary cementing of formations with large washouts in strongly deviated wellbores. I. Frigaard, A. 
Renteria, A. Maleki, J. Ytrehus, B. Lund, A. Taghipour, A. Saasen. Paper proposal submitted to the 
SPE/IADC meeting, March 6-8, 2018, Fort Worth, Texas.  

 
In addition we have hosted two UBC cementing technical forums (20th & 21st October 2015; 27th & 28th 
October 2016). These 2 day meetings with our sponsors and collaborators combine detailed technical 
presentations or results from the ongoing work with management/steering activity.  
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FUTURE ACTIVITIES & MILESTONES 

Year 3 of the project has the following milestones:  
− Complete analysis of fully turbulent flows and effects of buoyancy. Submit the results in a journal 

paper, Q4 2017 (AM/IF) 
− Complete model validation paper with UBC data and BC well cementing  Q2 2018 (AM/IF) 
− Continued development of simulation software and interface (AM) 
− Complete PhD thesis, Q4 2018/Q1 2019 (AM) 
− Collaborate with SINTEF on irregular wellbore experimental comparison (AR/AM/IF) 
− Contribute to design/construction of 2 annular flow loops (infrastructure development) Q3 2018 

(IF/AR/AM) 
− Complete foamed cementing modelling work into journal paper (NR/AM/IF) and submit mastrers 

thesis (NR) Q1 2018. 
 
TEAM 
Those funded partly from this project include: 
− Amir Maleki, lead researcher, PhD student responsible  (AM) 
− Nikoo Rahimzadeh, MASc student (NR)  
− Nolan Heim, undergraduate intern, Summer 2017 (NH) 
Involved in a supervisory capacity are:  
− Dr I.A. Frigaard, PI, faculty member at UBC,  (IF) 
 
BUDGET 
Budget of $40,000 for year 2 of the project is projected to be 85% spent up until end of project year (Sept 
30th 2017). Salary commitments will use remaining budget before end 2017.  
 
 
APPENDIX 
Primary cementing of oil and gas wells in turbulent and mixed regimes. A. Maleki, I.A. Frigaard, J Eng 
Math DOI 10.1007/s10665-017-9914-x 
 



J Eng Math
DOI 10.1007/s10665-017-9914-x

Primary cementing of oil and gaswells in turbulent andmixed
regimes

Amir Maleki · Ian Frigaard

Received: 3 April 2017 / Accepted: 29 May 2017
© Springer Science+Business Media Dordrecht 2017

Abstract We present a detailed derivation of a practical two-dimensional model for turbulent and mixed regimes
in narrow annular displacement flows, such as are found during the primary cementing of oil and gas wells. Such
mixed cross regimes, including those inwhich different regimes exist in the same annular cross section, are relatively
common in primary cementing. The modelling approach considers scaling based on the disparity of length-scales,
which allows a narrow-gap averaging approach to be effective. With respect to the momentum equations, the
leading-order equations correspond to a turbulent shear flow in the direction of the modified pressure gradient. This
leads to a nonlinear elliptic problem that is the natural extension of the laminar displacement model in Bittleston
et al. (J Eng Math 43:229–253, 2002). The mass transport equations that model the miscible displacement are
however quite different. To leading-order turbulence effectively mixes the fluids. Changes in concentrations within
the annular gap arise due to the combined effects of advection with the mean flow, anisotropic Taylor dispersion
(along the streamlines) and turbulent diffusivity. The diffusive and dispersive effects are modelled for fully turbulent
and transitional flows followingMaleki and Frigaard (J Non-Newt Fluid Mech 235:1–19, 2016). The model derived
allows the investigation of different well geometries and inclinations, pumping sequences and fluid rheologies, all
of which can have importance. A number of computed examples are presented with the aim of demonstrating the
complexity of turbulent displacements.

Keywords Annular displacement · Dispersion · Primary cementing · Turbulent flow

1 Introduction

Primary cementing is the process by which oil and gas wells are sealed during construction. The seal is achieved
by placing cement into a narrow gap formed between the drilled borehole and the outside of a steel casing (or liner)
that is placed in the well. The cement not only seals the well hydraulically, preventing fluids from migrating axially
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Fig. 1 Schematic of the well and of the variables that describe the eccentric annular geometry

along the wellbore between fluid-bearing zones, but also provides mechanical support, resisting geo-mechanical
stresses. Failure to achieve proper zonal isolation can have significant effects onwell productivity, aswell as potential
environmental and health consequences [1].

The process of placing the cement slurry into the narrow annular gap gives rise to a wide range of challenging
fluid displacement problems, the understanding of which affects our ability to design wells of high integrity. This
paper studies one class of flows commonly found, i.e., turbulent flows.

The primary cementing process proceeds as follows; see Fig. 1 (top). A new section of the well is drilled. The
drillpipe is removed from the wellbore, leaving drilling mud inside the wellbore. A steel tube (casing or liner) is
inserted into the wellbore, typically leaving an annular gap of ≈ 2 cm. The tubing is inserted in sections of length
≈ 10 m each, threaded together so that cemented sections can extend 100–1000 m. The so-called centralizers are
fitted to the outside of the tube, to prevent the heavy steel tubing from slumping to the lower side of the wellbore.
However, even in (nominally) vertical wells it is common that the annulus is eccentric and this is especially true in
inclined and horizontal wells. With the steel casing in place and drilling mud on the inside and outside, the operation
begins. First, the drilling mud is conditioned by circulating around the flow path. Next a sequence of fluids are
circulated down the inside of the casing and returning up the outside of the annulus. Preflushes (washes or spacer
fluids) are followed by one or more cement slurries. The fluid volumes are designed so that the cement slurries fill
the annular space to be cemented. Drilling mud follows the final cement slurry to be pumped and the operations
end with the cement slurry held in the annulus (with a valve system) and allowed to hydrate (i.e. set) over a period
of many hours.
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With reference to Fig. 1 (top), it can be seen that the completed well often has a telescopic arrangement of
casings and liners.1 Thus, the operation is repeated more than once on most wells. Typical, well inner diameters
can start at anything up to 50 cm and can end as small as 10cm in the producing zone. As the well proceeds deeper,
pressures in fluid-bearing zones of the rock formation increase and must be balanced by the wellbore pressures in
order to maintain primary well control. In deep or long wells the frictional component of the pressure can become
significant. The need to control frictional pressures and these natural changes in annular geometry mean that the
flow regimes experienced when cementing the surface casing (at the top) may be quite different from those found
when cementing the production casing. As an example, in a long horizontal well drilled through a weak formation,
one is likely to pump the fluids in laminar flow. Where adequate pump capacity is present and where there are no
risks of either an influx nor fracturing the well, turbulent flow might be preferred.

This brings us to one of the main operational questions, which we will not succeed in answering here: is it
preferable to cement a well in turbulent or laminar flow? There is a perception that turbulent regimes should be
used where possible; see [1]. However, the actual evidence for this appears scant. For example, [2] is an often-cited
study which does show improved displacement efficiencies. However, this study was performed in an era before
our understanding of laminar displacements that evolved.

Laminar displacements allow fluid rheology and density differences to become part of the flow design. From
the 1970s to early 1990s, a number of rule-based systems evolved to guide laminar mud displacement, e.g. [3–5].
For the past 10–20 years the industry has been able to access model-based simulators [6,7] and analyses [8,9] that
have been shown to improve on the rule-based systems [10]. Such simulators are now actively used in cementing
case studies, where they compare favourably with post-placement logging of the wells, e.g. [11–14]. Thus, early
studies such as [2] have conclusions that may not be valid when instead comparing with modern designs for laminar
displacement flows. Often operational or geological circumstances dictate the flow regime, so that it is rarely feasible
in a field setting to cement one well in laminar flow and an identical adjacent well in turbulent flow. Herein lies the
value of model-based simulations and laboratory experiments, where one can isolate individual effects. This paper
derives the type of leading-order model tools that can be used to make such comparisons, over the scale of the well.

Our motivation for studying primary cementing stems from the important consequences of operational failure.
Leakage during the primary cementing operation can lead to gas pockets and channels, that compromise the well.
A number of other defects may arise either during the cementing of a well, or afterwards during cement hydration,
that allow the well to leak later. The most common defects include: (a) residual mud channelling; (b) wet micro-
annulus; (c) mixing/contamination of the slurry. Examples of these features can be found in [15]. Residual mud
channelling is where the yield stress of the mud holds it in place (typically) on the narrow side of the annulus as
preflushes and cement slurry by-pass. It is a bulk flow feature predicted well by simple mechanical arguments and
more sophisticated models; see e.g. [6,16]. Wet micro-annulus is a local mechanical effect, where the displacing
fluid does not generate sufficient shear stress to mobilize the mud at the wall. To some extent, this is predictable in
model flows, e.g. [17–20], but can be further complicated with mud dehydration and uneven wellbores. Mixing (and
consequent contamination) occur in different scenarios: downward displacement within the casing (e.g. [21,22]);
fluid instabilities in laminar annular flows (e.g. [10,23,24]); turbulent annular displacement flows. In combination
with mud channels, micro-annuli or even mud pockets left behind in irregular wellbores (e.g. washouts), residual
drilling fluid can be partially eroded/dispersed in a passing slurry and continue to contaminate cement over long
lengths.

While the above mechanisms are flow related and reflect our own interest, not all wellbore leakage has a fluid-
mechanical cause. A good overview is given in [1], e.g. geomechanical stresses/deformation and casing de-bonding
(=dry micro-annulus). The net summary is that many wells leak and this is common worldwide, although there
is wide variation in cement evaluation techniques, regulatory practice, collection of (and access to) well data, and
definition of leakage severity. For example, Dusseault et al. [25] state that over 550,000 wells have been drilled
in Canada and collates survey data that show between 5–20% of wells with some form of leakage. The interested
reader is also referred to [26,27], which analyze different leakage factors for significant datasets.

1 A liner is a casing that extends downwards from just above the previous casing.
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This paper concentrates onmodel development. Although we target turbulent flows, we also incorporate previous
models for laminar flow regimes, e.g. [6], so that mixed flow regimes can be modelled. Flow regime depends on
local geometry and fluid properties as well as the overall imposed flow rate. It is relatively common within the
annulus that one fluid can be fully turbulent (e.g. a chemical wash or low-viscous spacer) while others are laminar.
Indeed, this also can occur on a single section of the annulus, e.g. turbulent on the wide side, laminar or even static
on the narrow side, (see later and [1]). Furthermore, although some fluids can be strongly turbulent, the more viscous
fluids (muds, viscous spacers and slurries) are often only in weakly turbulent, transitional or laminar regimes. These
flow regimes have become more prevalent in recent decades as extended and horizontal wells, require reduced flow
rates to control friction pressures.

The organization of the paper is as follows: In Sect. 2, we derive an elliptic equation that models the stream
function, for a given concentration field. Section 3 develops an asymptotic analysis to find the equation governing the
leading-order evolution of the fluid concentrations. The model is summarized in Sect. 4, where we present examples
of displacement flows with the increasing levels of complexity. The paper is closed in Sect. 5 with conclusions.
Two appendices present, firstly, an overview of turbulent closure models used, and secondly, variational analysis
that is preliminary to qualitative study, e.g. existence and uniqueness of weak solutions.

2 Modelling turbulent displacement flows

As in [6], a cylindrical coordinate system (r̂ , θ, ξ̂ ) is used to describe the well geometry: ξ̂ measures distance along
the central axis of the casing r̂ = 0 which is assumed to be inclined to the vertical with angle β(ξ̂ ). The local cross
section of the well, outside the casing, is assumed to be that of an eccentric annulus, with inner radius r̂i (ξ̂ ), equal
to the outer radius of the casing and outer radius r̂o(ξ̂ ) equal to the inner radius of the hole (or previous casing). At
each depth ξ̂ , the mean radius r̂a(ξ̂ ) and the mean half-gap width d̂(ξ̂ ) are defined by

r̂a(ξ̂ ) ≡ 1

2

[
r̂o(ξ̂ ) + r̂i (ξ̂ )

]
, d̂(ξ̂ ) ≡ 1

2

[
r̂o(ξ̂ ) − r̂i (ξ̂ )

]
. (1)

Inner and outer radii, and the distance, ê(ξ̂ ), between the two centres of the cylinders are given, see Fig. 1 (lower).
It is assumed that ê(ξ̂ ) < 2d̂(ξ̂ ) (the cylinders do not touch), and that variations in the geometry with ξ̂ are slow.
For simplicity, it is also assumed that the narrow side of the annulus will be found on the lower side of the well and
that the casing remains stationary. Both these assumptions can be relaxed with care, e.g. [28,29].

The annular displacement is modelled as a concentration dependent multi-fluid flow that is fully turbulent and
incompressible. The fluid constituents contribute to the mixture density ρ̂ and to the rheological properties of the
mixture. The latter are used in closure expressions that define the deviatoric stress tensor τ̂i j . In primary cementing,
a sequence of K fluids is pumped around the flow path, from the bottom of the annulus to the top. A typical
sequence would be mud, wash, spacer, lead slurry, tail slurry and mud. When circulating, drilling muds, spacer
fluids and cement slurries are predominantly shear thinning, nonlinearly viscous, and inelastic, often also with a
significant yield stress. Washes are Newtonian fluids. In general, each constituent fluid can be effectively modelled
as a Herschel-Bulkley fluid. We shall address evolution of the mixture concentrations at length in Sect. 3; however,
for the present, we assume that all fluid properties are approximated effectively by closures that depend on the local
mean fluid concentrations: both ensemble averaged and averaged across the annular gap.

We adopt the usual Reynolds decomposition for turbulent flows, into mean and fluctuating parts. Because the
flowswill be time-varying as the displacement proceeds, themean part (denotedwith an overbar below) is interpreted
as an ensemble average. The velocity and pressure are û = (û, v̂, ŵ) and p̂, respectively. In the local coordinate
system, the Reynolds-decomposed Navier–Stokes system is
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∂

∂ t̂

[
ρ̂ ¯̂u

]
+ ∇̂ ·

[
ρ̂ ¯̂u ¯̂u

]
= 1

r̂

∂

∂ r̂

[
r̂ ¯̂τr̂ r̂

]
+ 1

r̂

∂

∂θ
¯̂τr̂θ + ∂

∂ξ̂
τ̂r̂ ξ̂ −

¯̂τθθ

r̂
− ∂ ¯̂p
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+ ρ̂ ĝr̂
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∂θ
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− τ̂ tθθ
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, (2)

∂

∂ t̂

[
ρ̂ ¯̂v

]
+ ∇̂ ·

[
ρ̂ ¯̂v ¯̂u

]
= 1

r̂2
∂

∂ r̂

[
r̂2 ¯̂τθ r̂

]
+ 1

r̂

∂
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¯̂τθθ + ∂
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θξ̂

− 1
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∂

∂ t̂

[
ρ̂ ¯̂w

]
+ ∇̂ ·

[
ρ̂ ¯̂w ¯̂u

]
= 1

r̂

∂

∂ r̂

[
r̂ ¯̂τ

ξ̂ r̂

]
+ 1

r̂

∂

∂θ
¯̂τ
ξ̂θ

+ ∂

∂ξ̂

¯̂τ
ξ̂ ξ̂

− ∂ ¯̂p
∂ξ̂

+ ρ̂ ĝ
ξ̂

+1

r̂

∂

∂ r̂

[
r̂ τ̂ t

ξ̂ r̂

]
+ 1

r̂

∂

∂θ
τ̂ t
ξ̂ θ

+ ∂

∂ξ̂
τ̂ t
ξ̂ ξ̂

, (4)

0 = 1

r̂

∂

∂ r̂

[
r̂ ¯̂u

]
+ 1

r̂

∂ ¯̂v
∂θ

+ ∂ ¯̂w
∂ξ̂

. (5)

The components ¯̂τi j are those that come from ensemble averages of the viscous stress tensor (which itself is
nonlinear). The components τ̂ ti j are the turbulent (Reynolds) stresses, resulting from the fluctuating components of
the velocity field û′, defined as

τ̂ ti j = −ρ̂û′
i û

′
j . (6)

The gravitational acceleration, ĝ = (ĝr̂ , ĝθ , ĝξ̂
), is given by

ĝr̂ = −ĝ sin β(ξ̂ ) cos θ, ĝθ = ĝ sin β(ξ̂ ) sin θ, ĝ
ξ̂

= −ĝ cosβ(ξ̂ ), (7)

where ĝ = 9.81m/s2.

2.1 Scaling and simplification

We wish to reduce our model to something more tractable than (2)–(5), by exploiting the aspect ratio of the annulus.
The annulus geometry is typically long and narrow, with the typical gap half-width (∼1 cm) being much smaller
than a typical azimuthal distance (∼30 cm), which in turn is much smaller than a typical length of the annulus
(∼500 m).

Following [6], let the mean radius (r̂a,0), the local and global aspect ratios (δ(ξ̂ ) and δ0 respectively) be defined
by

r̂a,0 = 1

Ẑ

∫ ξ̂t z

ξ̂bh

r̂a(ξ̂ ) dξ̂ , δ(ξ̂ ) = d̂(ξ̂ )

r̂a(ξ̂ )
, δ0 = 1

Ẑ

∫ ξ̂t z

ξ̂bh

δ(ξ̂ ) dξ̂ . (8)

where Ẑ is the length of the zone of the well to be cemented, extending upwards from bottom hole, ξ̂bh , to the top
of the zone, ξ̂t z . Scaled axial and azimuthal coordinates ξ and φ are then

ξ = ξ̂ − ξ̂bh

π r̂a,0
, φ = θ

π
. (9)
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In each cross section, we define the local average radius, r = ra(ξ), and local annulus eccentricity, e(ξ), by

ra(ξ) = r̂a(ξ̂ )

r̂a,0
, e(ξ) = ê(ξ̂ )

2d̂(ξ̂ )
. (10)

The centreline of the annular gap is at r̂ = r̂a,0ra(ξ)rc(φ, ξ). The radial coordinate is scaled relative to the distance
from the centreline of the annulus, as follows:

y = r̂ − r̂a,0ra(ξ)rc(φ, ξ)

r̂a,0δ0
, (11)

i.e. y is a local annular gap coordinate.
We assume a narrow annulus approximation: δ(ξ) ∼ δ0 � π ; noting that δ0/π , denotes the ratio of radial (gap)

length-scales to azimuthal length-scale. To leading order in δ0/π , we have rc(φ, ξ) ∼1 and find that the inner and
outer walls are at y = ∓H(φ, ξ), where

H(φ, ξ) = δ(ξ)ra(ξ)[1 + e(ξ) cosπφ]
δ0

. (12)

More complex geometries are readily accommodated by specifying any H(φ, ξ) of O(1) that varies slowly with
ξ , e.g. H(φ − φ0(ξ), ξ) with H as above, retains the eccentric annular shape but shifts the wide side of the annulus
to φ = φ0(ξ). Helically varying well eccentricity, elliptic cross sections and irregular washouts are each fairly
common deviations away from (12).

Time is scaled with an advective timescale: π r̂a,0/
ˆ̄W where ˆ̄W is representative of a mean axial velocity. For

simplicity, we assume that the fluids are pumped following a schedule of pump rates: Q̂pump(t̂), typically a step
function. The pump schedule is used to define a representative flow rate Q̂0, e.g. the maximum flow rate. The mean

axial velocity is ˆ̄W = Q̂0/ Â0, where Â0 = 4πδ0[r̂a,0]2 is a typical cross-sectional area of the annulus.
We now consider the relative sizes of the different terms in (2)–(5), with a view to simplification. Given that

δ0/π � 1, we may assume that the dominant components of mean velocity will be in the (φ, ξ)-directions, scaling

approximately with ˆ̄W . The incompressibility condition (5) suggests that the radial component of mean velocity

scales with δ0
ˆ̄W/π . Therefore, we can see that the acceleration and inertial terms on the left-hand side of (2), (3)

and (4) have respective sizes:

δ0

π

ρ̂ ˆ̄W 2

π r̂a,0
,

ρ̂ ˆ̄W 2

π r̂a,0
,

ρ̂ ˆ̄W 2

π r̂a,0
.

Simplifying the stress terms on the right-hand side of (2), (3) and (4) is less straightforward. A number of authors
have computed turbulent flows of Newtonian fluids in uniform eccentric annuli and calculated the Reynolds stresses,
e.g. [30–33]. Here insofar as we are concerned, the main point is that each component of τ̂ ti j has similar magnitude,
because the fluctuating velocity is inherently three-dimensional. In considering the viscous stresses, we need to
consider two regions separately: the turbulent core of the annular flow and the wall region. In the turbulent core, the
mean viscous stresses ¯̂τi j , are the average of the viscous stress and not the viscous stress of the averaged strain rate.
Although the strain rate associated with the mean velocity can be estimated using scaling arguments, the fluctuating
velocity also contributes to each component of the strain rate and indeed this contribution may be dominant in the
core. Nonlinearity of the constitutive relations together with the probabilistic nature of the strain rate tensor prevents
any easy simplification. A nice discussion may be found in [34, Chaps. 4 and 5]. All that we assume here is that
the viscous stress components in the core all have similar magnitude, say ¯̂τi j ∼ τ̂ν,0 for some viscous stress scale
τ̂ν,0.
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Conventionally, the Reynolds stresses in the turbulent core have similar size to the wall shear stresses (which
will vary azimuthally in an eccentric annulus). In the wall region, the Reynolds stresses vanish, and the viscous
stresses increase over a thin layer to match the wall shear stress. In this wall region, it is possible to estimate relative
sizes of the different shear rates and approximate the flow. Thus, both turbulent and viscous stresses have roles to
play in describing these flows. This is particularly true in cementing flows which are generally not highly turbulent,
with the exception of low viscosity washes. For the present, we adopt a stress scale τ̂0 that we apply to mean
turbulent and viscous stresses, and discuss the order of magnitudes of dimensionless terms in different flow regimes
later.

Next we consider the gravitational terms. It is common to exploit density differences in creating buoyancy forces
to aid in displacing the in-situ drilling mud. To capture this aspect, we scale all densities with the density ρ̂1 of the
first fluid in the pumping sequence, i.e. the in-situ drilling mud, and subtract the hydrostatic pressure from ¯̂p. It is
assumed that the pressure remaining balances the dominant stress gradients: ¯̂p = ¯̂pbh(t̂) + ρ̂1g · x + (πτ̂0/δ0) p̄,
where ¯̂pbh(t̂) denotes the bottom-hole pressure.

We now substitute the above variables into (2), (3) and (4) and divide through by the largest dimensional scales,
to give the following.

O

(
δ30

π3

ρ̂ ˆ̄W 2

τ̂0

)

︸ ︷︷ ︸
I T

= −∂ p̄

∂y
+ O

(
δ0

π

ρ − 1

Fr2

)

︸ ︷︷ ︸
BT

+ O

(
δ0

π

)

︸ ︷︷ ︸
ST

+ O

(
δ0

π

)

︸ ︷︷ ︸
CT

, (13)

O

(
δ0

π

ρ̂ ˆ̄W 2

τ̂0

)

︸ ︷︷ ︸
I T

= − 1

ra

∂ p̄

∂φ
+ (ρ − 1) sin β sin πφ

Fr2
+ ∂

∂y
[τ tφy + τ̄φy] + O

(
δ0

π

)

︸ ︷︷ ︸
ST

+ O

(
δ0

π

)

︸ ︷︷ ︸
CT

, (14)

O

(
δ0

π

ρ̂ ˆ̄W 2

τ̂0

)

︸ ︷︷ ︸
I T

= −∂ p̄

∂ξ
− (ρ − 1) cosβ

Fr2
+ ∂

∂y
[τ tξ y + τ̄ξ y],+ O

(
δ0

π

)

︸ ︷︷ ︸
ST

+ O

(
δ0

π

)

︸ ︷︷ ︸
CT

, (15)

0 = ∂ ū

∂y
+ 1

ra

∂v̄

∂φ
+ ∂w̄

∂ξ
+ O

(
δ0

π

)

︸ ︷︷ ︸
CT

, (16)

where ρ is the scaled density and Fr is the Froude number:

Fr =
√

τ̂0

ρ̂1ĝδ0r̂a,0
.

Our leading-order model is the narrow gap limit, δ0/π → 0, with other parameters fixed. The different terms that
will vanish in this limit are identified by the under-braces as follows: I T denote the leading-order inertial terms; BT
denotes the next order buoyancy terms; ST denote the next order stress terms (turbulent and viscous); CT denote
terms associated with curvature.

If the flow is fully turbulent, the stress scale τ̂0 is the wall shear stress, so the ratio ρ̂ ˆ̄W 2/τ̂0 that appears in the
I T under-braces is effectively ∼ 1/ f f , for a representative turbulent friction factor f f . Although multiplied by
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δ0/π and formally vanishing in the narrow gap limit, these are likely to be the next largest terms. In the case that

the flow is laminar, the Reynolds stress terms vanish, and the expression ρ̂ ˆ̄W 2/τ̂0 becomes effectively the Reynolds
number, since in this case τ̂0 is correctly interpreted as a viscous stress scale. Taking δ0/π → 0 leads to the laminar
displacement model of [6].

The curvature terms arise both due to replacing the r -derivativesmarizewith y-derivatives (changing 1/r to
1/ra + O(δ0/π)), and due to slow variations in ξ as the well trajectory changes (assumed of O(δ0/π)). The next
order stress terms are also only O(δ0/π) smaller in the turbulent flow: from scaling, using the geometric aspect
ratio, i.e. the partial derivatives are smaller in the (φ, ξ)-plane than with respect to y. If the flow were laminar, then
the Reynolds stresses would vanish and scaling arguments can be used to estimate the size of the viscous stresses;
the next largest stresses appear at O((δ0/π)2).

To summarize, if we consider the next order terms we see that there is a proliferation of terms at order δ0/π :
buoyancy terms, inertial, stress and curvature. The main point here is that to include the next order of terms in δ0/π

is prohibitively complex. On the other hand, considering the formal narrow gap limit, δ0/π → 0, although the
scaling arguments are different the leading-order equations are similar to those of [6].

2.2 Narrow gap approximation

Proceeding with the narrow gap approximation, we take δ0/π → 0 in (13)–(16). To eliminate ū, we integrate (16)
across the gap width, using conditions of no-slip at the annulus walls:

∂

∂φ
[2H ¯̄v] + ∂

∂ξ
[2raH ¯̄w] = 0, (17)

where

¯̄v(φ, ξ, t) = 1

2H

∫ H

−H
v̄ dy, ¯̄w(φ, ξ, t) = 1

2H

∫ H

−H
w̄ dy. (18)

Equation (17) is satisfied using a stream function:

2raH ¯̄w = ∂Ψ

∂φ
, 2H ¯̄v = −∂Ψ

∂ξ
. (19)

For later convenience, we introduce 2D annular divergence and gradient operators as follows:

∇a · q = 1

ra

∂qφ

∂φ
+ ∂qξ

∂ξ
, ∇aq =

(
1

ra

∂q

∂φ
,
∂q

∂ξ

)
.

Turning now to the momentum balance, from (13) we see the pressure is independent of y, as is ρ (see below in
Sect. 3). Equations (14) and (15) may be integrated across the annular gap, assuming symmetry at y = 0 for this
leading-order approximation:
(
τ tφy + τ̄φy, τ

t
ξ y + τ̄ξ y

)
= y

(
1

ra

∂ p̄

∂φ
− (ρ − 1) sin β sin πφ

Fr2
,
∂ p̄

∂ξ
+ (ρ − 1) cosβ

Fr2

)
. (20)

The leading-order stresses are only non-zero in the direction of the modified pressure gradient. Viewed in the
(φ, ξ)-plane, this is a one-dimensional (1D) turbulent shear flow through a channel of width 2H(φ, ξ), driven in
the direction of

−
(
1

ra

∂ p̄

∂φ
− (ρ − 1) sin β sin πφ

Fr2
,
∂ p̄

∂ξ
+ (ρ − 1) cosβ

Fr2

)
,
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which is therefore also the direction of the streamlines, say es :

es = ( ¯̄v, ¯̄w)√
¯̄v20 + ¯̄w2

0

= 1

|∇aΨ |
(

−∂Ψ

∂ξ
,
1

ra

∂Ψ

∂φ

)
. (21)

The integrated momentum balance (20) can now be resolved along the streamlines, in the es direction:

τ tsy + τ̄sy = − y

H
τw, (22)

where the dimensionless wall shear stress τw is:

τw = H

∣∣∣∣
(
1

ra

∂ p̄

∂φ
− (ρ − 1) sin β sin πφ

Fr2
,
∂ p̄

∂ξ
+ (ρ − 1) cosβ

Fr2

)∣∣∣∣ . (23)

In [35], we solved (22) to give an expression for the leading-order turbulent mean velocity for a Herschel–Bulkley
fluid, based on the phenomenological approach of Metzner–Reed–Dodge [36–38]. For the purposes of our model,
we simply note that [35] provides a closure expression τw = τw(|∇aΨ |;φ, ξ, t). The local dependency (φ, ξ)

explicitly reflects the local geometric variables, and the fluid rheology is represented implicitly with dependency
(φ, ξ, t) as the fluids are displaced; see Appendix A.

Combining (21) and (23), we have

1

|∇aΨ |
(

−∂Ψ

∂ξ
,
1

ra

∂Ψ

∂φ

)
= − H

τw

(
1

ra

∂ p̄

∂φ
− (ρ − 1) sin β sin πφ

Fr2
,
∂ p̄

∂ξ
+ (ρ − 1) cosβ

Fr2

)
, (24)

which can be rearranged and cross-differentiated to eliminate the pressure:

∇a · [S + b] = 0 (25)

in which

S = raτw(|∇aΨ |)
H |∇aΨ | ∇aΨ and b = ra (ρ − 1)

Fr2
(cosβ, sin πφ sin β) . (26)

The term ∇a · S in (25) is a quasilinear elliptic operator on Ψ and the term ∇a · b provides a source term that is
driven by the spatial gradients of the buoyancy vector b. Note that (25) contains no time derivatives: time enters
only via (i) boundary data, e.g. if the flow rate changes; (ii) through the fluid concentrations, which affect both fluid
rheology and buoyancy.

Note that we have still not fixed the shear stress scale τ̂0, and this is not particularly important as all terms
in (25) are scaled with τ̂0. Although this paper has targeted turbulent flows in terms of the novel contribution to

modelling of primary cementing, laminar flows aremore prevalent. The scale ρ̂1
ˆ̄W 2 also over-estimates the turbulent

stresses (by using the mean velocity and not a friction velocity), and these in turn are larger than the typical laminar
viscous stresses. In addition, the objective has been to develop a model capable of dealing with mixed flow regimes.
Consequently, we define a τ̂0 that is relevant to the laminar viscous stresses:

τ̂0 = max
k

{
τ̂k,Y + κ̂k ˆ̇γ nk

0

}
, ˆ̇γ0 = 3 ˆ̄W

δ0r̂a,0
, (27)
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with τ̂k,Y , κ̂k , and nk , respectively the yield stress, consistency and power-law index of fluid k in the pumped
sequence. Using this scale we define the functions τw(|∇aΨ |) and S, by using the closure expressions in [35], as
outlined in Appendix A.

2.2.1 Boundary conditions

The elliptic second order equation (25) determines the stream function, and hence gap-averaged velocity, at each
time. It requires suitable boundary conditions in order to be solved. The annular domain has been reduced via the
scaling to rectangular domainΩ , representing the unwrapped gap-averaged annulus. At each timestep it is necessary
to specify suitable boundary conditions on ∂Ω in order to solve (25). We suppose that ∂Ω can be split into ∂ΩΨ

and ∂ΩS :

Ψ = Ψb, (φ, ξ) ∈ ∂ΩΨ , (28)

S · n = f, (φ, ξ) ∈ ∂ΩS, (29)

where Ψb and f are specified boundary data. The conditions are explained below.
First, in the azimuthal direction if the geometry is fixed so that the narrow side of the annulus is the lowest side,

then one may simplify the model by assuming that the flow is symmetric in φ along both wide and narrow sides:

Ψ (0, ξ, t) = 0, (30)

Ψ (1, ξ, t) = 2Q(t), (31)

where Q(t) is the dimensionless flow rate (and Ω = [0, 1] × [0, Z ]). Note that by rearranging (24), S can also be
expressed in terms of the pressure gradients as

S =
(

−ra
∂ p̄

∂ξ
− ra(ρ − 1) cosβ

Fr2
,
∂ p̄

∂φ
− ra(ρ − 1) sin β sin πφ

Fr2

)
.

Thus, the symmetry condition ¯̄v = 0, which gives Sξ = 0, also implies that ∂ p̄
∂φ

= 0.
On the other hand, suppose we consider a full annulus, with no symmetry imposed at wide and narrow sides

(Ω = [0, 2] × [0, Z ]). Then an alternate to (30) and (31) would be

Ψ (φ + 2, ξ, t) = Ψ (φ, ξ, t) + 4Q(t), (32)

fixing only the total flow rate. In using (32), if onewanted toworkwith the pressure, the pressurewould be 2-periodic
in φ.

Secondly, for the end conditions, following [9], we might expect to impose Dirichlet conditions at the inflow,
ξ = 0:

Ψ (φ, 0, t) = Ψ0(φ, t), (33)

e.g. a uniform inflow velocity can be specified, reflecting the fact of some kind of entry/development region,
following local mixing as the fluids enter the annulus. Similarly, at the outflow (ξ = Z ), it might be appropriate to
assume a fully developed flow profile:

Ψ (φ, Z , t) = ΨZ (φ, t). (34)

The fully developed profile above of course needs to be specified. The natural way to do this is by neglecting
ξ -derivatives in (25), due to the length of the annulus, which leads to

∂

∂φ
[Sφ + bφ] = 0,
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which in turn implies that ∂ p̄
∂ξ

is independent of φ. The fully developed profile would be found computationally

by decreasing ∂ p̄
∂ξ
, which increases the axial velocity at each φ (hence the flowrate), until the net imposed flowrate

through the exit section is attained. Although this appears a convoluted procedure, it is straightforward numerically.
As an alternative to (33) and (34), one might impose Neumann conditions ( ∂Ψ

∂ξ
= 0) at each end of the annulus,

e.g. as in [10]. Note that the Neumann condition, implies that Sξ = 0, which specifies S · n on the boundary with
outward normal n, i.e. a condition of type (29). Depending on the density gradients at inflow and outflow we might
choose to specify S · n in terms of the buoyancy b · n.

3 Mass transport

Wenow turn to transport of the different fluids along the annulus, assuming that at each time the elliptic problem (25)
can be solved to give the gap-averaged velocity field. This suggests a similar model reduction will be appropriate
for the different fluids and now proceed to derive this.

The concentrations of each individual fluid component ck are modelled by an advection–diffusion equation:

∂ck
∂ t̂

+ 1

r̂

∂

∂ r̂
[r̂ ûck] + 1

r̂

∂

∂θ
[v̂ck] + ∂

∂ξ̂
[ŵck] = ∇̂ · [D̂k,m∇̂ck], (35)

where
∑K

k=1 ck = 1 and D̂k,m represents the molecular diffusivity of species k within the mixture. For the turbulent
flow, we apply the usual Reynolds decomposition and introduce the closure:

−û′c′
k = D̂t ∇̂ c̄k, (36)

where D̂t is the turbulent diffusivity of species k (assumed the same for each species). Equation (35) becomes

∂ c̄k
∂ t̂

+ 1

r̂

∂

∂ r̂
[r̂ ¯̂uc̄k] + 1

r̂

∂

∂θ
[ ¯̂vc̄k] + ∂

∂ξ̂

[ ¯̂wc̄k] = ∇̂ · [(D̂t + D̂k,m)∇̂ck
]
. (37)

We now apply the scaling introduced earlier.We anticipate that themain diffusive term is D̂t whichwill scale with

the local gapwidth and friction velocity, but here introduce a global scale: δ0r̂a,0
ˆ̄W for the purposes of simplification.

The scaled system is

δ0

π

(
∂ c̄k
∂t

+ ∂

∂y
[ūc̄k] + 1

ra

∂

∂φ
[v̄c̄k] + ∂

∂ξ
[w̄c̄k]

)
= ∂

∂y

[
Dk

∂ c̄k
∂y

]
+

(
δ0

π

)2

∇a · [Dk∇ac̄k] (38)

with Dk = Dt + 1/Pek and Pek = δ0r̂a,0
ˆ̄W/D̂k,m, Dt = D̂t/[δ0r̂a,0

ˆ̄W ]. On the left-hand side of (38), we have
neglected terms that come from approximating geometry/curvature effects, which are O(δ/π) smaller than those
considered. On the right-hand side, we have also neglected terms of O(δ/π) that come from approximating the
radial diffusion term.

Eliminating these curvature/geometry terms only, while retaining the other terms may appear questionable as
a perturbation procedure. However, note that the intention is to include the leading-order effects of all physically
relevant transport processes. It is evident that (38) represents a singular perturbation, in which the leading-order
concentration will be constant across the annular gap (see below).We thus retain the first order advective component
on the left-hand side as this is responsible both for advection of themean concentration and dispersive effects, within
the plane of the narrow annulus. We also wish to evaluate the balance between turbulent diffusion and dispersion
within the (φ, ξ)-plane and consequently retain the diffusive terms in (φ, ξ) directions. Lastly, although curvature
may effect cross-gap diffusion the leading-order effect is included in the order 1 terms.
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3.1 Dispersion effects

We look for a perturbation approximation to (38) in terms of the parameter δ0/π � 1. The velocity is assumed to
have the following form

ū = ¯̄u0 + ũ0 +
(

δ0

π

)
ũ1 +

(
δ0

π

)2

ũ2 + · · · , (39)

0 =
∫ H

−H
ũ j dy, j = 0, 1, 2 . . . , (40)

i.e. the velocity (which we recall is anyway ensemble averaged) is decomposed into a gap-averaged component ¯̄u0
and successive components at each order that describe the y-variation. We assume that ¯̄u0 = (0, ¯̄v, ¯̄w), as defined
in (18), and that ũ0 = 0, i.e. the radial component of velocity only arises at the first order. Similarly we write

c̄k = c̄k,0 +
(

δ0

π

)
c̄k,1 +

(
δ0

π

)2

c̄k,2 + · · · , (41)

0 =
∫ H

−H
c̄k, j dy, j = 1, 2 . . . , (42)

Here following [39,40], we use method of multiple timescales suggested by [41] in which we assume that the
variables respond on both the advective time t and on a slower timescale T = (δ0/π) t , where we expect diffusive
effects to come into play. Note that no-slip boundary conditions are satisfied by ū at the walls, where also the
diffusive fluxes of c̄k are zero (Neumann condition).

Substituting these expressions into (38), we find that at leading-order c̄k,0 is independent of y, as we have already
assumed previously in analysing the momentum balance. From (42) we interpret c̄k,0 as the gap-averaged mean
concentration. The first-order equations are as follows:

(
∂ c̄k,0
∂t

+ ∂

∂y
[ũ0c̄k,0] + ∇a · [c̄k,0( ¯̄v + ṽ0, ¯̄w + w̃0)]

)
= ∂

∂y

[
Dk,0

∂ c̄k,1
∂y

]
. (43)

Integrating across the channel shows that

∂ c̄k,0
∂t

+ ( ¯̄v, ¯̄w) · ∇ac̄k,0 = 0 (44)

and on substituting back into (43) and using the continuity equation

∂

∂y

[
Dk,0

∂ c̄k,1
∂y

]
= (ṽ0, w̃0) · ∇ac̄k,0, ⇒ ∂ c̄k,1

∂y
=

∇ac̄k,0 ·
(∫ y

−H
(ṽ0, w̃0) dy

′
)

Dk,0
. (45)

The expression (44) says that on the advective timescale t the leading-order concentration is simply advected along
the streamlines.

To understand evolution on the slow timescale T , we move to a frame of reference moving along the gap-
averaged streamlines. The coordinates (s, n) align locally with the directions es and en : tangential and normal to the

streamlines, respectively. The gap-averaged speed in the direction of the streamline is denoted ¯̄s0 =
√

¯̄v20 + ¯̄w2
0 =

|∇aΨ |/(2H). To further integrate (45), recall that in analysing the momentum balance in the previous section, we
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have shown that the leading-order turbulent velocity is in the direction of the pressure gradient. Therefore, the two
vectors ( ¯̄v0, ¯̄w0) and (ṽ0, w̃0) are parallel and only in direction es , i.e.

( ¯̄v, ¯̄w) · ∇ac̄k,0 = ¯̄s0 ∂ c̄k,0
∂s

and (ṽ0, w̃0) · ∇ac̄k,0 = s̃0
∂ c̄k,0
∂s

,

where s̃0(y) gives the variation in the mean speed across the narrow gap. Substituting into (43) and integrating the
first order terms, we get

c̄k,1 = c̄k,1(−H) + ∂ c̄0
∂s

∫ y

−H

1

Dk,0

∫ y′

−H
s̃0 dy′′dy′ = c̄k,1(−H) + ∂ c̄0

∂s
k(y) (46)

in which

k(y) =
∫ y

−H

1

Dk,0

∫ y′

−H
s̃0 dy′′dy′.

By construction, c̄k,1(−H) = −k̄ ∂ c̄k,0
∂s where k̄ is the average of k(y) across the gap. Thus, c̄k,1 is expressed in

terms of ∂ c̄k,0
∂s and the distribution of velocity across the gap. Before proceeding, note that the leading-order velocity

is based on the narrow channel approximation, which leads to an even function: s̃0(y) is symmetric about y = 0.
Also since

0 =
∫ H

−H
s̃0(y) dy = 2

∫ H

0
s̃0(y) dy = 2

∫ 0

−H
s̃0(y) dy,

we may write

k(y) =
∫ y

−H

1

Dk,0

∫ y′

0
s̃0 dy′′dy′,

and note that the integral of s̃0(y) will be an odd function. The function Dk,0(y) is also defined by the leading order
velocity and can be assumed to be an even function. The integrand above is therefore also an odd function. From
this, we may conclude that k(y) is an even function and that k(−H) = k(H) = 0. Similarly, c̄k,1 is an even function
of y.

At the next order of asymptotic expansion, in the moving frame of reference, we collect terms of O((δ0/π)2):

∂ c̄k,0
∂T

= −∇a · [
c̄k,1(ṽ0, w̃0)

] + ∇a.(Dk,0∇ac̄k,0)

−∂ c̄k,1
∂t

− ¯̄s0 ∂ c̄k,1
∂s

− ∂

∂y
(ũ1c̄k,0) − ∇a · [

c̄k,0(ṽ1, w̃1)
]

+ ∂

∂y

(
Dk,0

∂ c̄k,2
∂y

)
+ ∂

∂y

(
Dk,1

∂ c̄k,1
∂y

)
+ ∂

∂y

(
Dk,2

∂ c̄k,0
∂y

)
. (47)

We integrate (47) across the gap width. The terms in the first line of (47) do not vanish. In the second line, the first
two terms are linear in quantities that integrate to zero. For the last two terms, we use the incompressibility of ũ1:

∂

∂y
(ũ1c̄k,0) + ∇a · [

c̄k,0(ṽ1, w̃1)
] = ũ1 · ∇ c̄k,0 = ∇ac̄k,0 · (ṽ1, w̃1).
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These terms now integrate to zero across the gap. In the third line, the terms vanish as there is no flux through the
walls.

On substituting from (46), we see that the slow time evolution of c̄k,0 in the frame of reference moving along the
streamline is governed by

2H
∂ c̄k,0
∂T

= −
∫ H

−H

∂

∂s

[
s̃0(k(y) − k̄)

∂ c̄k,0
∂s

]
dy +

∫ H

−H
∇a.(Dk,0∇ac̄k,0) dy. (48)

The first term on the right-hand side of (48) is the Taylor dispersion term, which we write as follows:
∫ H

−H

∂

∂s

[
s̃0(k − k̄)

∂ c̄k,0
∂s

]
dy = ∂

∂s

[(∫ H

−H
s̃0k dy

)
∂ c̄k,0
∂s

]
+ 2

∂H

∂s

∂ c̄k,0
∂s

[s̃0(H)k̄]

= − ∂

∂s

[
2HDT

∂ c̄k,0
∂s

]
+ 2

∂H

∂s

∂ c̄k,0
∂s

[s̃0(H)k̄],

DT = 1

2H

∫ H

−H

1

Dk,0(y)

(∫ y

−H
s̃0(y

′)dy′
)2

dy.

The second term on the right-hand side of (48) reflects the average effect of the diffusivity Dk,0. At y = ±H , the
turbulent term vanishes, leaving only a negligible molecular contribution 1/Pe � 1. Therefore, we can write
∫ H

−H
∇a · (Dk,0∇ac̄k,0) dy = ∇a ·

∫ H

−H
(Dk,0∇ac̄k,0) dy

−∇aH · ∇ac̄k,0[Dk,0(H) + Dk,0(−H)]
= ∇a · [2H D̄∇ac̄k,0] + O(1/Pe),

D̄ = 1

2H

∫ H

−H
Dk,0 dy.

Combining the above expressions with (44), reverting back to the single timescale t and transforming back into
the fixed frame of reference, we arrive at the following equation for the evolution of the leading-order concentration:

∂ck,0
∂t

= −( ¯̄v0, ¯̄w0) · ∇ack,0 + δ0

π

(
1

2H
es · ∇a

[
(2HDT )es · ∇ack,0

]

− k̄s̃0(H)

H
(es · ∇aH)(es · ∇ack,0) + 1

2H
∇a · [

2H D̄∇ac̄k,0
])

. (49)

Equation (49) describes how the leading-order concentrations of fluid k change. The right-hand side has four terms.
Firstly, we have advection with the mean flow. Secondly, we have a pure Taylor-dispersion term, which we can see
takes the form of an anisotropic diffusivity, i.e. only along the streamlines (in direction es). The third term results
from variations in width of the annulus. The fourth term on the right-hand side gives the averaged effect of the
diffusivity. In [35], we have modelled the velocity profiles for the flow along a uniform plane channel, i.e. ¯̄s0+ s̃0(y)
and have used this, together with estimates of the turbulent diffusivity, to compute the Taylor dispersivity DT . In
general, it is found that D̄ � DT . In highly turbulent flows, DT decreases, but still remains two orders of magnitude
larger than D̄. Thus, it is the first two dispersive terms that are of most interest.

We may extract the variation of H from the first term and rewrite (49) as

∂ck,0
∂t

= −( ¯̄v0, ¯̄w0) · ∇ack,0 + δ0

π

(
es · ∇a[DT es · ∇ack,0] + 1

2H
∇a · [2H D̄∇ac̄k,0]

)

+δ0

π
(es · ∇aH)(es · ∇ack,0)

DT − D∗
T

H
, (50)
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where

D∗
T = k̄s̃0(H) = − s̃0(H)

2H

∫ H

−H

y

Dk,0(y)

∫ y

−H
s̃0(y

′)dy′dy. (51)

We see that nominally D∗
T has the same size as DT . Note that the last term in (50) will vanish when the annulus is

concentric. Also we should note that in most displacement flows through long annuli the streamlines are pseudo-
parallel to the ξ -axis for most of the annulus and H generally varies slowly with ξ , so this last term is mostly
insignificant. However, in interfacial regions between two displacing fluids we often see azimuthal velocities of a
similar size to the axial velocity. These regions are of course also where the main Taylor dispersion term is active.
Therefore, the interplay between these two terms needs investigating. Local closure expressions for DT , D∗

T and
D̄, in terms of the expressions derived in [35], are given later in Appendix A.5.

3.2 Boundary conditions

Boundary conditions for (50) are generally that ck,0 is specified at the inflow to the annulus, either from a pump
schedule or from coupling with a predictive model of the downwards displacement flow in the casing. Along the
sides of the annulus, either a symmetry condition is imposed, i.e. ∂ck,0

∂φ
= 0, or potentially a periodicity condition

in the case that the full annulus is resolved and no symmetry is assumed. At the outflow, we generally assume
that ∂ck,0

∂ξ
= 0, although in cases of large density differences we may have counter-current flows with denser fluids

entering the annulus and need to specify accordingly.

4 Annular displacement flow model

To summarize the derivations of the previous 2 sections, leading-order annular displacement flows (across mixed
flow regimes) are governed by the coupled system:

∇a · [S + b] = 0 (52)
1

2H
∇aΨ = ( ¯̄w0,−¯̄v0), (53)

∂ck,0
∂t

+ ( ¯̄v0, ¯̄w0) · ∇ack,0 = δ0

π

(
es · ∇a

[
DT es · ∇ack,0

] + 1

2H
∇a · [

2H D̄∇ac̄k,0
])

+δ0

π
(es · ∇aH)

(
es · ∇ack,0

) DT − D∗
T

H
(54)

with associated boundary conditions. Due to the lengthy derivation, we shall defer full analysis of this system to
be future paper. Here we focus on presenting some example simulations that indicate the process complexity (Sect.
4.2) and give some basic estimates for diffusion/dispersion effects.

4.1 Computational overview

For brevity, we do not present algorithmic details here, as the method is very similar to that used in [7]. The
computational domain is rectangular, and we use a second-order finite difference method on a staggered mesh:
representing the fluid concentrations at cell centres and the stream function at the gridpoints (corners). We have
used 30 mesh cells in the azimuthal direction and 100 cells along the annulus. At each timestep, the stream function
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is found by solving (52) using an augmented Lagrangian procedure as in [7]. This algorithm is slow to converge
and not motivated by (or needed for) the turbulent regime, i.e. many faster methods could be employed. However,
mixed flow regimes are common in primary cementing, and this algorithm resolves those parts of the flow where
fluids are immobile due to the yield stress. Hence, we retain this feature at the expense of speed.

The concentration enters the stream function equation through the buoyancy field b and through the local fluid
properties. Having found the stream, we construct the velocity field from (53) and advance the fluid concentrations
in time by solving (54). The algorithm employed for the advective parts of (54) is the FCT scheme, as in [7], with
the diffusive and dispersive terms discretized explicitly using central differences. For the non-diffusive problem, a
concentric annulus with positive density difference leads to an analytical solution for the interface shape [9], which
has been used as a validation problem.

4.2 Example displacement scenarios

To explain different features of our model, here we present a few displacement examples. We focus these examples
at annulus dimensions that are more typical of a laboratory flow loop setting, with r̂i = 6.5 cm, r̂o = 9 cm, Ẑ = 20
m. The annulus will here be assumed vertical β = 0. More realistic well dimensions are saved for our later study in
which we systematically explore turbulent and mixed regime effects. For all the results presented, we have restricted
the simulation to only one half of the annulus—assuming symmetry at the wide and narrow sides.

Example 1 In the first example, we probe the effect of dispersion. Fluid 1 has properties: ρ̂1 = 1100 kg/m3, κ̂1 =
0.002 Pa.sn, n1 = 0.9, τ̂Y,1 = 0 Pa. The displacing fluid has identical properties. The annulus has eccentricity
e = 0.5 but is otherwise uniform, and the flow rate is constant (Q = 0.01 m3/s). In this scenario as the fluids are
identical, we expect a stream function that varies only with φ (parallel streamlines), i.e. the flow is fully developed
and velocity is only in the axial direction. Figure. 2 presents a colourmap of the fluid concentrations as they advance
along the annulus: fluid 1 (red) is displaced by fluid 2 (blue). The eccentricity leads to faster flows on the wider side
(W) than on the narrow side (N). The interface constantly elongates as a consequence. In Fig. 2a, we have set to
zero all terms on the right-hand side of (54). In Fig. 2b, we included Taylor dispersion and the turbulent diffusivity
(first and second terms on the right-hand side of (54). Finally, Fig. 2c solves (54) in its complete form.

Figure 2a essentially shows the performance of the FCT scheme in advecting the front. Numerical smearing
(diffusion/dispersion) of the front is present but is kept to a few cells in width. For this flow in particular (1D),
there are no secondary flows that can advectively mix intermediate concentrations. The front is sharpened by mesh
refinement of course, at the expense of longer computational times. As commented and illustrated in Fig. 6, turbulent
diffusivity is at least two orders of magnitude smaller than Taylor dispersion. Including the diffusivity terms here
has little effect as shown in Fig. 2a; numerical diffusion/dispersion has a larger effect on these mesh sizes.

Figure 2b shows a significant effect of DT , in comparison to Fig. 2a. The front spreads most on the wide side,
thickening to about 2 m by the end of the annulus. We observe that there is no discernible difference between
Figs. 2b, c, although the term D∗

T is in fact larger than DT (see Fig. 6). This illustrates the points made earlier
regarding the last term in (54). Here the streamlines are parallel, so es · ∇ack,0 is only in the ξ direction. Equally,
H does not vary with ξ so that es · ∇aH = 0.

Example 2 Our second example explores mixed flow regimes and buoyancy effects, again in an eccentric annulus
(e = 0.5). In Fig. 3, fluid 1 (red) has properties: ρ̂1 = 1300 kg/m3, κ̂1 = 0.002 Pa.sn, n1 = 0.8, τ̂Y,1 = 0 Pa, and
fluid 2 (blue) has properties: ρ̂2 = 1200 kg/m3, κ̂2 = 0.004 Pa.sn, n1 = 0.9, τ̂Y,1 = 1 Pa. The fluids are pumped at
Q = 0.01 m3/s. The fluid rheologies are not very different to example 1, but there is a significant (unstable) density
difference. Figure 3a is an extreme example of an unsteady displacement. There is an unfavourable density difference
but favourable rheology difference between the displaced and displacing fluids. However, this rheology difference
is apparently ineffective as we observe that fluid two rapidly channels up the wide side of the annulus by-passing
fluid 1. The flow regimes are shown in the last two panels of the figure, at 2 times late in the displacement (white,
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(a)

(b)

(c)

Fig. 2 Turbulent displacement in an eccentric annulus: e = 0.5. Colour maps of the concentration are shown in dimensionless
coordinate system (φ, ξ) at different dimensionless times as the front progresses along the annulus. White lines are streamlines with
spacing ΔΨ = 0.25. a No dispersion or diffusivity (D̄ = DT = D∗

T = 0); b only Taylor dispersion (D∗
T = DT ); c both dispersive

terms included. Fluid 1 (red) properties: ρ̂1 = 1100 kg/m3, κ̂1 = 0.002 Pa.sn, n1 = 0.9, τ̂Y,1 = 0 Pa; fluid 2 is identical (blue). (Color
figure online)
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(a)

(b)

(c)

Fig. 3 a, b Mixed regime displacement flows in an eccentric annulus e = 0.5 at Q̂ =0.01 m3/s. White lines are streamlines with
ΔΨ = 0.25. The last 2 panels on the right show the flow regime: white, grey and black regions are turbulent, transitional and laminar,
respectively. a Unsteady displacement with properties: fluid 1 (red), ρ̂1 = 1300 kg/m2, κ̂1 = 0.002 Pa.sn, n1 = 0.8, τ̂Y,1 = 0 Pa;
and fluid 2 (blue), ρ̂2 = 1200 kg/m3, κ̂2 = 0.004 Pa.sn, n2 = 0.9, τ̂Y,2 = 1 Pa. b Steady displacement with properties: fluid 1 (red),
ρ̂1 = 1100 kg/m3, κ̂1 = 0.002 Pa.sn, n1 = 0.9, τ̂Y,1 = 0 Pa; and fluid 2 (blue), ρ̂2 = 1300 kg/m3, κ̂2 = 0.01 Pa.sn, n1 = 0.7, τ̂Y,1 = 1
Pa. c A fully turbulent unsteady displacement with the same fluids as case b, but now Q̂ = 0.05 m3/s. (Color figure online)
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grey and black regions are turbulent, transitional and laminar, respectively). We observe ahead of the front that
fluid 1 is turbulent all around the annulus. Primarily turbulent flows are found behind the front (in both fluids). This
strange flow configuration results because fluid 1 is in fact flowing backwards against the displacement direction,
on the narrow side behind the displacement front.

The second row of this example shows another mixed regime displacement. The fluid rheologies are only slightly
changed from Fig. 3a, but the density difference is reversed, i.e. fluid 2 is heavier than fluid 1.We see a displacement
front that is approximately steady (apart from dispersion at the interface) and which effectively removes fluid 1
from the annulus. This reinforces the impression that the rheological difference between the two fluids is largely
irrelevant: the steady displacement results from the stabilizing density difference, whereas that in Fig. 3a was
unsteady. In this example, mixed regime flows are found behind the advancing displacement front. Due to the
eccentricity and the yield stress in fluid 2, the flow ranges from fully turbulent through transitional to a laminar
regime as we move azimuthally.

Figure 3a, b gives the impression that in turbulent displacements, buoyancy effects play a key role. This runs
slightly counter to the intuitive notion that turbulent flows are effective in spreading momentum azimuthally. To
explore this, we further increase the flow rate to Q̂ = 0.05 m3/s in Fig. 3c, keeping the fluid properties the same as
in b. Remarkably, the more turbulent flow appears to displace less effectively. We observe that the front advances
and elongates along the wide side of the annulus. The concentration profiles are similar to those of Example 1.

Intuitively what has happened here is that the turbulent stresses have increased (approximately quadratically)
with the increasing flow rate and now dominate the stabilizing buoyancy terms. At this point, neither buoyancy nor
rheology is relevant in comparison to the turbulent stresses. In this highly turbulent limit, the asymptotic growth of
τw (see Fig. 5a) is largely independent of n. Thus, we expect a similar distribution of velocity around the annulus
in both fluids and observe that the frontal evolution is primarily advective and unidirectional.

Example 3 In our final example, we explore the effects of dispersion in a more complex displacement scenario.
Here fluid 1 (red) is displaced by sequentially pumping fluid 2 (green) and then fluid 3 (blue), with properties:
ρ̂1 = 1300 kg/m3, κ̂1 = 0.002 Pa.sn, n1 = 0.8, τ̂Y,1 = 0 Pa; ρ̂2 = 1100 kg/m3, κ̂2 = 0.05 Pa.sn, n2 = 1, τ̂Y,2 =
1 Pa; ρ̂3 = 1300 kg/m3, κ̂3 = 0.002 Pa.sn, n3 = 0.8, τ̂Y,3 = 0 Pa. Thus, the unstable density difference is expected
to destabilize the front between fluids 1 and 2, whereas the stable density difference between fluids 2 and 3 is
expected to stabilize the front between fluids 2 and 3. The annulus is now concentric.

Figure 4a shows that what we expect does take place. The flows are turbulent and since the annulus is concentric
wemight hope for a steady uniform front to advance. The density difference betweenfluids 1 and 2 however promotes
instability. Note that the system is mathematically analogous to a 2D miscible porous media displacement, with
a nonlinear flow law. We expect the adverse density gradient to be vulnerable to fingering-type instabilities at the
diffuse front, and once these start asymmetries will grow as we observe. Indeed, the initial instability grows and
we see that the unstable fluid 2 eventually advects ahead of fluid 3, i.e. as a large buoyant droplet. Presumably, if
the annulus was mildly eccentric this would influence the azimuthal position where the instabilities first arise and
how they develop. The second interface has no fingering instability between fluids 2 and 3 and due to the positive
buoyancy is stabilizing.

As Fig. 3c suggests, here we might expect that if we increase flow rate, then the flow loses its sensitivity to
density difference and the interface between fluids 1 and 2 may become stable. In Fig. 4b, we test this idea. We
increase the flow rate to Q = 0.05m3/s and observe that this stabilizes the interface between fluids 1 and 2 in spite
of their unsteady density difference. Unlike example 2, the annulus is now concentric so that the geometry does not
itself have any bias, and we appear to have a steady (but dispersive) displacement.

4.3 Estimates of diffusion/dispersion in turbulent displacements

The example simulations of the previous section reveal some interesting physical features that we may now under-
stand better via an order of magnitude analysis. Firstly, having determined that the advective contributions to Taylor
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(a)

(b)

Fig. 4 Turbulent displacement in a concentric annulus with 3 fluids.White lines are streamlines with spacingΔΨ = 0.25. Fluid 1 (red):
ρ̂1 = 1300 kg/m3, κ̂1 = 0.002 Pa.sn, n1 = 0.8, τ̂Y,1 = 0 Pa; fluid 2(green): ρ̂2 = 1100 kg/m3, κ̂2 = 0.05 Pa.sn, n2 = 1, τ̂Y,2 = 1 Pa;
fluid 3 (blue): ρ̂3 = 1300 kg/m3, κ̂3 = 0.002 Pa.sn, n3 = 0.8, τ̂Y,3 = 0 Pa. a Q = 0.01m3/s; b Q = 0.05m3/s. (Color figure online)

dispersion have little effect in regular annuli, we can focus on the first and second terms on the right-hand side of
(54), i.e. Taylor dispersion and mean turbulent diffusivity. Regarding the mean turbulent diffusivity, a rudimentary
analysis suggests that the turbulent diffusivity scales with the gap width times the friction velocity, which in our
variables corresponds to

ˆ̄D ∼ Ŵ0 = δ0
√

f f r̂a,0
ˆ̄W |∇aΨ |, (55)

where f f is the friction factor (see Sect. 1). Thus, the time to diffuse across the annular gap is approximately
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t̂gap ∼ [Hδ0r̂a,0]2
ˆ̄D

∼ δ0r̂a,02H√
f f

ˆ̄W (|∇aΨ |/2H)
.

Physically, this is at most a few seconds in any turbulent section of a typical cemented annulus, which is of course
why the Taylor dispersion regime is always relevant. Note though that (55) is only applicable to turbulent parts of
the annulus. Secondly, note that as δ0/π → 0, t̂gap → 0 and thus formally, in the limit of our narrow-gap model,
this mixing is effectively infinite.

Secondly, we have seen that inmany situations displacement fronts tend to elongate as the displacement proceeds.
Thus, we may ask instead how long it takes for turbulent diffusivity to diffuse azimuthally:

t̂azimuth ∼ [π r̂a,0]2
ˆ̄D

∼ π2r̂a,0

δ0
√

f f
ˆ̄W

.

Evidently t̂azimuth → ∞ as δ0/π → 0. More generally this estimate could take many hundreds of seconds in a
cemented well. Whether this is relevant depends on the time taken to cement a well segment of length Ẑ , t̂cem =
Ẑ/ ˆ̄W . Therefore, azimuthal mixing takes place approximately when Ẑ/ ˆ̄W � t̂azimuth, i.e.

π2r̂a,0

δ0
√

f f Ẑ
� 1.

Lengths of several hundredmetres are required for equality above andwe conclude that azimuthal turbulent diffusion
is only likely to occur in long cemented sections. The fraction of the azimuthal distance over which turbulent
diffusivity spreads across the interface is roughly

√
ˆ̄DẐ/ ˆ̄W
π r̂a,0

=
√

δ0
√

f f Ẑ

π2r̂a,0
.

It seems that the direct effects of turbulent diffusivity may be significant in long wells, in diffusing the front
azimuthally. However, such conclusions are premature and require a more extensive study. Note, for e.g., that the
estimates made above are really based on a model scenario in which 2 parallel streams of fluid enter the annulus
axially and diffuse azimuthally. Instead displacement flows are dynamic and additional timescales enter this type
of estimate, e.g. the development time of the front, in order to elongate, and the axial extent of the elongated
interface.

In the streamwise direction, as we have seen, Taylor dispersion will dominate. In dimensional terms, the Taylor

dispersivity gives a streamwise diffusivity of size: δ0
ˆ̄Wr̂a,0DT , with DT of order 1. We see that after a time Ẑ/ ˆ̄W

Taylor dispersion has typically spread the displacement front a distance
√

δ0 Ẑ r̂a,0DT , which is typically in the
range of 1− 20 m. Again, such estimates are crude and rely on the streamlines being pseudo-parallel to the annulus
axis. Situations such as the steady displacement of Fig. 3b require better understanding, as a steady displacement
in an eccentric annulus implies that the streamlines are not axial in the vicinity of the displacement front.

5 Conclusions

In this paper, we have derived a practical leading-order model for simulating 2D turbulent and mixed regime
displacement flows, as encountered in the process of primary cementing. The model presented complements that
derived in [6]whichwas focused at laminar displacement flows. Indeed thismodel is included in that developed here,
as the description for laminar displacements. However, the leading-order turbulent model has two main differences
with [6].
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First, the treatment of the momentum equations differs. Unlike the laminar flow, the turbulent Reynolds stress
components all have similar size. The leading-order flow is a turbulent shear flow, but only due to differential
scaling of the lengths. At the next order of approximation many more unknowns enter the model. Having derived
the turbulent shear flow the analysis is similar to [6] in developing the field equations for the stream function (or
pressure), but with the closure expressions coming from turbulent-flow hydraulics.

The second principal difference comes in the treatment of the fluid concentrations. First we note that the assumed
decoupling of averaged concentration from velocity, in the advective part of (54), is more valid here than for the
laminar model in [6]. Second, following our analysis, we find that turbulent flows are governed by complex diffusive
anddispersive transport processes (absent in the laminar flows). The largest effect is Taylor dispersion,which diffuses
only along the streamlines. The gap-averaged turbulent diffusivity acts isotropically but appears to be relevant only
in sufficiently long wells. We have also derived terms that describe the influence of annulus gap variations on
dispersion, again in the streamwise direction. These terms collectively are complex to understand, and in this paper,
we have restricted ourselves to a few sample computations. For the laminar displacement flow, only molecular
diffusion should be present, which results in smaller effects than those here.

The examples presented show only a few (of many) interesting effects, based on simulations of displacement
flows along a small lab-scale annulus. As expected, rheology plays only a minor role in these turbulent flows, but
density differences remain vitally important it appears. We have observed both steady and unsteady displacements
(i.e. those in which the front elongates along the annulus), similar to in laminar displacements, but now with diffuse
frontal regions. However, although phenomenologically similar the underlying physical conditions under which
these flows arise are not yet studied or understood. This paper has primarily focused on developing the modelling
tools, and our future research will be directed towards analysing these flows in depth.
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Appendix A: The wall shear stress closure

Here we outline the closure relationship that defines the dimensionless τw(|∇aΨ |;φ, ξ, t), locally in the annulus,
and hence

S = raτw(|∇aΨ |)
H |∇aΨ | ∇aΨ.

we follow the methods in [35], where the flow of a Herschel–Bulkley fluid along a narrow channel is studied in

laminar, transitional, and turbulent regimes.
We start by reconstructing the dimensional variables, which are then scaled following [35]. Given the shear stress

scale τ̂0, the dimensional wall shear stress is τ̂w = τ̂0τw. The dimensional mean speed (averaged across the local
gap) and the dimensional local annular gap are given as

Ŵ0 = ˆ̄W 1

2H
|∇aΨ |, 2Ĥ = 2Hδ0r̂a,0 (56)

recall that ˆ̄W is the velocity scale for the entire annulus. We also assume that, according to the concentrations of
the fluids at (φ, ξ, t), we may construct the dimensional local mixture density ρ̂ and the rheological parameters
τ̂Y , κ̂, n.

Now, following [35], we define

ˆ̇γN = 6Ŵ0

2Ĥ
, κ̂p = κ̂

(
2n + 1

3n

)n

. (57)
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The power-law Reynolds number is

Rep = 6ρ̂Ŵ 2
0

κ̂p( ˆ̇γN )n
. (58)

The Hedström number and scaled wall shear stress are

He = τ̂Y

(
ρ̂n(2Ĥ)2n

κ̂2
p

)1/(2−n)

, Hw = τ̂w

(
ρ̂n(2Ĥ)2n

κ̂2
p

)1/(2−n)

. (59)

The procedure in [35] gives a detailed description of the mapping from Rep to Hw and vice versa, which is
parameterized by (n, He). Observe that Hw ∝ τw and Rep ∝ |∇aΨ |2−n , so the mapping Hw ↔ Rep defines our
closure relation. Figure 5 shows an example of this mapping for different n at He = 100. The sensitivity to He is
not extreme. We now outline the methodology in the different regimes.

A. 1 Laminar flows

For laminar regime the mapping Hw ↔ Rep (i.e. τ̂w ↔ Ŵ0) is

(6Rep)n/(2−n)

Hw

= E

(
n,

He

Hw

)
, (60)

where

E(n, yY ) = (1 − yY )(n+1)
(

n

n + 1
yY + 1

)n

, (61)

i.e. yY = He/Hw = τY /τw, which is the dimensionless width of the plug region. This nonlinear relationship is
resolved to give Hw(Rep) and hence to define S.

It is noted that S/|∇aΨ | is singular as |∇aΨ | → 0, which is the limit where the yield stress of the fluid is not
exceeded at the walls of the channel and τw < τY is indeterminate. In the laminar displacement model of [6,7], the
vector S is defined explicitly to reflect this yielding phenomenon:

S =
[
raχ(|∇aΨ |)

|∇aΨ | + raτY
H |∇aΨ |

]
∇aΨ ⇔ |S| >

raτY
H

, (62)

|∇aΨ | = 0 ⇔ |S| ≤ raτY
H

. (63)

To connect the model derivation here with that of [6,7], note that the function χ(|∇aΨ |) is simply

χ(|∇aΨ |) = τw(|∇aΨ |) − τY

H
, (64)

where τw is defined implicitly from (60).
The function χ(|∇aΨ |) increases strictly monotonically (as does τw(|∇aΨ |)). We can examine the limits of (60),

both as Hw → ∞ and as Hw → He (yield limit). For the latter, we find
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Ren/(2−n)
p ∼ [Hw − He]n+1 ⇒ χ ∼ |∇aΨ |n/(n+1);

see Fig. 5b. As Hw → ∞, we find Ren/(2−n)
p ∼ Hw, i.e.χ ∼ |∇aΨ |n , reflecting the shear-thinning behaviour. These

limiting behaviours agree with those in [7], where the laminar model is analysed in more depth. The difference here
though is that the limit Hw → ∞ is not physically attained in the laminar regime: we transition to turbulent flow.

A. 2 Fully turbulent flows

For the fully turbulent regime, in [35] we use the Dodge–Metzner relation, which translates into the following
equation defining Hw ↔ Rep:

Rep = H
1− n

2
w 61−n21−

n
2

[
4.0

n′0.75 log
(
61−n′

21−
n′
2 E

n′
n H

n′
n − n′

2
w

)
− 0.395

n′1.2

]2−n

, (65)

where the generalized power-law index n′(n, yY ) is

n′(n, yY ) = n(1 − yY )
nyY + n + 1

2n2y2Y + 2nyY + n + 1
(66)

for yY = He/Hw, which represents the dimensionless (effective laminar) plug width. Equation (65) must be solved
iteratively for Hw if Rep is specified, but defines Rep explicitly if Hw is specified.

The function τw(|∇aΨ |) is found to increase monotonically in the turbulent regime. Considering He fixed (the
rheology) and taking Hw → ∞, we find yY → 0, n′ → n and E → 1. Thus, we find that

Rep ∼ H
1− n

2
w log Hw ⇒ |∇aΨ | ∼ √

τw

[
log τw

]1/(2−n)
,

as τw → ∞. Thus, τw grows slightly less fast than |∇aΨ |2, whichwould be the expectation in a fully rough turbulent
regime, and the rheological dependency on n is minimal (in the exponent of the log term only), as would also be
expected. Thus, we see essentially parallel curves in Fig. 5a at large Hw, independent of n.

A. 3 Transitional regimes

The transitional regime occurs between two critical values of the Metzner-Reed Reynolds number,
ReMR,1(n, He/Hw) and ReMR,2(n, He/Hw) [35]. ReMR,1 is the Reynolds number at which the flow is not
laminar any more and ReMR,2 is the Reynolds number at which the flow is fully turbulent. Between these values an
interpolation is used based on the log of the friction factor. This results in a monotone variation in Hw vs Rep, as
seen in Fig. 5. ReMR,1(n, He/Hw) and ReMR,2(n, He/Hw) can be straightforwardly mapped into Hw,1 and Hw,2

that bound shear stress for transitional flows.

A. 4 Friction factor

In passing, we note that in hydraulics, it is common to express closures in terms of a friction factor f f , defined as
the ratio of wall shear stress to inertial stress scale. This can of course be done here, leading to

S = raρ f f
∣∣∇aΨ

∣∣
8H3 ∇aΨ.

In [35], the relevant expressions for f f are given. For simpler fluids, such as power-law fluids, f f is straightforward
to evaluate across all regimes, and the Metzner–Reed Reynolds number has proven to be a useful tool. For more
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(a)

(b)

Fig. 5 The closure Hw(Rep) from [35], showing asymptotic
behaviour: a Hw → ∞; b Hw → He. The closure is plotted
for He = 100 and n = 0.2, 0.4, 0.6, 0.8, 1: green—laminar;
red—transitional; black— turbulent. (Color figure online)

Fig. 6 Variation of D̄1D(blue lines), DT,1D(black lines) and
D∗
T,1D(red lines) with wall shear stress for n = 0.2, 0.4, 0.6, 0.8

and 1

complex fluids, the Metzner–Reed Reynolds number is not explicitly defined in terms of the process variables and
f f is just another level of algebraic complexity that obscures the essential mapping between local mean velocity
(Rep) and wall shear stress (Hw). The only advantage apparent to us in using f f for Herschel–Bulkley fluids is a
degree of familiarity with the friction-factor concept.

A. 5 Evaluating the Taylor dispersion terms

Similar to Sect. 1, we can find the averaged turbulent diffusivity and Taylor dispersion coefficients (D̄, DT , D∗
T )

using the method introduced in [35]. We first construct the dimensional parameters, e.g.

D̂T = DT δ0r̂a
ˆ̄W0,

and then rescale it using the scaling defined in [35]. We eventually find

DT = 1

2
|∇aΨ |DT,1D, (67)
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where DT,1D is the dispersion coefficient obtained assuming a locally 1D channel flow [35]. Similar relations can
be derived for D̄ and D∗

T , i.e. multiplying the 1D results from [35] by |∇aΨ |/2.
It is worthwhile to compare the values of D̄1D, DT,1D and D∗

T,1D (or equivalently D̄, DT and D∗
T ). Figure 6

plots turbulent diffusivity and dispersion coefficients as a function of wall shear stress for fully turbulent flows. Hw,1

and Hw,2 are defined in Sect.1. As Fig. 6 shows, D̄ is 2–3 orders of magnitude smaller than DT . This is a typical
feature of turbulent Taylor dispersion [42]. In addition, D∗

T is almost always larger than DT . This is interesting,
although the results computed so far have not revealed where these terms become important.

Appendix B: Variational principles

Equation (25) is an elliptic second-order equation, in which time evolution enters only via the fluid concentrations
(see Sect. 3) or via flow rate changes. Here, we develop the variational theory relevant to solving (25) in a rectangle
Ω with boundary ∂ΩΨ

⋃
∂ΩS , under which conditions (28) and (29), respectively are satisfied. We regard any

suitably smooth Ψ̃ as an admissible stream function provided that (28) is satisfied. Similarly, S̃ will be regarded as
admissible provided that

∇a · [S̃ + b] = 0,

and that (29) is satisfied. The following statements are easily proven using Green’s theorem in the plane:

– For any admissible Ψ̃ & S̃:

0 =
∫

Ω

Ψ̃ ∇a · b − ∇aΨ̃ · S̃ dΩ +
∫

∂ΩΨ

ΨbS̃ · n ds +
∫

∂ΩS

Ψ̃ f ds. (68)

– For Ψ & S that solve (25) with boundary conditions (28) and (29):

0 =
∫

Ω

Ψ ∇a · b − ∇aΨ · S dΩ +
∫

∂ΩΨ

ΨbS · n ds +
∫

∂ΩS

Ψ f ds. (69)

– For the solution Ψ & S, and any other admissible Ψ̃ :

0 =
∫

Ω

[Ψ̃ − Ψ ]∇a · b − [∇aΨ̃ − ∇aΨ ] · S dΩ +
∫

∂ΩS

[Ψ̃ − Ψ ] f ds. (70)

– For the solution Ψ & S, and any other admissible S̃:

∫

Ω

∇aΨ · [S̃ − S] dΩ =
∫

∂ΩΨ

Ψb[S̃ − S] · n ds. (71)

Now we consider the closure relationship defining S, which is outlined in Appendix A. Provided that |∇aΨ | > 0
or equivalently |S| > raτY /H , we can write this as

|S|(|∇aΨ |) = ra
H

τw(|∇aΨ |) = raχ(|∇aΨ |) + raτY
H

. (72)

The function χ(|∇aΨ |) represents the contribution to the modified pressure gradient that is surplus to that needed
to yield the fluid locally. It is continuous and strictly monotone. As the flow transitions through regimes, from
laminar through to turbulent, the gradient of χ is continuous within any flow regime (but discontinuous when the
flow transitions between regimes). Recall that χ(|∇aΨ |) also has a local dependency on (φ, ξ, t) through the local
geometry and fluid concentrations present. However, in general we may represent |S| graphically (at any (φ, ξ, t))
as in Fig. 7a.
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(a) (b)

Fig. 7 a |S|(|∇aΨ |); b |∇aΨ |(|S|). The shaded areas contribute to the dissipation and potential functions. The shaded areas sum to
|S||∇aΨ |, used to establish Lemma 3

B. 1 Stream function and pressure potential functionals

The stream function potential functional J (Ψ̃ ) is defined as

J (Ψ̃ ) =
∫

Ω

∫ |∇aΨ̃ |

0
|S|(x) dx − Ψ̃ ∇a · b dΩ −

∫

∂ΩS

Ψ̃ f ds, (73)

which has the following property.

Lemma 1 The solution Ψ minimizes J (Ψ̃ ) over all admissible Ψ̃ .

Proof We look at:

J (Ψ̃ ) − J (Ψ ) =
∫

Ω

(∫ |∇aΨ̃ |

|∇aΨ |
|S|(x) dx

)
− (Ψ̃ − Ψ )∇a · b dΩ −

∫

∂ΩS

(Ψ̃ − Ψ ) f ds

=
∫

Ω

∫ |∇aΨ̃ |

|∇aΨ |
|S|(x) dx dΩ −

∫

Ω

[∇aΨ̃ − ∇aΨ ] · S(|∇aΨ |) dΩ

≥
∫

Ω

∫ |∇aΨ̃ |

|∇aΨ |
|S|(x) dx dΩ −

∫

Ω

(|∇aΨ̃ | − |∇aΨ |)|S|(|∇aΨ |) dΩ

=
∫

Ω

∫ |∇aΨ̃ |

|∇aΨ |
(|S|(x) − |S|(|∇aΨ |)) dx ≥ 0.

We have used (70) and then the Cauchy–Schwarz inequality above. In this last expression, note that |S|(x) >

|S|(|∇aΨ |) whenever x > |∇aΨ | due to monotonicity. Thus, the sign of the integrant changes according to the
limits and the integral is always positive. ��

The minimization of J (Ψ̃ ) can also be expressed as a variational inequality, which is the basis of the augmented
Lagrangian method used. Considering now Fig. 7b, we can define the function |∇aΨ |(|S|) by effectively inverting
|S|(|∇aΨ |), as illustrated, i.e.

|∇aΨ |(|S|) =
{ |S|−1(|∇aΨ |), |S| > raτY

H ,

0, |S| ≤ raτY
H .
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We now define the pressure potential function K (S̃) for any admissible S̃ as follows.

K (S̃) = −
∫

Ω

∫ |S̃|
ra τY
H

|∇aΨ |(y) dy dΩ +
∫

∂ΩΨ

ΨbS̃ · n ds. (74)

Analogous to Lemma 1, we have the following.

Lemma 2 The solution S maximizes K (S̃) over all admissible S̃.

Proof We look at

K (S) − K (S̃) =
∫

Ω

∫ |S̃|

|S|
|∇aΨ |(y) dy dΩ +

∫

∂ΩΨ

Ψb[S − S̃] · n ds

=
∫

Ω

∫ |S̃|

|S|
|∇aΨ |(y) dy dΩ −

∫

Ω

∇aΨ · [S̃ − S] dΩ

≥
∫

Ω

∫ |S̃|

|S|
|∇aΨ |(y) dy dΩ −

∫

Ω

|∇aΨ |(|S̃| − |S|) dΩ

=
∫

Ω

∫ |S̃|

|S|
(|∇aΨ |(y) − |∇aΨ |) dy dΩ ≥ 0.

Here we have used (71) and then the Cauchy–Schwarz inequality. In the last expression, note that if |S̃| > |S|
then |∇aΨ |(y) > |∇aΨ | due to monotonicity; similarly when |S̃| < |S|. Thus, the sign of the integrand changes
according to the limits and the integral is always positive. ��

Finally, since the shaded areas in Fig. 7a, b, sum to give |S||∇aΨ |, we have∫

Ω

|S||∇aΨ | dΩ
∫

Ω

∫ |∇aΨ |

0
|S|(x) dx dΩ +

∫

Ω

∫ |S|
ra τY
H

|∇aΨ |(y) dy dΩ,

which can be combined with (69). In combination with the above-mentioned minimization and maximization
principles, we have the following minimax principle:

Lemma 3 The solution pair (S, Ψ ) satisfy

K (S̃) ≤ K (S) = J (Ψ ) ≤ J (Ψ̃ ),

for all admissible S̃ and Ψ̃ .

In the porous media context, similar variational principles are used to describe nonlinear filtration, e.g. [43,44].
The first (integral) terms in both J (·) and K (·) are referred to as dissipation potentials. In the porous media context,
one is often more concerned with determining the pressure field, and a stream function formulation is restrictive
in only applying to 2D flows. Thus, typically K (·) is referred to as the primal potential and J (·) as dual potential.
Here however, we treat Lemma 1 as the primal principle as it leads to a unique stream function (see below). Note
that the terminology dissipation results from (69) which is essentially a mechanical energy balance, equating the
dissipation within the system to the work done by buoyancy forces and by the boundary terms.

B. 2 Existence and uniqueness

Lemma 1 is the basis of an existence and uniqueness result. Firstly, note that J (Ψ̃ ) can be split as follows:

J (Ψ̃ ) =
∫

Ω

ra

∫ |∇a Ψ̃ |

0
χ(x) dx dΩ +

∫

Ω

raτY
H

|∇aΨ̃ | dΩ −
∫

Ω

Ψ̃ ∇a · b dΩ −
∫

∂ΩS

Ψ̃ f ds,

= J0(Ψ̃ ) + J1(Ψ̃ ) − L(Ψ̃ ). (75)
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The functional J0 is strictly convex as the integrand has second derivative equal to the derivative of χ , which is
a strictly monotone function. The functional J1 containing the yield stress is convex, bit not strictly. Finally, L
denotes the linear parts.

This problem structure is in a format where standard results may be applied (e.g. [45, Theorem 2.1, Chap. 5]),
to guarantee the existence of a unique weak solution. The relevant function space is determined by the behaviour
of J0 as ||Ψ̃ || → ∞. From the analysis in Appendix A, we see that in the fully turbulent regime |∇aΨ | ∼√

τw

[
log τw

]1/(2−n) as |∇aΨ | → ∞ , and therefore also

χ
[
logχ

]2/(2−n) ∼ |∇aΨ |2.

This suggests χ � |∇aΨ |2−ε for any small ε > 0 as |∇aΨ | → ∞, i.e. the log term is less significant than any
power.

Proceeding now as in [10], we can infer that Ψ ∈ W 1,3−ε(Ω), with further details specific to the boundary
conditions to be considered. It is interesting to compare with the results for the purely laminar case considered
in [10], where the growth of χ using only the laminar closure resulted in Ψ ∈ W 1,1+nmin(Ω). It appears that the
turbulent closure results in a smoother weak solution and a function space largely independent of the rheology.

B. 3 Pressure formulation and stress maximization

Themaximization of K (S̃) leads to an equality as the optimality condition. The resulting partial differential equation
(for the pressure) does not, however, uniquely determine S, where the flow is stationary. We may derive the pressure
equation directly by reorganizing (22) to eliminate Ψ instead of p:

0 = ∇a ·
[
r2a

|∇aΨ |(|S|)
|S|

(∇a p + bp
)]

, (76)

bp = ρ − 1

Fr2
(− sin β sin πφ, cosβ) , (77)

|S| =
∣∣∣∣
(

−ra
∂ p̄

∂ξ
− ra(ρ − 1) cosβ

Fr2
,
∂ p̄

∂φ
− ra(ρ − 1) sin β sin πφ

Fr2

)∣∣∣∣ . (78)

The function |∇aΨ |(|S|) is qualitatively illustrated in Fig. 7b.
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