FINAL REPORT

Alternative Salt Guidelines for British Columbia Boreal Peatland Releases:

Scientific Derivation Document

Prepared for: Steering Committee – BC OGRIS Salinity in Wetlands Research Project

Prepared by: Hemmera Envirochem Inc. 18th Floor, 4730 Kingsway Burnaby, BC V5H 0C6

File: 1692-002 January 2018

Hemmera Envirochem Inc. 18th Floor, 4730 Kingsway Burnaby, BC V5H 0C6 T: 604.669.0424 F: 604.669.0430 hemmera.com

January 2018 File: 1692-002.01

Steering Committee – BC OGRIS Salinity in Wetlands Project

Lizzy Mos (<u>Lizzy.Mos@gov.bc.ca</u>), (Lavinia Zanini (<u>Lavinia.Zanini@gov.bc.ca</u>), Devin Scheck (<u>devin.scheck@bcogc.ca</u>). Mark Hugdahl (<u>mark.hugdahl@alsglobal.com</u>), Robert Martens (<u>robert.martens@enbridge.com</u>), Paul Hartzheim (<u>paul.hartzheim@capp.ca</u>)

Brian Thomson, BC OGRIS Fund Administrator (bthomson@alantem.ca)

Re: Alternative Salt Guideline for British Columbia Boreal Peatland Releases: Scientific Derivation Document

I am pleased to present this final report to the Steering Committee for the BC OGRIS "Adapting Contaminated Sites Approaches for Produced Water Releases to Wetlands" Project aimed at developing a set of alternative salt guidelines for peatland ecosystems for possible adoption under the province's *Contaminated Sites Regulation.*

My thanks for your long-standing interest in this project and its intended outcomes.

Prepared by: Hemmera Envirochem Inc.

Doug Bright, PhD, R.P.Bio., P.Biol. Practice Leader- Environmental Risk Assessment 250.388.3584 (606) dbright@hemmera.com

ACKNOWLEDGEMENTS

This project was initiated in 2014 based especially on discussions around the British Columbia Upstream Petroleum Environment Committee (BC UPEC) table.

We would like to thank the British Columbia Oil and Gas Research and Innovation Society (BC OGRIS) for their generous funding and support, and to the BC OGRIS fund manager, Brian Thompson, for his patience.

We would also like to express our appreciation to the Project Steering Committee - comprised of representatives from the Canadian Association of Petroleum Producers, Oil and Gas sector knowledge experts at large, the BC Ministry of Environment, BC Oil and Gas Commission, and BC Environmental Laboratory Technical Advisory Committee. Individuals who have helped shape this project since its inception, through their participation on the Project Steering Committee include the following:

On behalf of the BC Ministry of Environment:

Dr. Glyn Fox Lavinia Zanini Peggy Evans Dr. Lizzy Mos

On behalf of the BC Oil and Gas Commission:

Devin Scheck

On behalf of the Canadian Association of Petroleum Producers:

Robert Martens Diana Almeida Paul Hartzheim

On behalf of the BC Environmental Laboratory Technical Advisory Committee

Mark Hugdahl

Dr. Curtis Eikhoff and James Elphick, of Nautilus Environmental contributed to the design and execution of the laboratory toxicity testing, including development and refinement of methods for species of relevance to boreal peatland environments. Finally, we thank James Agate, CNRL, and Sean Willetts, Conoco-Phillips, for their help in our search for suitable field sites for mesocosm trials.

- i -

IMPORTANT NOTES FOR THE READER

The opinions, interpretations and conclusions herein are those of the author alone and are not necessarily endorsed by BC OGRIS or the entities who provided representatives to the Project Steering Committee. This report is provided as a project deliverable per conditions of the BC OGRIS grant provided for this project.

A key objective of this project was to enable the adoption of a new set of British Columbia Contaminated Sites Regulation (BC CSR) peatland salt soil matrix standards and application protocols; however, the solution- based chloride and sodium thresholds of biological effects derived herein have not been formally adopted into the BC CSR at the time of completion of this report. The possible future adoption of alternative salt standards in the province, specifically focussed on saline releases to peatland ecosystems, will require further internal BC MOE review, as well as consultations, and is further subject to enabling mechanisms for future alterations or additions to contaminated sites numerical standards as defined within the current version of the British Columbia *Environmental Management Act* and *Contaminated Sites Regulation*.

Above all, the ministry has to further review this document and <u>the numerical thresholds discussed herein</u> <u>are not considered standards for demonstrating compliance with the BC CSR until further notice</u>. In light of this larger context, the ecotoxicological thresholds derived and discussed herein are uniformly referred to as "guidelines" rather than "standards".

We trust that the scientific data and interpretations provided herein will responsible parties and contaminated site assessment/environmental risk assessment practitioners with an improved ability to work through the assessment and remediation of peatland sites affected by produced water and other types of sodium and chloride environmental releases, regardless of the formal regulatory status of the derived environmental protection goals.

EXECUTIVE SUMMARY

The province of British Columbia adopted in the mid-2000s numerical "soil matrix standards" within the CSR for chloride (CI) ion and sodium (Na) ion; however, NaCl assessment and remediation guidelines that are of direct relevance to the major portion of western Canadian wetlands, and especially peatlands, do not currently exist. This report describes the scientific basis for the derivation of an alternative suite of salt ion numerical soil guidelines for possible adoption within the British Columbia Contaminated Sites Regulation (BC CSR) framework that are better focused on a peatland environment as opposed to terrestrial upland soil systems. The newly derived guidelines are intended to be applicable for anthropogenic salt releases to boreal peatland environments, including fens and bogs, as opposed to terrestrial upland environments.

For the purpose of applying the provisional alternative salt guidelines, peatlands are defined as areas that are continuously or routinely water-saturated in their natural or reclaimed state such that water occurs, at least seasonally for a typical year, at or near (within 20 to 30 cm of) the upper land surface, including bryophyte cover. Furthermore, a peatland – by operational definition – will exhibit a surface accumulation of peat to a depth of \geq 40 cm. Furthermore, peatland sites (bog or fen-type wetlands) exhibit organic soils (peat) with a total organic carbon content \geq 17%.

The Na ion and CI ion numerical soil standards that were adopted under the BC CSR in 2006 were based on the analysis of CI and Na content in soil samples using saturated paste methods, as described in Section B of the British Columbia Environmental Laboratory Manual (2015). For CI and other major salt anions such as sulfate, virtually the entire mass of CI present will be associated with soil pore water (or interstitial water) to the extent that the soil matrix is substantially saturated under typical environmental conditions (as is the case for hygric soils). For simple cations such as Na, the major portion of the mass will be associated with the aqueous phase except in the case of soil types with a very high cation exchange capacity. The saturated paste methods prescribed for use with the existing BC CSR numerical matrix standards for CI or Na are not appropriate for hygric, organic rich, and very low bulk density soils, given the associated expression of sample concentration on the basis of soluble/extractable mass of CI ion and Na ion per dry mass of soil. This is because the soil bulk density of peat soils is far lower than the mineral soil types used to derive Na ion and CI ion soil ecotoxicity data used in the earlier derivation. Alternative methods are proposed here for either the direct (preferred method) or indirect (via fixed ratio water extraction of soil) measurement of salt ions in soil solution (in mg/L), consistent with the field concentrations that are likely to occur in peat interstitial water within the upper biologically active zone.

The derivation of alternative salt guidelines for peatland environments is intended primarily for application to wildlands settings; however, it is recognized that occasionally peatlands will occur adjacent to or underneath sites with other land use types and the peatland protection goals as discussed herein are relevant.

In order to define acceptable CI and Na concentration thresholds for the protection of peatland ecosystems based on solution-based exposure concentrations, the existing ecotoxicological information was critically evaluated, and new relevant data were developed based on laboratory ecotoxicity testing completed by Nautilus Environmental. New concentration-response type ecotoxicity data were developed, under laboratory conditions intended to approximate exposure conditions in salinized peatland ecosystems, for a collembolan (*Folsomia candida*), two plant species (paper birch: *Betula papyrifera*; bluejoint reedgrass (*Calamagrostis canadensis*), and a bryophyte (water moss: *Foninalis antipyretica*).

BC MOE protocols for the derivation of soil quality standards for the protection of soil invertebrates and plants, as updated in 2016, were used in conjunction with the larger set of adequate quality ecotoxicity data to develop a provisional set of alternative salt guidelines that are applicable to British Columbia peatland ecosystems.

The resulting alternate chloride guidelines are as follows:

- WL_N: 15th percentile chloride concentration = **1370 mg/L** chloride
- WL_R / AL / RL_{LDR} / PL: 25th percentile chloride concentration = 1680 mg/L chloride
- RL_{HDR} / CL / IL: 50th percentile chloride concentration = **2440 mg/L** chloride

The resulting alternative sodium guidelines are as follows:

- WL_N: 15th percentile chloride concentration = **890 mg/L** sodium
- WL_R / AL / RL_{LDR} / PL: 25th percentile chloride concentration = 1090 mg/L sodium
- RL_{HDR} / CL / IL: 50th percentile chloride concentration = **1580 mg/L** sodium

- v -

TABLE OF CONTENTS

ACKNO	OWLED	GEMENTSI
IMPOR		IOTES FOR THE READERII
EXECL	ITIVE S	UMMARY III
1.0	INTRO	DUCTION1
	1.1	PROJECT OBJECTIVES
2.0	WHAT	ARE PEATLANDS? AN OPERATIONAL DEFINITION4
3.0	ENVIR	ONMENTAL FATE OF SALINE RELEASES TO PEATLANDS7
4.0	ANALY	TICAL APPROACH FOR MEASURING BIOLOGICAL EXPOSURES TO SALT IONS IN
	PEAT	SETTINGS
5.0	LAND	USES AND RECEPTORS OF INTEREST12
6.0	UPDAT	TED COLLATION OF SCIENTIFIC KNOWLEDGE ABOUT SALT ION EFFECTS ON
	PEATL	AND BIOTA
	6.1	Re-evaluation of Laboratory Ecotoxicity Data from Bright and Addison (2001) \dots 13
	6.2	Additional Solution-Based Salt Ecotoxicity Data from the Scientific Literature 15
	6.3	New Laboratory Toxicity Test Data
7.0	DERIV	ATION OF ALTERNATIVE SALT GUIDELINES 22
	7.1	EXISTING POLICIES AND PROCEDURES RELEVANT TO THE ESTABLISHMENT OF BC
		CONTAMINATED SITES REGULATION NUMERICAL STANDARDS
	7.2	ALTERNATIVE GUIDELINES FOR SOIL INVERTEBRATE AND PLANT PROTECTION
	7.3	HUMAN HEALTH PROTECTION
	7.4	AQUATIC LIFE PROTECTION
8.0	CONC	LUSIONS AND APPLICATION NOTES29
9.0	REFER	RENCES

List of Tables

able 6-1 Relevant soil invertebrate toxicity data from Bright and Addison (2002)	14
able 6-2 NaCl toxicity to peatland and boreal plant species	16
able 6-3: NaCl effects on springtail (F. candida) survival and reproduction over 28 days	18
able 6-4: NaCl effects on paper birch seedling emergence and growth over 35 days	19
able 6-5: NaCl effects on Bluejoint Reedgrass (Calamagrostis canadansis) emergence and growth ov	/er
28 days	20
able 6-6: NaCl effects on aquatic moss (F. antipyretica) growth over 21 days	21
able 7-1 Summary of NaCl ecotoxicity data by effects size quartile	25

List of Figures

Figure 7-1	Summary of ecotoxicity data for laboratory exposures to NaCl in solution	6
Figure 7-2	Linear regression of chloride concentration (mg/L) geometric means by effects size quartile	е
	on the geometric mean effect size	7

List of Appendices

Appendix A Nautilus Report – New Ecotoxicity Data

DEFINITIONS AND ACRONYMS

Acrotelm:	The upper layer of two semi-distinct layers in a peat bog or fen, which is generally partially saturated and contains the major portion of living plant and bryophyte biomass.
BC OGC:	British Columbia Oil and Gas Commission.
BC ENV:	British Columbia Ministry of Environment and Climate Change Strategy.
Catotelm:	The lower layer of two semi-distinct layers in a peat bog or fen, which is generally fully saturated, anoxic, and contains mostly detrital organic matter.
Contaminant:	Per Part 4, Div. 1, 39(1) of the BC <i>Environmental Management Act</i> , a substance prescribed for the purpose of definition of "contaminated site" in a quantity or concentration exceeding prescribed or risk-based numerical standards.
CSR:	Contaminated Sites Regulation.
EMA:	Environmental Management Act.
Emulsion:	A mixture of two or more liquids that are normally immiscible. In conventional oil and gas operations, this often refers to a co-mingled solution of petroleum hydrocarbons and produced water. A typical product of oil wells, water-oil emulsion has also been used as a drilling fluid.
Hygric soil:	A soil that formed under conditions of saturation, flooding or ponding long enough during the growing season to develop anaerobic conditions in the upper part.
Mesofauna:	Invertebrates generally smaller than 2 mm in size that live in the soil or organic litter and matter on or in the soil, including (but not limited to) nematodes, mites,

collembola, proturans, pauropods, rotifers, tardigrads, small areneidae, pseudoscorpions, opiliones, enchytraeid worsk, small isppods, myriopods and insect larvae. Mesofauna may play an important role in creating and maintaining soil structure and in the cycling and trophic transfer of energy, carbon, phosphorus, nitrogen, and sulfur.

Minerotrophic/Geogenic: Wetland that receives the major portion of its shorter to longer term water inputs via groundwater from below or laterally.

Ombrogenic:Wetland that receives the major portion of its shorter to longer term water inputs
through direct rainfall and snowfall to the surface.

Produced water:Water with a complex chemistry and trapped in underground formations that is
brought to the surface during oil and gas exploration and production

1.0 INTRODUCTION

Oil and gas (O&G) exploration and extraction activities in British Columbia and elsewhere routinely result in the withdrawal of saline water from the deeper geological reservoirs that host petroleum hydrocarbon resources. This saline "produced water" is the largest waste stream by volume that results from upstream O&G activities. Within typical host sedimentary basins, approximately seven to ten barrels of produced water are generated for every barrel of crude oil, or equivalent volume of natural gas (Santos and Wiesner, 1997; Benko and Drewes, 2008). The inorganic composition of produced water is typically similar to that of seawater: primarily sodium and chloride, with lesser amounts of sulfate, calcium, and other major ions. Salt concentration, however, can vary substantially between production fields from less than a few parts per thousand to more than 250 parts per thousand (>250,000 mg/L) (Benko and Drewes, 2008).

- 1 -

Most produced water from on-land O&G operations is disposed by re-injection into deep subterranean areas (or increasingly through de-salinization by reverse osmosis and re-use in oilfield operations); however, environmental releases may occur especially from the corrosion and rupture of emulsion and produced water pipelines. Accidental releases of saline produced water from oil and gas activities in northeastern BC are an important environmental issue especially in peatland (fen and bog) and other wetland ecosystems. Peatlands coincide with several major O&G operational areas within northeastern British Columbia and produced water releases to peatlands are common in temperate and taiga regions throughout all of western Canada.

Environmental quality guidelines and standards such as *British Columbia Approved Water Quality Guidelines* and soil numerical standards contained within the *British Columbia Contaminated Sites Regulation* (CSR) are important tools for regulators, responsible parties, and practitioners involved in the assessment and remediation of contaminant releases to the environment. The province of British Columbia adopted in the mid-2000s numerical "soil matrix standards" within the CSR for chloride ion and sodium ion. These were developed mainly to assist with the assessment and remediation of road salt storage facilities, especially at highways maintenance yards. Contaminant assessment and remediation guidelines that are of direct relevance to the major portion of western Canadian wetlands, and especially peatlands, do not currently exist.

Since the adoption of CSR soil numerical standards for sodium and chloride, various contaminated sites responsible parties, their consultants, and western Canadian analytical laboratory service providers have gained considerable experience in environmental sampling issues, chemical analyses, and interpretations associated with salt contamination issues in British Columbia. Among the insights gained - especially at northeastern BC oil and gas sites - are the following:

• A large proportion of salt releases enter boreal wetland systems, which can be classified as bogs, fens, marshes, and swamps. The existing CSR salt standards were not derived in consideration of

these types of ecosystems, as opposed to hydrogeological and soil conditions more typical of the lower mainland formed through deltaic deposition.

- 2 -

- The CSR standards are based on a "saturated paste" soil extraction and analytical method. Such techniques were developed by agronomic researchers to measure the available fraction of nutrients, ions and trace elements to plant roots in agricultural systems with limited moisture content and are overly complex and potentially inaccurate measures of biological exposures in organic-rich and hygric soil types.
- The true effects on wetland mesofauna, plant roots, and other biota is likely to be better correlated with the soil salt solution results than analytical results expressed on a dry soil mass basis for soils (based in turn on saturated paste extract methods) that are almost completely saturated in their native state.
- The standardized CSR assumptions for back-calculation of soil chloride and sodium concentrations
 protective of aquatic life based on a groundwater-mediated transport scenario are likely overly
 conservative for the vast majority of peatland systems.

Overall, gaps in scientific knowledge and the regulatory/policy regime for the assessment, risk management, and remediation of saline water releases to boreal wetland ecosystems are perceived to be an impediment to the timely remediation and reclamation of these sites.

This report describes the scientific basis for the derivation of an alternative suite of salt ion numerical soil guidelines for possible adoption within the CSR framework that are better focused on a peatland environment as opposed to terrestrial upland soil systems. This project was funded through the British Columbia Upstream industry supported by the BC Ministry of Environment, BC Oil and Gas Commission, Canadian Association of Petroleum Producers (CAPP), BC Environmental Laboratory Technical Advisory Committee, and various members of the oil and gas industry at-large.

1.1 **PROJECT OBJECTIVES**

The overall objective of this project is to derive, for the consideration of the Ministry of Environment and Climate Change (BC ENV) and BC Oil and Gas Commission (BC OGC) a set of salt ion (chloride and sodium) matrix soil numerical guidelines for possible adoption within the BC *Contaminated Sites Regulation* (CSR) framework. The newly derived guidelines are intended to be applicable for anthropogenic salt releases to boreal peatland environments, including fens and bogs, as opposed to terrestrial upland environments. The derivation includes the development of ancillary guidance on conditions under which the alternative wetland numerical soil guidelines could be applied and precluding conditions related to their use.

While saline produced water releases from upstream O&G operations into BC wetland ecosystems present challenges for the appropriate assessment and remediation of operational and spill sites, there are other human activities that routinely result in the release of sodium and chloride as well as other salt ions to wetland ecosystems. Among these are road salt storage, handling and application. Thus, the development and adoption of alternative salt guidelines under the provincial *Contaminated Sites Regulation* is intended to increase the efficacy and ease of site remediation and reclamation for peatlands that have been affected by sodium and chloride environmental releases in general.

- 3 -

2.0 WHAT ARE PEATLANDS? AN OPERATIONAL DEFINITION

Peatlands comprise a subset of wetland ecosystem types. According to Mackenzie and Moran (2004), wetlands are –

"areas where soils are water saturated for a sufficient length of time such that excess water and resulting low oxygen levels are principal determinants of vegetation and soil development. Wetlands will have a relative abundance of hydrophytes in the vegetation community and/or soils featuring "hydric" characteristics."

The *Canadian Wetland Classification System* (2nd edition, 1997, Warner and Rubec, editors) (available online at <u>http://www.gret-perg.ulaval.ca/fileadmin/fichiers/fichiersGRET/pdf/Doc_generale/Wetlands.pdf</u>) defines five major classes of wetlands and various forms and subforms therein; i.e. bogs, fens, swamps, marshes, and shallow water wetlands. These are further divided into two broad categories: organic wetlands (more simply referred to as peatlands), and mineral wetlands.

According to Warner and Rubec (197) -

"Peatlands contain more than 40 cm of peat accumulation on which organic soils (excluding Folisols) develop. This depth limit is consistent with soil classification standards established by the Canada Soil Survey Committee (1978).

Mineral wetlands are found in areas where an excess of water collects on the surface and which for geomorphic, hydrologic, biotic, edaphic (factors related to soil), or climatic reasons produce little or no organic matter or peat. Gleysolic soils or peaty phases of these soils are characteristics of these wetlands."

The Alberta (October 2015) Peatland Reclamation Criteria provide a very useful discussion about desired functions of peatlands:

"Peatlands, like other wetlands, serve important functions on the landscape: namely, (1) water storage; (2) a filter for surface water as it moves into ground water; (3) a habitat for wildlife (Mitsch & Gosselink 2000) and (4) a carbon sink (Yu et al. 2001)."

BC CSR alternative salt guidelines for peatlands should provide adequate protection of the sphagnidae mosses and other vegetation that are important for carbon sequestration and water storage and filtering, and for the growth of herbaceous and woody plants and trees that provide forage, tertiary structure, shelter, nesting and denning sites.

The Alberta Peatland Reclamation Criteria document further states:

Hemmera

January 2018

"Vegetation is the long term indicator of biogeochemical conditions of a peatland; however, disturbance leads to chemical and/or water level changes that affect vegetation. In peatlands, the ground layer (i.e., bryophytes) is most strongly affected by these changes, leading to disruption of peat accumulation functions."

- 5 -

The Alberta Peatland Reclamation Criteria further reinforce an operational definition of a peatland consistent with the Canadian Wetland Classification System:

"Peatlands are defined in North America as landscape covered by peat to a minimal depth of 40 cm (Tarnocai, 1980). Peat is a deposit of plant and animal remains that over time has accumulated under water-saturated conditions through incomplete decomposition."

Characteristics of western Canadian peat soils are defined in Appendix A, p. 41 of the Alberta Peatland Reclamation Criteria:

"Important structural attributes for peat in western Canada are as follows: Bulk density of peatland peat from western Canada is 0.168 g/cm³, much greater than the global average of 0.118g/cm³. Organic matter content averages 91.6 per cent. Carbon content averages 45.0 per cent and nitrogen content 1.1 per cent, while C/N mass ratio averages 62.4 (all data from Loisel et al. (2014)."

For the purpose of application of alternative salt guidelines, peatlands are defined herein as areas that are continuously or routinely water-saturated in their natural or reclaimed state such that water occurs, at least seasonally for a typical year, at or near (within 20 to 30 cm of) the upper land surface, including bryophyte cover. Furthermore, a peatland – by operational definition – will exhibit a surface accumulation of peat to a depth of \geq 40 cm.

In British Columbia, the highest water elevations in peatlands typically occur during spring freshet, based on local recharge with snowmelt.

There may be instances in which peat accumulations arising from peatland development are encountered in the subsurface environment, beneath shallow anthropogenic or naturally occurring flood or landslide deposits. These relict peatland soils may be considered as peatlands for the purpose of applying alternative salt guidelines, to the extent that the soil characteristics within the peat strata are consistent with the expected range of variation in natural surface peatlands within the province.

The peat 'soils' that are the subject of this alternative salt guideline, furthermore, comprise accumulations of partially decayed vegetation accumulating under anoxic and often acidic conditions. The degree of decay of the detrital organic matter in the peat depends on the major biomass contributions (typically *Sphagnum* moss spp., but also sedges and ericaceous shrubs), hydrological conditions, and local/regional climatic conditions. Because of the ability of peat soils to hold water, peat accumulations may create wetter

- 6 -

conditions locally, facilitating further lateral expansion, as well as development of raised bogs; for example, Burns Bog, along the lower Fraser River. Peat soils vary from being fibric (with minimally decomposed bryophyte and plant remains), to hemic (partially decomposed) to sapric (mostly decomposed).

Peatland soils are further defined herein as being rich in detrital organic matter, having a total organic carbon (TOC) content of \geq 17% and a total organic matter content of \geq 30%¹, and having a much lower bulk density than top soils formed in non-hygric environments or in surface and subsurface soils substantially formed through wind and water erosion, glaciation, hydrological processes, and commonly recognized pedogenic processes (i.e., having a soil bulk density generally less than 0.2 g/cm³).

The soil bulk density upper threshold provided above is not intended to support formal categorizations of peatland versus non-peatland soils, in contrast to a definition based on TOC content, for the simple reason that field- or laboratory-based soil bulk density measurements are challenging to obtain with a reasonable degree of precision and accuracy, and therefore of lesser pragmatic value for defining peatland soils than TOC and site hydrology. A recognition of the low bulk densities of peatland soils is nonetheless important for understanding how salt ion exposure characteristics and biological effects thresholds are expected to be different between peatland and non-peatland soils.

¹ Per BC MOE CSR Protocol 8, "organic soil" is formally defined as "*any soil containing at least 30% organic matter by weight and includes most of the soils commonly known as peat, muck or bog soils.*"

3.0 ENVIRONMENTAL FATE OF SALINE RELEASES TO PEATLANDS

Chloride and sodium are freely soluble in water, and the fate and effects of NaCl releases to wetlands are closely linked to site hydrology. Canadian (and British Columbian) wetlands may be loosely classified as systems with predominantly mineral soils/sediments (shallow water, marsh, some swamps) or peat accumulating systems (bogs, fens, some swamps) (Price and Waddington, 2000). Mackenzie and Moran (2004) provide a much more detailed biogeoclimatic classification of British Columbia bogs, fens, marshes, swamps and other major wetland types; however, for the purpose of developing alternative salt guidelines, we differentiate only between peat-accumulating wetlands (bogs, fens) and those that do not accumulate peat (mineral substrate types) such as marshes and swamps.

Marshes and swamps tend to exhibit greater surface water connectivity over extended areas in comparison with bogs and fens. Although potentially of small geographic scale, surface water accumulations in marshes and swamps have ecological characteristics that are similar to lotic systems (smaller scale to larger scale creeks, streams, and rivers, particularly in headwater areas) and lentic systems (still water ecosystems such as lakes and ponds). In addition, many marsh and swamp ecosystems in British Columbia transition into headwater and tributary areas of lotic systems and the transitions tend to be more gradual than punctuated. Thus, from a management perspective, wetlands other than fens or bogs may provide similar habitat for aquatic life as the broader range of lotic and lentic systems. From an ecological protection perspective, contaminant risk management objectives will generally be similar for shallow water, marsh and swamp wetlands as for lotic and lentic ecosystems. Such wetland types are not discussed further herein in any detail.

An obvious feature of peatlands is the macroscale and microscale 'soil' forms associated with the active growth of sphagnum mosses and other bryophytes and the extensive detrital organic matter that accumulates as a result. While there are instances and periods when open surface flows dominate ecohydrological processes, subsurface flow characteristics are generally of greater interest from an ecosystem functioning perspective over extended spatial and temporal scales (although emergent properties and functions reflect interactions between surface and subsurface flows, as discussed below). There have been very few published studies at the field scale of the transport and fate of ions such as chloride and sodium through peatlands (McCarter and Price 2017). One of the few available studies is on NaCl transport in a blanket bog by Baird and Gaffney (2000). The fate of salt ions in temperate bogs and fens is expected to vary based on the extent to which sources of water are primarily associated with direct rainfall and snowmelt (i.e. in the case of ombrogenic bogs and poor fens) or shallow ground discharge and/or lateral ingress from adjacent areas (geogenic or minerotrophic fens).

Classification systems tend to subdivide peatlands according to whether the dominant water input is via direct precipitation and snowmelt recharge to the peatland surface versus inputs from below or laterally of shallow groundwater. Geogenic peatlands are generally considered to exhibit higher pH owing to the

ongoing inputs with groundwater of calcium and magnesium and other elements sourced from lithogenic weathering, while obrogenic peatlands – especially bogs – tend to exhibit pH < 4.5. Circumneutral fens buffered by calcium and magnesium inputs from groundwater ingress tend to exhibit a much higher diversity of plants and other species than more highly acidic fens and bogs.

Because of the appreciable seasonal variations in rainfall, snowfall, snowmelt, temperature, and evaporation in British Columbia, peatlands tend to exhibit strong seasonal variations in the water levels and secondarily of lateral transport rates. Particularly in shallow peatland systems (e.g. ~0.5 to ~2 m deep) that have evolved over top of low permeability tills and glaciolacustrine sediments, water levels may be near or above the height of living peat hummocks and features during the spring melt period, and may recede through dryer late summer periods to a half meter or more below the peatland surface. The seasonal variations in peatland water volumes also drive seasonal variations in salt ion concentrations in areas affected by saline water releases, since the total mass of salt ions that occurs locally will be dissolved in smaller volumes of water within the peatland during seasonally dry periods. Thus, we have observed at several produced water release sites in British Columbia, a temporary seasonal increase in fen water chloride concentrations under low precipitation late summer conditions, commensurate with the drop in the water table. Seasonal variations on peatland solute strength as a result of changes in the water table height and corresponding change in volume of water per hectare of wetland are also expected to occur naturally.

While seasonal variations in peatland water storage capacity are theoretically expected to alter solute concentrations if water losses occur through evapotranspiration, the actual quantification of peatland water storage capacity and its variability over space and time is technically challenging (Bourgault et al., 2016). Furthermore, past research has suggested that the effective water storage capacity (further influenced by air uptake, and peat matrix compression or expansion) can vary by two orders of magnitude in the upper 0.5 m of the peatland (Dettman and Bechtold 2016), and between the upper living portion of the peatland (acrotelm), which is typically a few decimeters thick, and the more anoxic, deeper detrital portion (catotelm) (Bourgault et al. 2017).

As discussed above, peatlands can be broadly categorized as ombrogenic or geogenic; however, seasonal and interannual evaporative water loss and water table drawdown has been shown to result in seasonal or longer-term groundwater flow reversals in some systems (Price *et al.* 2000). While the direct measurement of groundwater gradient and direction can provide useful information about the longer-term fate of soluble contaminants introduced in peatlands, it is important to consider the possibility of groundwater flow reversals that may be driven by natural or other processes. Local alterations in water volumes and height, e.g. as a result of saline water recovery efforts when actively pumping from bell holes or as a result of beaver dam construction and loss, can result in both an alteration in vertical groundwater flow direction (resulting in increased rates of downward or upward transport of salt ions) and capillary rise of salt ions in association with evapotranspiration.

Lateral water and salt ion transport rates vary according to water table elevation with differing conductivities of acrotelm and catotelm. During periods of higher water in many peatlands, net water and solute transport may increase substantially based on greater interconnectivity of open water channels. Under very high water conditions, lateral transport as sheet flow may occur. For the prevailing conditions in most fens and bogs in British Columbia, when there is no continuous or semi-continuous surface water present above the peat matrix, depth below the peat surface is a strong correlate of many ecohydrological variables such as saturation, redox potential, soil structure, soil pore characteristics, and hydraulic conductivity (Morris *et al.* 2011). Thus, several models of water and solute flow through peatlands assume a two-layer system comprised of a permanently saturated catotelm underlying a semi-saturated acrotelm. As discussed by Morris *et al.* (2011), this "diplotelmic" conceptual model of water transport through peatlands is approximately six decades old, but has not been rigorously examined experimentally. According to these authors, both spatial and vertical heterogeneity are important aspects of peatland ecohydrology, beyond the two-layer concept, with "hot spots" that "*exhibit fast processing rates in a number of mechanistically linked hydrological, ecological and biogeochemical processes*". Baird *et al* (2016) also provide experimental evidence that the acrotelm-catotelm model is simplistic for predictions of lateral conductivity with depth.

Peatlands tend to be low-gradient systems, and this - along with low saturated hydraulic conductivities for water levels that are less conducive to channelized and macropore flow – tends to limit the rates of lateral spread of salt ions introduced to the peatland. Nonetheless, there are abundant observations of rapid rates out lateral transport of saline water release within hours to a few days of a release to peatland ecosystems in northeast British Columbia. The rate of lateral spread is likely to be commensurate with the volume of the produced water or other type of saline water release: Large volumes introduced at the point of a spill or emulsion line/produced water line failure will result in local mounding of the water table, thus substantially increasing both the local hydraulic gradient and hydraulic conductivity. Once the released saline water infiltrates the peatland and hydraulic gradients return to the pre-spill condition, subsequent rates of lateral spread of salt contamination tend to be very slow.

While it is routinely assumed that chloride is conservatively transported with water, McCarter and Price (2017) provide empirical evidence for retardation factors for chloride ($R_{peat Cl}$) in the range of 1.1 based on field data and 2.7 to 7.3 based on laboratory core studies. Such retardation is thought to be associated with diffusion into inactive pores along the flow path. Experimentally derived retardation factors for sodium have generally been larger than for chloride ($R_{peat Na} = 2.2$ based on field studies). Retardation of chloride and sodium transport rates through peatlands relative to the net transport velocities of wetland water are generally not associated with soil particle sorption-desorption kinetics, as is the case for the vast majority of organic and inorganic contaminants, but rather based on macropore versus micropore and solute diffusion into quiescent pore space, as discussed above.

- 9 -

4.0 ANALYTICAL APPROACH FOR MEASURING BIOLOGICAL EXPOSURES TO SALT IONS IN PEAT SETTINGS

The Na ion and Cl ion numerical soil standards that were adopted under the CSR in 2006 were based on the analysis of chloride and sodium content in soil samples using saturated paste methods, as described in Section B of the British Columbia Environmental Laboratory Manual (2015). For chloride and other major salt anions such as sulfate, virtually the entire mass of chloride present will be associated with soil pore water (or interstitial water) to the extent that the soil matrix is substantially saturated under typical environmental conditions (as is the case for hygric soils). For simple cations such as sodium, the major portion of the mass will be associated with the aqueous phase except in the case of soil types with a very high cation exchange capacity.

Recent experience has been gained in the evaluation of ecological risks in boreal wetland environments associated with residual NaCl contamination arising from a produced water release. Wetland plant and bryophyte community biodiversity (taxon richness) is more closely correlated with chloride (and electrical conductivity) measures obtained from samples of free water collected within the active growing zone than with other measures of contamination such as saturated paste concentrations obtained from soil samples (Bright, 2015).

The saturated paste methods prescribed for use with the existing BC CSR numerical matrix standards for chloride or sodium are not appropriate for hygric, organic rich, and very low bulk density soils, given the associated expression of sample concentration on the basis of soluble/extractable mass of chloride ion and sodium ion per dry mass of soil. This is because the soil bulk density of peat soils is far lower than the mineral soil types used to derive Na ion and Cl ion soil ecotoxicity data used in the earlier derivation (Bright and Addison, 2002). The same Cl (or Na) concentration in the interstitial water of a specific volume of peat versus mineral soil (interstitial water is the medium most relevant to soil invertebrate and plant salt exposures) would exhibit a far higher estimated concentration when converted to a mass per dry weight mass of soil.

Alternative methods are proposed for quantifying chloride and sodium concentrations in the upper peatland as follows:

(i) If feasible, the first preference is to sample standing water within upper 1.0 m of peatland and measure the concentrations of major ions including chloride and sodium directly (mg/L).

Given the operational definition to which this alterative guideline applies, we have found that free water can typically be collected in the field through advancing a small borehole into the upper peatland with a pre-cleaned peat corer or with a sharpened stainless steel long-nosed shovel for excavating a narrow, deep pit. Water will typically seep into the void created within a period of 0.5 h or less, and can be collected using non-contaminating methods such as via use of a dedicated

bailer or use of a peristaltic pump. A coarse nylon screen can be used to limit entrainment of fibric and other suspended solids in the sample.

- 11 -

We have also observed that the electrical conductivity and chloride concentration in the upper-most mass of water that freely accumulates in voids introduced into the bog or fen is generally representative of the local concentration in water held within the peat matrix closer to the surface and which communicates with the deeper water mass especially via capillary movement.

- (ii) If free water cannot be obtained (highly hygroscopic nature of peat sometimes makes this challenging at lower levels of hydration and during more dry seasons), the sampler and analyst will:
 - a. Collect a peat sample from top 50 cm of the peat profile (but avoiding active bryophyte growth and the uppermost portions of peat hummocks);
 - b. Determine the *in situ* water content (moisture content) on a representative sub-sample by oven drying at 105°C [BC Environmental Laboratory Manual, 2015. Section B – Physical, Inorganic and Miscellaneous Constituents];
 - c. Extract salt ions from another pre-weighed sub-sample using a fixed ratio extraction in the range of ~100 mL deionized water to 20 g fresh weight of peat (SynergyAspen, 2015). The sample and deionized water are thoroughly mixed, and a portion of the water is recovered from the sample through vacuum filtration or a suitable alternative;
 - d. Analyze chloride in aqueous extract² based on ion chromatography or colourimetric methods provided in the BC Environmental Laboratory Manual, or alternative performance-based methods approved by the Director. Analyze sodium in aqueous extract based on atomic absorption spectroscopy or atomic emission spectroscopy or inductively coupled plasma mass spectrometry methods provided in the BC Environmental Laboratory Manual, or alternative performance-based methods approved by the Director;
 - e. Adjust measured extract concentrations to reflect the concentrations in *in situ* water using volume of water initially present (step b, above) and volume added.

² It is generally recommended that all major salt anions and cations be analyzed in the aqueous sample, including bromide, chloride, sulfate, potassium, sodium, calcium and magnesium. The free ion data from the sample can then be checked based on charge balance, allowing for some potential modest negative charge contribution from organic acids in the peat matrix. The analysis of all major salt ions is also beneficial for interpretations of the degree of natural salinization versus anthropogenic releases to the environment. Analysis of Electrical Conductivity (EC) especially in samples collected via method (i) is recommended to facilitate use of EC during field investigations for real-time contaminant plume delineation, and to provide a basis for demonstrating correlations between EC and sodium and chloride concentrations.

5.0 LAND USES AND RECEPTORS OF INTEREST

The alternative salt guidelines for peatland environments account for a form of direct contact exposure for ecological receptors that is best accounted for by exposures to soil solution. Thus, the general approach for deriving a set of risk-based soil solution effects thresholds is best applied to those contaminants of potential concern that have very little affinity for soil (or detrital organic matter) particles in a two-phase soil-water system and which predominantly partition into water, as is the case for chloride. This approach would not be applicable to contaminants of potential concern that strongly sorb to or are otherwise associated with the solid-phase portion of the soil-water system (e.g. for petroleum hydrocarbon constituents), except where it can be confidently demonstrated that partitioning from soil into the water phase is a precondition for bioavailability and adverse biological effects.

The alternative salt guidelines are also based on an assumption that the zone of exposure is saturated or partially saturated, at least seasonally, as is the case for hygric soils and peatland ecosystems in British Columbia. These alternative soil guidelines were not developed for use in assessment or management of salt contamination for upland ecosystems with plant and soil invertebrate communities potentially present in unsaturated soils.

The BC CSR (Stage 11 Amendments, October 2017) defines soil matrix standards for the following formally defined land uses:

- Wildlands land use (natural or reverted)
- Agricultural land use
- Urban park land use
- Residential land use (low density or high density)
- Commercial land use
- Industrial land use

The derivation of alternative salt guidelines for peatland environments is intended primarily for application to wildlands settings; however, it is recognized that occasionally peatlands that match the definitions provided in Section 2.0 herein and which fit within the intent of environmental protection goals that underpin the alternative salt guidelines will occur adjacent to or underneath sites with other land use types. As an example, peat bogs and fens are known to occur in areas within northeastern British Columbia that have been included within Agricultural Land Reserve areas.

It is important to note that the intent of the alternative salt guidelines for peatlands is not intended for protection of agronomic or other species and ecosystems, to the extent that the ecotoxicity data than underlie the peatland alternative guidelines are based on surrogate species for the broader suite of peatland flora and fauna. If additional soil (or sediment) biological communities are present at a site that would not generally be found in peatlands, the application of other biological effects thresholds may be required.

As discussed above, the alternative salt guidelines are not intended for application to non-saturated soil systems.

6.0 UPDATED COLLATION OF SCIENTIFIC KNOWLEDGE ABOUT SALT ION EFFECTS ON PEATLAND BIOTA

- 13 -

In order to define acceptable sodium and chloride concentration thresholds for the protection of peatland ecosystems based on solution-based exposure concentrations, the existing ecotoxicological information was critically evaluated (Sections 6.1 and 6.2 below), and new relevant data were developed based on laboratory ecotoxicity testing completed by Nautilus Environmental (Section 6.3).

6.1 RE-EVALUATION OF LABORATORY ECOTOXICITY DATA FROM BRIGHT AND ADDISON (2001)

The soil invertebrate and plant ecotoxicity data used to develop the existing CSR soil matrix standards is provided in Bright and Addison (2002). Relevant details of the experimental methods used to produce these data are provided in Addison (2002), *Addendum C: Soil Invertebrate Toxicity Tests: Lessons and Recommendations* which accompanies the main derivation report. Soil invertebrate toxicity tests were completed in an artificial OECD soil and three native BC soil types collected from Scotch Creek, Clinton, and Saanichton. Sufficient accessory measurements were obtained for the OECD soil, in particular, to convert ecotoxicological threshold values obtained from the studies based on saturated paste methods to sodium and chloride concentration in soil pore water (mg/L).

The OECD soil is composed of 70% sand, 20% kaolin clay, and 10% peat by dry mass. Experiments in the OECD soil were carried out at 30% moisture (by wet weight), or 43% moisture (by dry weight). The water holding capacity (WHC) of the OECD artificial soil was 115% of dry weight (determined according to Annex C of ISO 11267). Thus, the moisture level used in these laboratory toxicity tests corresponded to 37% of WHC. Based on these estimates, the various ecotoxicological thresholds established for exposures to NaCl in the OECD artificial soil, expressed as saturated paste concentrations (mg/kg dw) can be re-expressed on the basis of mg/L in soil solution in light of the expected presence in the test units of 0.43 mL water/g dw soil [i.e. based on 1.15 mL/g soil x 0.37 (37% WHC)].

No similar conversion is available for the soil invertebrate laboratory toxicity test results using field-collected Saanichton, Scotch Creek, or Clinton soil types since no estimate of overall WHC was provided for these.

The converted results of tests in OECD soil are provided in **Table 6-1**.

Table 6-1 Relevant soil invertebrate toxicity data from Bright and Addison (2002)

Test Species	Test Duration	Biological Endpoint	Dose-response Model	NaCl Effect Size (EC _x , LC _x)	NaCl Conc. (mg/kg dw) (95% Conf. Limits)	Na Conc. (mg/L soil solution)	Cl Conc. (mg/L soil solution)
Collembola - <i>Folsomia</i> candida	28 d	Reproduction (# of neonates)	Non-linear regression- logistic (r ² =0.788)	EC ₅₀	2770 (1900-3640)	2560	3940
	7 d	Mortality	Non-linear regression- logistic (r ² =0.886)	LC ₂₀	9590 (8830-10340)	8860	13700
Collembola - Onychiurus folsomi	28 d	Reproduction (# of neonates)	Non-linear regression- logistic (r ² =0.935)	EC ₅₀	6520 (5520-7520)	6020	9280
		Mortality	Linear regression (0.666)	LC ₂₀	5520 n/a-n/a)	5100	7860
Collembola - Proisotoma minuta	14 d	Reproduction (# of neonates)	Non-linear regression- logistic (r ² =0.903)	EC ₅₀	6420 (5220-7610)	6020	9280
Collembola – Protaphorura armata	7 d	Mortality	Linear regression (r ² =0.903)	LC ₂₀	16110 (n/a-n/a)	14900	22900
*Earthworms - <i>Eisenia</i> andrei/fetida	28 d	Reproduction (cocoon prod'n)	Non-linear regression- logistic (r ² =0.776)	EC ₅₀	1880 (1480-2280)	1740	2680
	56 d	Reproduction (hatched cocoons)	Non-linear regression- logistic (r ² =0.553)	EC ₅₀	906 (237-1580)	837	1290
	28 d	Growth	Non-linear regression- logistic (r ² =0.682)	EC ₅₀	4680 (1980-4390)	4320	6660
		Mortality	Non-linear regression- logistic (r ² =0.990)	LC ₂₀	5530 (n/a-n/a)	5110	7870

*Lumbriculid worms such as *E. andrei* are more generally associated with agricultural soils in western Canada, and the vast majority of earthworms in Canada are introduced species. Nonetheless, there is growing interest in earthworm invasions into western Canadian boreal forest ecosystems with peat soils (especially for *Dendrobaena octaedra*). In addition, some northern European peatlands are known to support populations of enchtraeid worms. Thus, *E. andrei* is included here as a non-native species that is nonetheless a relatively salt intolerant, surrogate species for various soft-bodied invertebrates that may occur in fens and bogs.

6.2 ADDITIONAL SOLUTION-BASED SALT ECOTOXICITY DATA FROM THE SCIENTIFIC LITERATURE

A detailed literature search of NaCl effects on soil invertebrates and plants of was completed by Bright and Addison (2002). The data collated in Appendix B of this report were reviewed to identify any relevant laboratory or field ecotoxicity data for soil invertebrates, bryophytes or plants that may serve as surrogate taxa for BC peatland taxa, based on effects thresholds definable on the basis of Na and Cl concentrations in solution (i.e. on the basis of mg/L concentrations). No relevant data were located.

Bright and Meier (2007) completed an updated review of the literature on salt ecotoxicity published between the time of completion of draft salt matrix standards by Bright and Addison (2007) and September 2007. This was completed on behalf of BC ENV in support of the formal adoption into the CSR of the Schedule 5 soil matrix standards for sodium and chloride. Seventeen studies were reviewed, including six separate studies on plants exposed to NaCl hydroponically (in solution). Four of these studies were completed on terrestrial agronomic plant species (e.g. barley, corn, cowpea, bean, soybean) and are not considered relevant to peatland vegetation. Two separate studies (Franklin et al. 2002; Apostol et al. 2002) examined seedlings NRCan NaCl effects on jack pine (Pinus banksia). According to (https://tidcf.nrcan.gc.ca/en/trees/factsheet/43), jack pine is the mostly widely distributed species of pine in Canada, and is commonly found in both muskeg (peatland) and upland habitats. While jack pine can be readily found in boreal peatlands in northern Alberta and the southeastern Yukon, the westerly distribution does not extend into the major portion of northeastern BC (Cunningham et al. 2012). Nonetheless, the species is probably a reasonable surrogate species for lodgepole pine (Pinus contorta), which occurs throughout northern BC, as well as for other coniferous plants. Data extracted from these two studies on jack pine are summarized in Table 6-2 below.

Additional relevant data on plant species likely to be representative of BC peatland species were found in Croser *et al.* (2001), and Renault *et al.* (2005). The relevant data are also presented in **Table 6-2**. Relevant data from Nguyen *et al.* (2006) on growth responses of black spruce, white spruce or jack pine seedlings to 25 mM NaCl with or without prior ectomycorrhizal introduction are not included herein since the paper provided experimental results only as figures, from which quantitative estimates of effect size were challenging to obtain.

Many of these studies (Apostol *et al.* 2002; Franklin *et al.* 2002) used only a single NaCl exposure concentration, along with a control. Thus the full dose-response relationship was not assessed.

Princz *et al.* (2012) described the relative sensitivities of different boreal forest soil invertebrate and plant test species and effects endpoints to salinized soils from a produced water release site in Alberta. This study provides a summary of efforts to develop soil invertebrate and plant toxicity tests that are particularly relevant to Canadian wildlands ecosystems, with an emphasis on boreal forest ecosystems. The salt ion exposure concentrations in this study were quantified as soil electrical conductivity (EC: dS/m).

Species	Effect Endpoint	Effect Size	NaCl conc. (mg/L)	Na (mg/L)	CI (mg/L)
Apostol et al., 2002					
Jack pine (<i>Pinus banksia)</i> (28 d)	Seedling survival	LC ₃₀	3510 (60 nM)	1380	2130
	New shoot length	EC ₂₈	4.0	above	
	No. of new roots	EC ₈₅	AS	above	
Franklin et al., 2002					
Jack pine (<i>Pinus banksia)</i> (10 wk)	Shoot dry mass	EC ₁₉	3510 (60 nM)	1380	2130
	Chlorophyll a	EC ₁₅	Asa	above	
Croser et al., 2001					
Jack pine (<i>Pinus banksia</i>) (6 wk)	Seed germination	NOEC (LC ₀)	5840 (100 mM)	2300	3550
		LC ₈₃	14600 (250 mM)	5750	8860
	Seedling survival	LC ₇	2920 (50 mM)	1150	1770
		LC ₆₄	5840 (100 mM)	2300	3550
White spruce (<i>Picea glauca</i>) (6 wk)	Seed germination	LC ₈	1179 (20 mM)	460	709
		LC ₂₈	2920 (50 mM)	1150	1770
		LC88	5840 (100 mM)	2300	3550
	Seedling survival	LC ₅	585 (10 mM)	230	355
		LC ₁₁	1170 (20 mM)	460	710
		LC ₅₀	2920 (50 mM)	1150	1770
Black spruce (<i>Picea mariana</i>) (6 wk)	Seed germination	LC ₂	2920 (50 mM)	1150	1770
		LC ₂₁	5840 (100 mM)	2300	3550
	Seedling survival	LC₃	585 (10 mM)	230	355
	-	LC ₇	1170 (20 mM)	460	710
		LC ₂₈	2920 (50 mM)	1150	1770
		LC ₈₇	5840 (100 mM)	2300	3550
Renault et al., 2005					
Tamarack (<i>Larix</i> <i>laricina</i>) (40 d)	New shoot length	EC ₅₉	1750 (30 mM)	690	1060
		EC ₇₄	3510 (60 nM)	1380	2130
	Shoot dry mass	EC ₂₂	1750 (30 mM)	690	1060
		EC ₃₃	3510 (60 nM)	1380	2130
	Root dry mass	EC ₁₉	1750 (30 mM)	690	1060
		EC ₃₈	3510 (60 nM)	1380	2130
	Chlorophyll <i>a</i> (old needles)	EC ₆₀	1750 (30 mM)	690	1060
		EC ₈₇	3510 (60 nM)	1380	2130

- 16 -

Table 6-2 NaCl toxicity to peatland and boreal plant species

The expression of exposure concentration as soil EC imposes some limitations on the use of these data to derive a solution based environmental quality guideline for protection against saline releases expressed on the basis of sodium and chloride concentrations. Nonetheless, there is expected to be a strong relationship between the measured EC in saturated or partially saturated soil samples and the solution salt ion concentrations, since EC should be influenced more by cation and anion concentrations in soil solution

than in association with the non-aqueous soil phase. Princz *et al.* (2012) constructed an estimated species sensitivity distribution (ESSD) for eight boreal forest plant species and seven soil invertebrate species. The 25th percentile of this combined ESSD was in the range of 0.25 dS/m

6.3 NEW LABORATORY TOXICITY TEST DATA

Nautilus Environmental Inc., Burnaby, was engaged to develop new ecotoxicity data for representative peatland bryophytes, plants and soil invertebrates, based on exposures to sodium chloride in solution within peat soils. A detailed description of study design, methods, results, and interpretations is provided in Appendix A.

The existing Canadian, OECD, or other standardized toxicity test procedures have not been developed for testing biological responses in peat soils, or under hygric conditions, and substantial effort was directed towards a set of study designs that adequately approximate biological exposure conditions in BC peatland areas following a produced water or other type of salinity release. Our efforts to develop test methods relevant to the taxa of interest and expected exposure conditions were assisted by efforts over the last decade to develop laboratory terrestrial toxicity test methods relevant for Canadian boreal ecosystems (Environment Canada, 2103; Environment Canada and Saskatchewan Research Council, 2007).

A concise summary of the test methods and results is provided in this section.

The following toxicity tests were completed by Nautilus:

- Springtail (collembolan) *Folsomia candida* 28-day survival and reproduction test. This was based on an adaptation of Environment Canada test method EPS1/RM/47 (February 2014). *F. candida* is intended to be broadly representative of various other wildlands collembolans and soil invertebrates such as oribatid mites and small-bodied enchytraeid worms.
- Paper birch (*Betula papyrifera*) 35-day seedling emergence and growth. This was based on an adaptation of Environment Canada test method EPS1/RM/56 (2013).
- Bluejoint Reedgrass (*Calamagrostis canadensis*) 28-day emergence and growth. This was based on an adaptation of Environment Canada test method EPS1/RM/56 (2013).
- Greater water moss (*Fontinalis antipyretica*) 21-day growth test. Since there are no standardized sphagnidae or brown moss tests available for species found in peatland environments, the aquatic moss *F. antipyretica* was used as an indicator of overall bryophyte sensitivity to salt ions in areas that are not naturally saline.

Each of these test organisms except *F. antipyretica* was exposed in test units comprised of peat that were then saturated with a sodium chloride solution over a range of concentrations of 0 mg/L (control), 320 mg/L, 490 mg/L, 750 mg/L, 1200 mg/L, 1800 mg/L, 2700 mg/L, 4200 mg/L, 6500 mg/L and 10000 mg/L.

The toxicity tests are summarized in Tables 6-1 through 6-4.

Effect Size	Interpolated Exposure Level (mg/L) (95% Confidence Limits)						
	NaCl	Na⁺	Cl				
Survival Rate (Linear int	Survival Rate (Linear interpolation curve-fitting method)						
LC5	722 (535 - > 10,000)	284	438				
LC10	>10,000	>3900	>6100				
Reproduction: number	of neonates (Non-linear	interpolation curve-fitting	method: Log-Gompertz:				
<i>R</i> ² <i>adj</i> = 0.84)							
IC5	309 (n/a – 708)	122	187				
IC10	601 (228-979)	236	365				
IC15	896 (496-1310)	352	544				
IC20	1200 (759-1670)	472	728				
IC25	1520 (1040-2040)	598	922				
IC40	2580 (2000-3220)	1015	1565				
IC50	3420 (2750-4190)	1345	2075				

Table 6-3: NaCl effects on springtail (F. candida) survival and reproduction over 28 days

* Exposures conducted at soil solution NaCl concentrations of 0 mg/L (control), 320 mg/L, 490 mg/L, 750 mg/L, 1200 mg/L, 1800 mg/L, 2700 mg/L, 4200 mg/L, 6500 mg/L and 10000 mg/L

Effect Size	Interpolated Expo	sure Level (mg/L) (95% C	onfidence Limits)					
	NaCl	Na ⁺	CI					
Germination (untrimmed Spearman-Karber)								
EC50	4810 (3960 - 5830)	1890	2920					
Growth: Shoot Length	Growth: Shoot Length (Log-Logistic with Hormesis)							
IC5	1690 (n/a – 2110)	665	1025					
IC10	1900 (n/a - 2320)	747	1153					
IC15	2100 (1650-2540)	826	1274					
IC20	2300 (1860-2750)	905	1395					
IC25	2500 (2060-2970)	983	1517					
IC40	3150 (2680-3700)	1239	1911					
IC50	3660 (3140-4340)	1440	2220					
Growth: Shoot Dry Mas	s (Linear Interpolation)							
IC5	2660 (n/a - 2840)	1046	1614					
IC10	2780 (1370-3190)	1094	1686					
IC15	2900 (2050-3500)	1141	1759					
IC20	3030 (2470-3830)	1192	1838					
IC25	3170 (2620-4190)	1247	1923					
IC40	3590 (2940-5140)	1412	2178					
IC50	3900 (3080-5630)	1534	2366					
Growth: Root Length (7	Two-point Interpolation)							
IC5	2620 (n/a-2790)	1031	1589					
IC10	2740 (n/a-2930)	1078	1662					
IC15	2860 (n/a-3130)	1125	1735					
IC20	2990 (2370-3320)	1176	1814					
IC25	3120 (2530-3510)	1227	1893					
IC40	3530 (2970-4220)	1389	2141					
IC50	3830 (3240-4890)	1507	2323					
Growth: Root Dry Mass	(Two-point Interpolation)							
IC5	2740 (n/a-2820)	1078	1662					
IC10	2880 (n/a-3130)	1133	1747					
IC15	3030 (1190-3480)	1192	1838					
IC20	3180 (2420-4060)	1251	1929					
IC25	3340 (2550-4700)	1314	2026					
IC40	3860 (2920-5360)	1519	2341					
IC50	4240 (3070-5750)	1668	2572					

Table 6-4: NaCl effects on paper birch seedling emergence and growth over 35 days

- 19 -

* Exposures conducted at soil solution NaCl concentrations of 0 mg/L (control), 340 mg/L, 560 mg/L, 930 mg/L, 1600 mg/L, 2600 mg/L, 4300 mg/L, 7200 mg/L, 12000 mg/L and 20000 mg/L.

Table 6-5: NaCl effects on Bluejoint Reedgrass (*Calamagrostis canadansis*) emergence and growth over 28 days

Effect Size	Interpolated Exposu	ire Level (mg/L) (95% Co	onfidence Limits)
	NaCl	Na⁺	Cl.
Germination (Line	ar Regression, MLE: Log-Gompert	z)	
EC5	1220 (0.3-2910)	480	740
EC10	1790 (3.0-3630)	704	1086
EC15	2250 (10-4160)	885	1365
EC20	2670 (25-4611)	1050	1620
EC25	3060 (50-5020)	1204	1856
EC40	4160 (247-6150)	1637	2523
EC50	4890 (566-6960)	1924	2966
Growth: Shoot Le	ngth (Linear Interpolation)		
IC5	2930 (n/a-3050)	1153	1777
IC10	3300 (n/a-3550)	1298	2002
IC15	3690 (n/a-4250)	1452	2238
IC20	4130 (n/a-4660)	1625	2505
IC25	4470 (848-4860)	1758	2712
IC40	5380 (4240-5690)	2116	3264
IC50	6060 (5060-6320)	2384	3676
Growth: Shoot Dr	y Mass (Nonlinear Regression:Log	-Logistic with Hormesis)	
IC5	907 (n/a-1470)	357	550
IC10	1020 (n/a-1640)	401	619
IC15	1140 (n/a-1820)	448	692
IC20	1270 (816-2010)	500	770
IC25	1420 (941-2320)	559	861
IC40	2140 (1370-3310)	842	1298
IC50	2690 (1690-5100)	1058	1632
Growth: Root Len	gth (Nonlinear Regression:Log-Log	gistic with Hormesis)	
IC5	2500 (n/a-3920)	983	1517
IC10	3000 (n/a-4260)	1180	1820
IC15	3360 (n/a-4620)	1322	2038
IC20	3660 (n/a-4970)	1440	2220
IC25	3930 (n/a-5300)	1546	2384
IC40	4660 (3010-6350)	1833	2827
IC50	5160 (3600-7400)	2030	3130
Growth: Root Dry	Mass (Linear Interpolation)	· · · · · · · · · · · · · · · · · · ·	
IC5	2860 (n/a-3020)	1125	1735
IC10	3130 (n/a-4780)	1231	1899
IC15	3430 (n/a-5030)	1349	2081
IC20	3750 (n/a-5060)	1475	2275
IC25	4090 (n/a-5090)	1609	2481
IC40	4720 (n/a-5430)	1857	2863
IC50	6000 (n/a-5720)	2360	3640

* Exposures conducted at soil solution NaCl concentrations of 0 mg/L (control), 340 mg/L, 560 mg/L, 930 mg/L, 1600 mg/L, 2600 mg/L, 4300 mg/L, 7200 mg/L, 12000 mg/L and 20000 mg/L.

Effect Size	Interpolated Expo	osure Level (mg/L) (95% Co	onfidence Limits)				
	NaCl	Na⁺	Cl				
Growth: Chlorophyll a content (Nonlinear Regression:Log-Logistic)							
IC5	568 (303-706)	223	345				
IC10	727 (570-846)	286	441				
IC15	847 (705-966)	333	514				
IC20	950 (816-1070)	374	576				
IC25	1040 (916-1170)	409	631				
IC40	1310 (1190-1430)	515	795				
IC50	1500 (1380-1630)	590	910				
Growth: Total Dry Mass	s (Linear Interpolation: Log	-Linear Regression)					
IC5	1590 (n/a-1950)	625	965				
IC10	1790 (553-2080)	704	1086				
IC15	2000 (867-2230)	787	1213				
IC20	2230 (1330-2400)	877	1353				
IC25	2470 (2040-2590)	972	1498				
IC40	>20000	>7900	>12100				
IC50	>20000	>7900	>12100				
Growth: Mean Length (Nonlinear Regression:Log	-Logistic)					
IC5	313 (n/a-517)	123	190				
IC10	442 (194-609)	174	268				
IC15	548 (348-713)	216	332				
IC20	643 (454-815)	253	390				
IC25	734 (549-915)	289	445				
IC40	1010 (824-1220)	397	613				
IC50	1290 (1020-1460)	507	783				

- 21 -

Table 6-6: NaCl effects on aquatic moss (F. antipyretica) growth over 21 days

* Exposures conducted at soil solution NaCl concentrations of 0 mg/L (control), 340 mg/L, 560 mg/L, 930 mg/L, 1600 mg/L, 2600 mg/L, 4300 mg/L, 7200 mg/L, 12000 mg/L and 20000 mg/L.

7.0 DERIVATION OF ALTERNATIVE SALT GUIDELINES

7.1 EXISTING POLICIES AND PROCEDURES RELEVANT TO THE ESTABLISHMENT OF *BC CONTAMINATED SITES REGULATION* NUMERICAL STANDARDS

The derivation of BC CSR soil matrix standards based on ecological receptor direct contact pathways have historically been based on single species laboratory toxicity test data, in parallel with Canadian Council of Ministers of the Environment (CCME) (2003) <u>Protocol for the Derivation of Environmental and Human</u> <u>Health Soil Quality Guidelines</u>, and the CCME (1996) precursory derivation protocols. The use of field plots to derive relevant ecotoxicity data as part of this study is a departure from this practice.

The newly collected data are intended to support the derivation of alternative chloride and sodium site assessment and remediation guidelines for possible adoption under the *British Columbia Contaminated Sites Regulation* (CSR). As such, the data are intended to satisfy ecotoxicity data needs for the derivation of CSR Soil Matrix Standards (Soil Invertebrates and Plants) per derivation protocols documented in -

- BC MOE (January 31, 1996). <u>Overview of CSST Procedures for the Derivation of Soil Quality</u> <u>Matrix Standards</u> (available online at <u>http://www.env.gov.bc.ca/epd/remediation/standards_criteria/standards/overview_of_csst.htm</u>; and
- SABCS, November 2009. <u>Review of CST (1996) Soil Matrix Derivation Approach and Related</u> <u>Policy Decisions (http://www.sabcs.chem.uvic.ca/review%20CSST-1996.html)</u>
 - 2009a. Volume I: Review and Recommendations for Revision of the CSST 91996)
 Procedures for the Derivation of Soil Quality Matrix Standards for Contaminated Sites (123 pp).
 - 2009b. Volume II: SABCS Review and Recommendations for Revision of the CSST (1996)
 Policy Decision Summary (85 pp).
- BC MOE (Remi Odense/Glyn Fox) (February 2016). CSR OMNIBUS UPDATING: Protocol Summary Amendments to Schedule 5 Environmental Protection, Matrix Soil Standards (5 pp).

MOE (February 2016) provides two alternative methods for the development of soil invertebrate and plant standards. The preferred of Method 1 and Method 2 is Method 1: Modified CSST (1996):

"Substance specific linear regression based Effects Concentration estimates are calculated using geometric means of quartile or quintile data bins of combined EC (non-lethal) and LC (lethal) toxicity data as follows:

1. All available toxicity data for a substance is compiled and assessed for acceptability against data quality assurance/quality control criteria and data bias checks.

2. No Observed Effect Concentration (NOEC) data lacking an associated percent effect are binned in the first quartile (or quintile) data bin.

- 23 -

- 3. All data are combined into a single data set comprising non-lethal Effect Concentration (EC) and Lethal Effect Concentration (LC) data.
- 4. Calculate a linear regression line for the resulting combined EC and LC effects substance specific distribution based on quartile geometric means for the following classes:
 - a. 1st quartile EC and LC effects in the range of 0% to 24% (inclusive)
 - b. 2nd quartile EC and LC effects in the range of 25% to 49% (inclusive)
 - c. 3rd quartile EC and LC effects in the range of 50% to 74% (inclusive)
 - d. 4th quartile EC and LC effects in the range of 75% to 100% (inclusive)
- 5. If the quartile regression returns an regression correlation coefficient, $r^2 > 0.75$, calculate from the regression line, land use soil invertebrate and plants soil standards as follows:
 - a. WLN: standard is the predicted 15th percentile concentration
 - b. WLR /AL/RL_{LDR}/PL: standard is the predicted 25th percentile concentration
 - c. RL_{HDR} /CL/IL: standard is the predicted 50th percentile concentration
- 6. If the quartile regression does not meet data quality criteria, e.g. returns an $r^2 < 0.75$, recalculate the regression using quintile data bins:
 - a. 1st quintile EC and LC effects in the range of 0% to 19% (inclusive)
 - b. 2nd quintile EC and LC effects in the range of 20% to 39% (inclusive)
 - c. 3rd quartile EC and LC effects in the range of 40% to 59% (inclusive)
 - d. 4th quartile EC and LC effects in the range of 60% to 79% (inclusive
 - e. 5th quintile EC and LC effects in the range of 80% to 100% (inclusive)
- 7. If the quintile regression returns an r2 > 0.75, calculate from the regression line, land use soil invertebrate and plants soil standards as follows:
 - a. WLN: standard is the predicted 15th percentile concentration

- b. WLR /AL/RL_{LDR}/PL: standard is the predicted 25th percentile concentration
- c. RL_{HDR}/CL/IL: standard is the predicted 50th percentile concentration
- 8. If the quintile regression does not meet data quality criteria, e.g. returns an r2 <0.75, do not use Method 1. Instead use Method 2 to derive the standard."

MOE (2016) does not define either minimum data quality needs or data quality objectives for support of the derivation, based either on proposed Method 1 (modified CSST 1996 method) or Method 2 (SABCS 2009), as discussed further below. SABCS (2009), however, specifies:

• Ecotoxicity data for at least three distinct taxa for each of plants (including bryophytes) and soil invertebrates. Relevant endpoints might include mortality/survivorship, growth/yield, and reproduction (germination, seed production, etc.).

7.2 ALTERNATIVE GUIDELINES FOR SOIL INVERTEBRATE AND PLANT PROTECTION

As summarized in **Tables 6-1** through **6-7**, relevant laboratory toxicity data on NaCl, expressed on the basis of solution concentration (as soil solution or in hydroponic exposures) were obtained for the following five soil invertebrate species:

Collembola:

Folsomia candida - mortality, reproduction (Bright and Addison, 2002; Nautilus, 2017)
Onychiurus folsomi - mortality, reproduction (Bright and Addison, 2002)
Proisotoma minuta - reproduction (Bright and Addison, 2002)
Protophorura armata - mortality (Bright and Addison, 2002)

Oligochates:

Eisenia fetida/Andrei - reproduction (Bright and Addison, 2002)

Similarly, relevant NaCl laboratory toxicity data were obtained for the following seven plant and bryophypte species:

Jack pine *(Pinus banksia*) germination, seedling survival, growth (Croser *et al.* 2001; Apostol *et al.* 2002; Franklin et al. 2002)

White spruce (*Picea glauca*) – seed germination, seedling survival (Croser et al. 2001)

Black spruce (*Picea mariana*) – seed germination, seedling survival (Croser et al. 2001)

Tamarack (Larix laricina) – growth and photosynthesis (Renault et al. 2005)

Paper birch (Betula papyrifera) - seedling emergence and growth (Nautilus 2017)

Greater water moss (*Fontinalis antipyretica*) – seedling emergence and growth (Nautilus 2017)

Bluejoint Reedgrass (*Calamagrostis canadensis*) – seedling emergence and growth (Nautilus 2017)

The relationship between chloride exposure concentration and effect size based on these studies is illustrated in **Figure 7-1**.

Per MOE (February 2016), a summary of the geometric mean chloride concentration associated with each quartile of the overall effect size range is provided in **Table 7-1**. The data for soil invertebrates and plants were combined to generate the quartile geometric means, as were data for mortality type and non-lethal endpoints.

 Table 7-1 Summary of NaCl ecotoxicity data by effects size quartile

Quartile of EC/LC _X Estimates	Number of Data Points	Effect Size Geomean	Quartile Midpoint	Chloride Geomean (mg/L)
1st quartile ($0 \le X \le 24$)	70	10.9	12	1259
2nd quartile ($25 \le X \le 49$)	32	31.4	37	1788
3rd quartile ($50 \le X \le 74$)	25	52.0	62	2651
4th quartile (75 \leq X \leq 100)	5	86.0	87.5	3475

The resulting linear regression estimate is provided in Figure 7-2.

The simplified relationship between chloride exposure concentration and size of the predicted adverse toxicological effect across a total of 12 different species and various lethal and non-lethal effect types, is as follows:

[chloride] (mg/L) =
$$30.5 \times defined effect size (X) + 915 mg/L$$
 [1]

 $(r^2 = 0.988)$

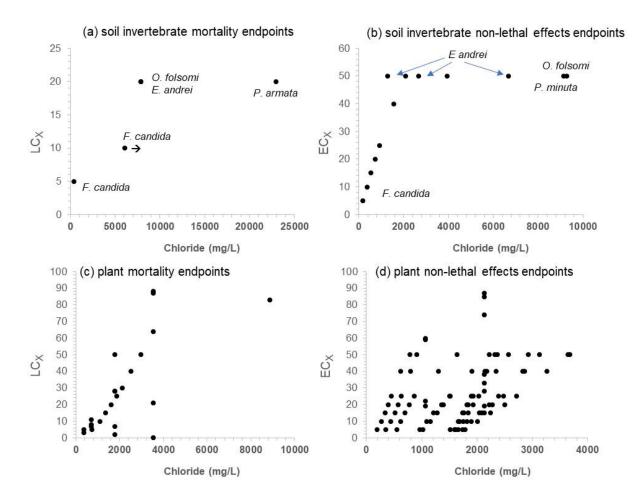
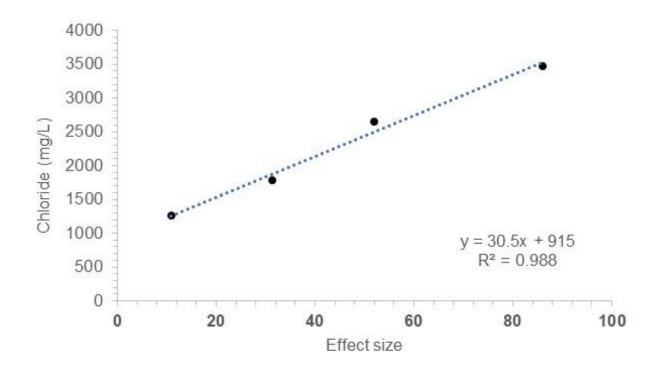



Figure 7-1 Summary of ecotoxicity data for laboratory exposures to NaCl in solution

From this equation, the following alternate chloride guidelines are proposed:

- WL_N: 15th percentile chloride concentration = **1370 mg/L** chloride
- WL_R / AL / RL_{LDR} / PL: 25th percentile chloride concentration = 1680 mg/L chloride
- RL_{HDR} / CL / IL: 50th percentile chloride concentration = **2440 mg/L** chloride

The laboratory ecotoxicity data that underpin these calculated alternative solution-based chloride guidelines were developed based on exposing various plants, moss, and soil invertebrates to solutions of NaCl and it is reasonable to assume exposures to equimolar concentrations of the chloride and sodium ion. While it is not possible to confidently ascribe the observed adverse effects to either the cation or anion based on the study designs, it is assumed that an equivalent set of solution-based sodium guidelines will be adequately protective of peatland vegetation and invertebrates, based on the ratio of the molecular weight of sodium and chloride (i.e. 22.99 and 35.45 respectively).

Figure 7-2 Linear regression of chloride concentration (mg/L) geometric means by effects size quartile on the geometric mean effect size

Thus, the following alternative sodium guidelines are proposed:

- WL_N: 15th percentile chloride concentration = **890 mg/L** sodium
- WL_R / AL / RL_{LDR} / PL: 25th percentile chloride concentration = 1090 mg/L sodium
- RL_{HDR} / CL / IL: 50th percentile chloride concentration = 1580 mg/L sodium

7.3 HUMAN HEALTH PROTECTION

Since sodium chloride is generally recognized as safe for human consumption (Bright and Addison 2002), no alternative solution-based sodium or chloride guidelines have been derived in consideration of human health protection for peatlands.

The absence of a human health based peatland sodium or chloride standard notwithstanding, site assessment and risk management / remediation efforts still need to take into account the possible

contamination of potable water supplies beyond the pre-existing standards for human health protection – drinking water ingestion.

7.4 AQUATIC LIFE PROTECTION

Use of the alternative sodium and chloride guidelines for peatland environments does not remove the requirement for the responsible party/parties to recognize surface water habitats that may support aquatic life, and to appropriately apply existing aquatic life protection standards and guidelines or to evaluate and manage the potential ecological risks based on a site-specific risk assessment approach.

8.0 CONCLUSIONS AND APPLICATION NOTES

The alternative sodium and chloride guidelines developed herein are intended to be applicable for anthropogenic salt releases to boreal peatland environments, including fens and bogs, as opposed to terrestrial upland environments. BC CSR alternative salt guidelines for peatlands should provide adequate protection of the sphagnidae mosses, other moss types, and vascular plants that are important for carbon sequestration and water storage and filtering, and for the growth of herbaceous and woody plants and trees that provide forage, tertiary structure, shelter, nesting and denning sites.

Peatlands are defined herein as areas that are continuously or routinely water-saturated in their natural or reclaimed state such that water occurs, at least seasonally for a typical year, at or near (within 20 to 30 cm of) the upper land surface, including bryophyte cover. Furthermore, a peatland – by operational definition – will exhibit a surface accumulation of peat to a depth of ≥40 cm and will have a total organic carbon (TOC) content of 17% or more. There may be instances in which peat accumulations arising from peatland development are encountered in the subsurface environment, beneath shallow anthropogenic or naturally occurring flood or landslide deposits. These relict peatland soils may be considered as peatlands for the purpose of applying alternative salt guidelines, to the extent that the soil characteristics within the peat strata are consistent with the expected range of variation in natural surface peatlands within the province.

The alternative sodium and chloride guidelines have been derived in a manner that permits a more straightforward assessment of ecological risks in peatlands through the collection and direct analysis of near-surface water (free water; e.g. collected within one meter or less from the peatland surface using a shallow test pit or piezometer). In cases where no free water is available for sampling, a pragmatic and defensible alternative to the use of saturated paste methods with peat soil samples is provided (Section 4 herein).

The utility of environmental quality guidelines or standards for achieving important environmental protection goals while avoiding undue inefficiencies in societal resource allocation that have little environmental benefit depends on the quantity and quality of the available scientific data, a good understanding of the particulars of environmental fate and effects, and the robustness of the prescribed derivation protocols. The available ecotoxicity data for NaCl effects on peatland plants and soil invertebrates is deemed adequate for developing a good appreciation of the variation in sensitivities of the taxa of interest to saline water exposures. The alternative sodium and chloride guidelines provided herein are based on extensive laboratory toxicity data for five soil invertebrate species, seven vascular plant species, and one aquatic moss species.

The ecotoxicity data or peatland biota based on aqueous exposures to NaCI (measured or quantified as Na and CI) are complementary to various threshold of effects estimates based especially on measurements

of wetland or soil salinity on the basis of electrical conductivity. The two approaches should generally achieve an equivalent level of environmental protection.

- 30 -

The alternative sodium and chloride guidelines for toxicity to soil invertebrates and plants in peat soils developed as part of this project are summarized below:

Land Use	Peat Sodium Guideline	Peat Chloride Guideline
Wildlands - natural	890 mg/L	1370 mg/L
Wildlands – reverted		
Agricultural	1000	4000
Residential – Low Density	1090 mg/L	1680 mg/L
Urban Parkland		
Residential – High Density		
Commercial	1580 mg/L	2240 mg/L
Industrial		

9.0 **REFERENCES**

- Apostol, K.G., Zwiazek, J.J., MacKinnon, M.D. (2002). NaCl and Na₂SO₄ alter responses of jack pine (*Pinus banksiana*) seedlings to boron. *Plant and Soil* **240**: 321-329.
- Baird, A.J., A. M Milner, A. Blundell, G.T. Swindles and P. J. Morris, 2016. Microform-scale variations in peatland permeability and their ecohydrological implications. *Journal of Ecology* **104:** 531-544.
- Benko, K.L. and J.E. Drewes, 2008. Produced water in the western United States: Geographical distribution, occurrence and composition. Environmental Engineering Science 25: 239-246.
- Bourgault, M.A., M. Larocque and M. Garneau, 2017. Quantification of peatland water storage capacity using the water table fluctuation method. Hydrological Processes. 31: 1184-1195.
- Bright, D.A., 2015. Development of alternative approaches for assessing and remediating produced water releases at boreal wetland sites. Presentation at the 2015 Northeast British Columbia Producers Meeting, Nov. 22, 2015, Fort St. John, British Columbia.
- Bright, D.A. and J.A. Addison. 2002. Derivation of Matrix Soil Standards for Salt Under the British Columbia Contaminated Sites Regulation. Report to the British Columbia Ministry of Water, Land and Air Protection. 116 pp plus appendices
- Bright, D.A. and M. Meier, 2007. A Review of the Toxicological Literature for Salt, 2002 to 2007. Report prepared for the CAPP Freshwater Salinity Working Group and the Salt Technical Advisory Subcommittee of the British Columbia Upstream Petroleum Environment Committee. 17 pp (available online).
- Croser, C., S. Renault, J. Franklin and J. Zwiazek, 2001. The effect of salinity on the emergence and seedling growth of *Picea mariana, Picea glauca,* and *Pinus banksia. Environ. Pollut.* **115:** 9-16.
- Cunninghan, C.I., P.M. James, J.E. Cooke, and D.W. Coltman, 2012. Characterizing the physical and genetic structure of the lodgepole pine × jack pine hybrid zone: mosaic structure and differential introgression. *Evol. Appl.* **5**: 879-891.
- Environment Canada, 2013. Biological Test Method: Test of Growth in Contaminated Soil Using Terrestrial Plants Native to the Boreal Region. Report EPS 1/RM/56, 108 pp.
- Environment Canada and Saskatchewan Research Council, 2007. Validation of Toxicological Test Methods for Assessing Petrolleum Hydrocarbon and Brine Spills in Boreal Forest Soils. Final Report, prepared

for the Environmental Research and Advisory Council and Canadian Association of Petroleum Producers. 40 pp plus appendices.

- 32 -

- Franklin, J.A, Zwiazek, J.J., Renault, S., Croser, C. (2002). Growth and elemental composition of jack pine (*Pinus banksiana*) seedlings treated with sodium chloride and sodium sulfate. *Trees* 16: 325-330.
- Mackenzie, W.H. and J.R. Moran, 2004. Wetlands of British Columbia: A guide to identification. Res. Br. B.C. Min. For., Victoria, B.C. Land Manage. Handb. No. 52. 295 pp.
- Morris, P.J., J. M. Waddington, B.W. Benscoter and M. R. Turetsky, 2011. Conceptual frameworks in peatland ecohydrology: looking beyond the two-layered (acrotelm-catotelm) model. *Ecohydrology* **4**: 1-11.
- Ngyen, H., M. Calvo Polanco and J.J. Zwiazek, 2006. Gas exchange and growth response of ecotmyccorhizal *Picea mariana, Picea glauca,* and *Pinus banksia* seedlints to NaCl and Na₂SO₄. *Plant Biol.* **8**: 646-652.
- Price, J.S. and J.M. Waddington, 2000. Advances in Canadian wetland hydrology and biogeochemistry. *Hydrological Processes* **14:** 1579-1589.
- Renault, S., 2005. Tamarack response to salinity: effects of sodium chloride on growth and ion, pigment, and soluble carbohydrate levels. *Can. J. Forest Res.* **36**: 2806-2812.
- Santos, S.M. and M.R. Wiesner, 1997. Ultrafiltration of water generated in oil and gas production. *Water Environment Research* **69**: 1120-1127.

SynergyAspen Environmental, 2015. Review and recommended changes to the saturated paste method to determine concentrations of sodium and chloride in muskeg. Final report. Prepared for the BC Oil and Gas Research and Innovation Society, 109 pp. (available online: http://www.bcogris.ca/sites/default/files/ei-2015-13-final-report-synergyaspen.pdf).

APPENDIX A

Nautilus 2017 Laboratory NaCl Ecotoxicity Reports

Soil Test Summary Sheet

2

Client:	Hemmera		Start Date: 11-Aug-17	
Work Order No .:	170520		Set up by: <u>JW / MLT</u>	
Sample Informatio	n:			
	sodium chloride			
Sample ID:	WChloride - made in-house			
Sample Date:	11-Aug-17			
Date Received:	n/a			
Stock Solution ID:	17Na02		,	
Test Organism Infe	ormation:			
Species:	Folsomia candida			
Source:	Environment Canada			
Age	12 days		,	
୍ଦ - Gopper Reference	Toxicant Results:			
Reference Toxicant	ID: FC01			
Stock Solution ID:	Boric Acid			
Date Initiated:	11-Aug-17			
14-d EC50 (95% CL		y boric acid		
EC50 Reference To	xicant Mean (Acceptable Range) :	n/a*	CV (%): n/a*	

SW (C50 Reference Toxicant Mean (Acceptable Range) :______n/a*______ CV (%): <u>n/a*</u>_____ SW (C50 Reference Toxicant Mean (Acceptable Range) :______n/a*______ CV (%): <u>n/a*_____</u>

 * : Insufficient data points to calculate a reference toxicant historical mean, range and CV

Test Results:

g/L NaCl	Survival	Reproduction		
EC50 (95% CL)	>10			
IC25 (95% CL)		1.5 (1.0 - 2.0)		
IC50 (95% CL)		3.4 (2.7 - 4.2)		

Reviewed by:

U

Dec. 5, 2017 Date reviewed:

Nautilus Environmental Environmental Quality Data

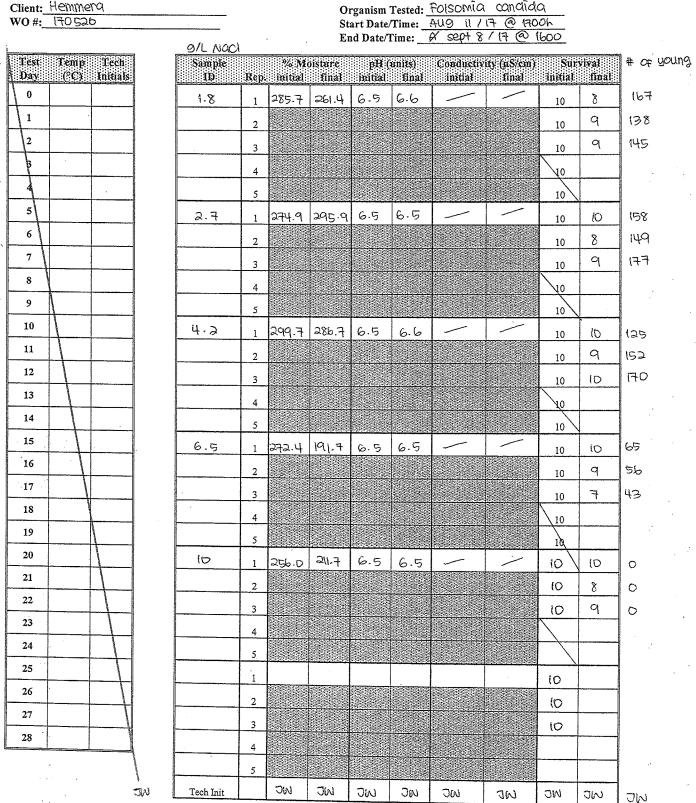
Client: Hemmerg WO #: 170520

Organism Tested: Folsomia candida
 Start Date/Time:
 AU9
 11 / 17
 @ 1700h

 End Date/Time:
 Ø sept 8 / 17
 @ 1600

井	OF	young

Tact	Tomo	Tech
Day	Temp (°C)	Initials
0	1 JW 23.0	SW
1	21.0	JM
2	22.0	WC
3	21.5	JW
4	21.0	JW
5	21.0	JW
6	21.0	υC
7	20.0	JN
8	21.0	υu
9	21.0	SM
10	21.0	Σ
11	21.0	ΣΩ
12	ୁ ଅ.୦	JW
13	21-0	JW
14	21-0	JW
15	21.0	JW
16	21-0	ЭW
17	21.0	JM
18	2(.0	JW
19	21.0	ωŪ
20	20.5	JW
21	20.5	JW
22	21-0	JW
23	21.0	JW
24	21.0	JW
25	21.0	WE
26	21.0	JW
27	21.0	JW
28	21.0	JW


9/L Nacl			Er	nd Date/7	fime:	X sept 8	1701	600		
Sample	Rep.	% M initial	oisture final	pH (initial	units) final	Conductiv initial	ity (µS/cm) final	Sur initial	vival final	# 0F YC
control	1	32.9	24.9	6.5	7.3			10	10	472
soil	2							10	9	225
	3							10	10	230
	4							10	9	443
	5							10	10	425
control	1	281.2	243.5	6.5	6.6	/		10	(0	250
Peat moss	2							10	9	233
·	3							. 10	8	236
	4							10	7	317
-	5							10	lo	273
0.32	1	264.5	216.4	6.5	6.6			10	io	309
	2							10	10	200
	3							10	10	161
	4							10		
	5							10		
0.49	1	278.0	310.2	6.5	6.5	·		10	10	260
	2							10	10	280
·	3							10	10	219
	4							10		
	5							10		
0.75	1	267.8	290.0	6.5	6.5			10	9	236
	2							10	9	220
	3							10	9	227
	4									
	5									
1.2	1	258.9	282.D	6.5	6.5			(0)	D	205
	2							10	8	167
	3							10	9	179
	4									
	5									
Tech Init		WC	MC	JN	ИС	SM	WC	WC	SN	MC

U Reviewed by:

Review Date:

Dee: 5, 2017

Nautilus Environmental Environmental Quality Data

Reviewed by:

ÚI)

Review Date:_____ Dec-5, 2017

Nautilus Environmental Environmental Quality Data - Day 0 Soil Test

Client:	Hemerra	Hemmera
WO #:	170520	

Organism Tested:	Folso	mia	cand	līda	
Start Date/Time:	Aug	FI / 1	0	1700h	
End Date/Time:	sept	8/17	- @	lbooh	

9/L Nacl				Pan t		
		ST BILLE	mg	Wet soil weight	Pan + dry soil	
Sample ID	Rep.	Pan No.	Pan weight (g) อพ	JW (g) M9	ow weight (g) ma	% Moisture
Control soil	1	· 1	1276.71	5433.30	4405.37	32.9
	2					
	3					
-	4					
	5					
control peat	1	a	1275.71	4330.40	2077.01	281.2
Moss	2					
	3					
·	4					
	5					
0.32	1	3	1275.79	4384.17	2128.65	264.5
	2					
	3					
	4					
0.110	5					
0.49	1	4	1278.11	4422.50	2109.86	278-0
	2					
1	3			Sector and the sector and		
the second second	<u>4</u> 5					
0.75	<u>1</u> 2	5	1276.60	4391.01	2123.33	267.8
	3					
,	4					
Sec. March	5					
i·2	1	6	1283.62	112 111 70		
	2	~	1207.92	4314.78	2128.00	258.9
	3					
	4					
	5					
1.8	1	7	1283. 15	4417.20	2000 70	200
	2		1202.15	<u>4411 20</u>	2095.75	285.7
	3					
	4					
	5	the start of the party of the start of the s				offeren and a shire of
Tech Init			MC	WC	7/61	JW
Povious d hu		Ill.				

Reviewed by:

s in a second

New Workshop

Ċ

Review Date:

Dec-5, 2017

Nautilus Environmental Environmental Quality Data - Day 0 Soil Test

Client: Hemera Hemmera

WO #: 170520

Organism Tested:	Folso	mia a	can	dîda	
Start Date/Time:	Aug	FI / JI	0	1700h	
End Date/Time:	sept	8/17	٩	1600h	

9/L-Nacl						
		st bive	SW	Wet soil weight	Pan + dry soil	
Sample ID	Rep.	Pan No.	Pan weight (g)mg		ow weight (g) mg.	% Moisture
2.7	1	8	1283.11	4400.87	2114.66	274.9
	2					
	3					
	4					And the second second second
	5					
4.2	1	9	1280.96	4419.32	2066.22	299.7
	2					
	3					
	4					
	5					
6.5	1	(D	1279.30	4280.20	2085.20	272.4
	2					
	3					
	4					
	5					
iO	1	11	1279.22	4459.61	2172.54	256.0
and the second sec	2					
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	3					
	4					
	1					
	2					
An Anna Anna Anna Anna Anna Anna Anna A	3					
2 - 22 - 22 - 22 - 22 - 22 - 22 - 22 -	4					
an a	5					
	1					
	2					
	3					
	4					
	5					
	1					
	2					and the second second
	3					
	4					
	5					
Tech Init			WC	JIN	JW	WC

Reviewed by:

U

Review Date:

Dec. 5, 2017

Nautilus Environmental ୍ ଅଧ Environmental Quality Data - Day Ø Soil Test

28

Client: Hemerra Hemmera WO#: 170520

Organism Tested:	folsomía candida Jw
Start Date/Time:	AUS 11/17 @ 1600+ 1700h
End Date/Time:	Sept 8/17 @ 1600h

Rati		SPT BLOCK	<			
Sample ID	Rep.	Pan No.	Pan weight (mg)	Pan + wet soil weight (mg)	Pan + dry soil weight (mg)	% Moisture
Control	1	l	1283.41	5753.20	4863.46	24.9
SOÎL	2					
· · ·	3					
	4					
	5					Sector Sectors
lantnao	1	2.	1279.50	2845.00	173145 . 25	243.5
peat moss	2				Sw	
	3					
	4					
	5					
0.32	1	3	1277 . 28	34212.51	1888 - 89	216.4
	2			Jiw .		
	3					
	4					
	5					
0.49	1	4	1273.76	3188-91	1740.59	310.2
	2					
	3					
	4					
	5					
0.75	1	5	1273.18	3533.03	1852.68	290.0
	2					
	3					
	4					
	5					
1-2	1	6	1277.96	3267.28	1798.73	282.D
	2					
	3					
	4					
	5					
1.8	1	7	1285 - 79	3317.27	1847.86	261-4
	2					
	3					
	4					
Tech Init	5					
Tech Init			SM	DW	JW	Jin

Reviewed by:

U

Review Date:

Dec- 5, 2017

Nautilus Environmental Environmental Quality Data - Day 0 Soil Test

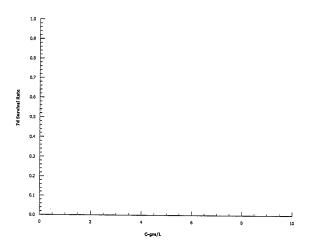
	Hemmer	2	
Client:	Hemetron	ЪМ	
WO #:	170520		

Organism Tested:	Folsomia candida Jw
Start Date/Time:	AUS 11 / 17 @ 1600tr 1700h
End Date/Time:	& sept 8/17 @ 1600h.

Sample ID 2.7 4.2 6.5	Rep. 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 5 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Pan No. 8 9 (0	Pan weight (mg) 1281-49 1279-43	Pan + wet soil weight (mg) 35\6.2∖ 34\52.2₹07 34\52.2₹07	Pan + dry soil weight (mg) 1846.44 1846.44 1846.44 1841.25	<u>% Moistur</u> 295.9 286.7 286.7
2.7 4.2 6.5	1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 5	8 9	1281.49 [279.43	3516.21 3452.5707	weight (mg) 1846. 44 1846. 44 1840. 44	295.9 286.7
2.7 4.2 6.5	1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 5	8 9	1281.49 [279.43	3516.21 3452.5707	1846.44 1846.44 1840.25	295.9 286.7
ų.2 6.5	3 4 5 1 2 3 4 5 1 2 3 4 5 3 4 5		1279. 43	3452.27 07	1841.25	
6.5	3 4 5 1 2 3 4 5 1 2 3 4 5 3 4 5				1841.25	
6.5	5 1 2 3 4 5 1 2 3 4 5 5				1841.25	
6.5	1 2 3 4 5 1 2 3 4 5				1841.25	
6.5	2 3 4 5 1 2 3 4 5				1841.25	
	3 4 5 1 2 3 4 5	(O	1277.93			iq[.7
	4 5 1 2 3 4 5	(0	1277 · 93	2746.45	1798 - 48	191-7
	5 1 2 3 4 5	(0	1277 · 93	2796.45	1798 - 48	i91 7
	1 2 3 4 5	(0	1277.93	2796-45	1798 - 48	191.7
	2 3 4 5	(0	1277.93	2796-45	1798 - 48	i91.7
(O ·	3 4 5			and the second second second second second	And the second	
10	4 5					
10	5					
10 .						
	1	11	1283.61	3770.15	2081.24	211.7
	2					
	3					
	4					
	5					
	1					
	2					
	3					
	4 5					
	1 2					
	2					
	3 4					
	5					
	1					
	2					
	3					
	4					
the second second	5					
ech Init	<u> </u>		JW	ЭŴ	UNC NIC	WC

- 10 - **-** - - - -

	a 38		ort			Report Date: Test Code:			04 Dec-17 12:31 (p 1 of 2) 170520 02-3676-8175		
Ceriodap	hnia 7	-d-Survival an	d Rep	roduction Te	st					Nautilus Environmental	
			Endpoint: Analysis:	7d S urvival Rate ੨ਃ-ਟੀ ਹਾਲ Linear Interpolation (ICPIN)			CETIS Version: Official Results:		CETISv1.8.7 Yes		
Batch ID: Start Date Ending D Duration:	e:)ate: (11-5986-5624 11 Aug-17 17:0 08 Sep-17 16:0 27d 23h		Test Type: Protocol: Species: Source:	EC/EPS 1/RM	Jubia- Folsomia		Analyst: Diluent: Brine: Age:		Wijaya lorinated Tap Water	
Sample II Sample D Receive I Sample A	Date: Date:	11 Aug-17		Code: Material: Source: Station:	7F19C8C7 Sodium chloric Hemmera Chloride	le		Client: Project:	Hemn	nera	
Linear Int	terpola	ation Options									
X Transform Y Transform		Seed	Resamples	Exp 95% CL	Method						
Log(X+1)	Log(X+1) Linear 18		1823025	200	Yes	Two-Point	Interpolation				
Point Esti	imates	;									
Level g	gm/L	95% LCL	95%	UCL							
EC10 > EC15 > EC20 > EC25 > EC40 >	0.7221 >10 >10 >10 >10 >10 >10 >10	0.5347 N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A								
7d Surviv	al Rat	e Summarv				Calculater	Variate(A/I	>\			


,										
Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	в
Reference Sed	5	8.8	7	10	0.5831	1.304	14.82%	0.0%	44	5
	3	10	10	10	0	0	0.0%	-13.64%	30	3
	3	10	10	10	0	0	0.0%			3
	3	9	9	9	0	0	0.0%			3
	3	9	8	10	0.5774	1				3
	3	8.667	8	9	0.3333	0.5774				3
	3	9	8	10	0.5774	1				3
	3	9.667	9	10	0.3333	0.5774				3
	3	8.667	7	10						3
	3	9	8	10	0.5774	1	11.11%	-2.27%	27	3
			Reference Sed 5 8.8 3 10 3 10 3 9 3 9 3 9 3 9 3 9 3 9 3 9.667 3 9.667 3 8.667	Reference Sed 5 8.8 7 3 10 10 3 10 10 3 9 9 3 9 8 3 8.667 8 3 9.667 9 3 8.667 7	Control Type Count Mean Min Max Reference Sed 5 8.8 7 10 3 10 10 10 10 3 9 9 9 9 3 9 8 10 10 3 9 8 10 3 3 9 8 10 3 3 9 8 10 3 3 9.667 9 10 3 3 8.667 7 10 3	Control Type Count Mean Min Max Std Err Reference Sed 5 8.8 7 10 0.5831 3 10 10 10 0 3 10 10 10 0 3 9 9 9 0 3 9 8 10 0.5774 3 8.667 8 9 0.3333 3 9.667 9 10 0.3333 3 8.667 7 10 0.8819	Control Type Count Mean Min Max Std Err Std Dev Reference Sed 5 8.8 7 10 0.5831 1.304 3 10 10 10 0 0 0 3 10 10 10 0 0 0 3 9 9 9 0 0 0 3 9 9 9 0 0 0 3 9 8 10 0.5774 1 1 3 8.667 8 9 0.3333 0.5774 1 3 9.667 9 10 0.3333 0.5774 1 3 8.667 7 10 0.8819 1.528	Control Type Count Mean Min Max Std Err Std Dev CV% Reference Sed 5 8.8 7 10 0.5831 1.304 14.82% 3 10 10 10 0 0 0.0% 3 10 10 10 0 0 0.0% 3 9 9 9 0 0 0.0% 3 9 9 9 0 0 0.0% 3 9 8 10 0.5774 1 11.11% 3 8.667 8 9 0.3333 0.5774 6.66% 3 9.667 9 10 0.3333 0.5774 5.97% 3 8.667 7 10 0.8819 1.528 17.63%	Control Type Count Mean Min Max Std Err Std Dev CV% %Effect Reference Sed 5 8.8 7 10 0.5831 1.304 14.82% 0.0% 3 10 10 10 0 0 0.0% -13.64% 3 10 10 10 0 0 0.0% -13.64% 3 9 9 9 0 0 0.0% -13.64% 3 9 9 9 0 0 0.0% -2.27% 3 9 8 10 0.5774 1 11.11% -2.27% 3 9 8 10 0.5774 1 11.11% -2.27% 3 9 8 10 0.5774 1 11.11% -2.27% 3 9.667 9 10 0.3333 0.5774 5.97% -9.85% 3 9.667 7 10 0.8819<	Control Type Count Mean Min Max Std Err Std Dev CV% %Effect A Reference Sed 5 8.8 7 10 0.5831 1.304 14.82% 0.0% 44 3 10 10 10 0 0 0.0% -13.64% 30 3 10 10 10 0 0 0.0% -13.64% 30 3 10 10 10 0 0 0.0% -13.64% 30 3 9 9 9 0 0 0.0% -2.27% 27 3 9 8 10 0.5774 1 11.11% -2.27% 27 3 8.667 8 9 0.3333 0.5774 6.66% 1.52% 26 3 9.667 9 10 0.3333 0.5774 5.97% -9.85% 29 3 8.667 7 10 0.8819

7d Survival Rate Detail

C-gm/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
0	Reference Sed	10	9	8	7	10
0.32		10	10	10		
0.49		10	10	10		
0.75		9	9	9		
1.2		10	8	9		
1.8		8	9	9		
2.7		10	8	9		
4.2		10	9	10		
6.5		10	9	7		
10		10	8	9		

CETIS Ana F. canaida	alytical Repo ଇଃ-d ଆ	rt			Report Date: Test Code:	04 Dec-17 12:31 (p 2 of 2) 170520 02-3676-8175			
Ceriodaphni	a 7-d-Survival and	l Repr	roduction Tes	st	-			Nautilus Environmental	
Analysis ID: Analyzed:	01-0504-9904 04 Dec-17 12:29	9		7d -Survival Ra Linear Interpo			CETIS Version: Official Results:	CETISv1.8.7 Yes	
7d Survival F	Rate Binomials				<u></u>				
C-gm/L	Control Type	Rep '	1 Rep 2	Rep 3	Rep 4	Rep 5			
0	Negative Control	10/1	9/1	10/1	9/1				
0	Reference Sed	10/1	9/1	8/1	7/1	10/1			
0.32		10/1	10/1	10/1					
0.49		10/1	10/1	10/1					
0.75		9/1	9/1	9/1			·		
1.2		10/1	8/1	9/1					
1.8		8/1	9/1	9/1					
2.7		10/1	8/1	9/1					
4.2		10/1	9/1	10/1					
6.5		10/1	9/1	7/1					
10		10/1	8/1	9/1					

Graphics

	ida 28-	tical Repo						Rep Test	Code:	17052	7 12:31 (p 1 of 3 20 02-3676-817
Ceriod	aphnia 7-	d-Survival an	d Reproduc	ction Tes	t JW					Nautilus	Environmental
Analysi Analyze		1-6041-8345 4 Dec-17 12:2		•					IS Version: cial Results:	CETISv1.8.7 Yes	
Batch I	D: 1	1-5986-5624	6-5624 Test Type: Rep		eproduction-S	Survival (Ze	17 28 d JW	Anal	vst: Jeslir	n Wijaya	· · · ·
Start D	ate: 1	1 Aug-17 17:0			C/EPS 1/RM/	-	,	Dilu	•	lorinated Tap Wa	ater
Ending	Date: 0	8 Sep-17 16:0	0 Spe	cies: - C	eriodaphnia d	ubia- Fois	omía candi	da Brin		•	
Duratio	on: 2	7d 23h	Sou	rce: E	nvironment C	anada		DW Age:	: 12d		
Sample	e ID: 2	1-3239-6231 Code: 7F ⁻		F19C8C7			Clie	n t: Hemr	nera		
Sample	Date: 1	1 Aug-17	Mat	erial: S	odium chlorid	e		Proj	ect:		
Receive	e Date: 1	1 Aug-17	Sou	rce: H	emmera			,			
Sample	Age: 1	7h	Stat		hloride						
Non-Lii	near Regr	ession Optio	ns					· · · · ·			
	Function	·				X Tran	sform Y Tr	ansform V	Veighting Fu	nction	PTBS Functio
3P Log-	-Gompertz	EV [Y=A*exp	(log(0.5)(X/	D)^C)]		None	Non		lormal [W=1]		Off [Y*=Y]
Regres	sion Sum	mary									
Iters	Log LL	AICc	BIC	Adj R2	Optimize	F Stat	Critical	P-Value	Decision(a	(-5%)	
9	-128.5	263.8	267.3	0.8339	Yes	2.133	2.464	0.0827	·	cant Lack of Fit	
Point E	stimates										
Level	gm/L	95% LCL	95% UCL								
IC5	0.3094	N/A	0.7079			- Via Asses					
IC10	0.601	0.2281	0.9792								
IC15	0.8962	0.496	1.313								
IC20	1.201	0.7591	1.669								
IC25	1.518	1.037	2.036								
IC40	2.577	1.998	3.224								
IC50	3.415	2.746	4.185								
Regress	sion Para	meters					·····				
Parame		Estimate	Std Error	95% LC	L 95% UCL	t Stat	P-Value	Decision	a.5%)		
A		254.5	13.33	228.4	280.6	19.09	< 0.0001		t Parameter		
С		1.084	0.2094	0.674	1.495	5.179	< 0.0001	-	t Parameter		
D		3.415	0.4869	2.46	4.369	7.012	<0.0001	•	t Parameter		
ANOVA	Table	,					····				
Source		Sum Squa	ires Mea	n Square	DF	F Stat	P-Value	Decision(α:5%)		
Model		196432.8	1964	32.8	1	157.6	<0.0001	Significant			
Lack of	Fit	14608.74		.963	7	2.133	0.0827	Non-Signi			
Pure Err	ror	21530.13	978.0	5424	22						
Residua	1	36138.88	1246		29						
Residua	al Analysi	s									
Attribut	e	Method			Test Stat	Critical	P-Value	Decision(α:5%)		
		Mod Levene Equality of Variance									
Variance	es	Mod Leven	e Equality o	f Variance	€ 2.117	2.796 ·	0.1128	Equal Vari	ances		
			e Equality o ilk W Norma		● 2.117 0.9671	2.796 · 0.9338	0.1128 0.4225	Equal Vari Normal Di			

Analyst:_____W

Dee:STA QA:

F. Candid	Analytical Rep a ଇଃ-d	ort			-	ort Date: Code:	04 Dec-17 12:31 (p 2 of 3) 170520 02-3676-8175		
Ceriodap	hnia 7-d Survival a	nd Reprod	uction Test	t					Nautilus Environment
Analysis Analyzed:			•	eproduction			CETIS Version: Official Results:		CETISv1.8.7 Yes
Reproduction Summary					с	alculated Va	riate		
C-gm/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Reference Sed	5	261.8	233	317	15.5	34.67	13.24%	0.0%
0.32		3	223.3	161	309	44.29	76.71	34.35%	14.69%
0.49		3	253	219	280	17.95	31.1	12.29%	3.36%
0.75		3	227.7	220	236	4.631	8.021	3.52%	13.04%
1.2		3	183.7	167	205	11.22	19.43	10.58%	29.84%
1.8		3	150	138	167	8.737	15.13	10.09%	42.7%
2.7		3	161.3	149	177	8.253	14.29	8.86%	38.38%
4.2		3	149	125	170	13.08	22.65	15.2%	43.09%
6.5		3	54.67	43	65	6.386	11.06	20.23%	79.12%
10		3	0	0	0	0	0		100.0%
Reproduc	tion Detail								
C-gm/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5			
0	Reference Sed	250	233	236	317	273			
0.32		309	200	161					

Report Date:

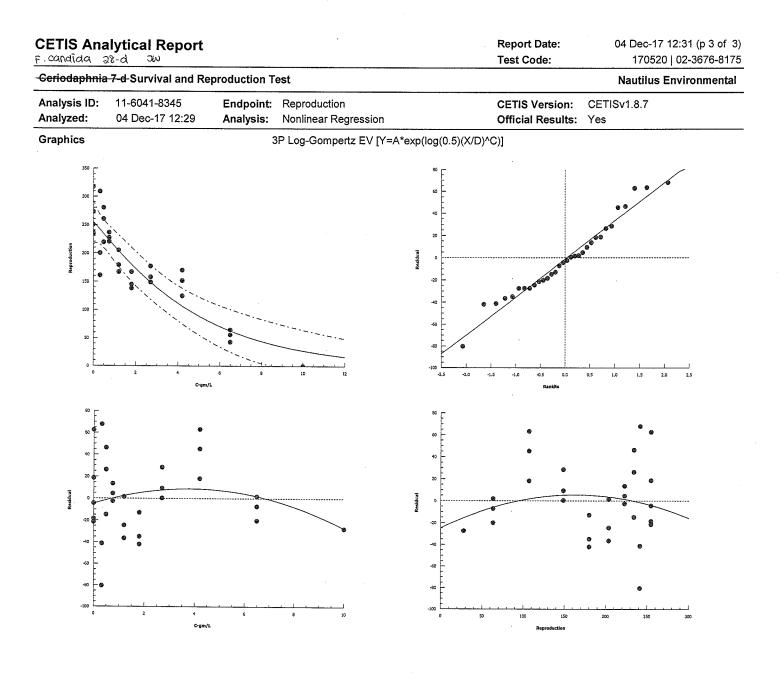
04 Dec-17 12:31 (p 2 of 3)

Analyst:____W

0.49

0.75

1.2


1.8

2.7

4.2

6.5

CETIS Analytical Report

Dec-5/13 QA:

Analyst: JW

Soil Test Summary Sheet

Client:	Hemmera	Start Date: 4-Aug-17
Work Order No.:	170519	Set up by: <u>JW / MLT</u>
Sample Informati	on:	
Sample ID:	Socilium chloride	

Sample Date:	4-Aug-17	
Date Received:	n/a	
Stock Solution ID:	17Na02	

Test Organism Information:

Species:	Betula papyrifera
Source:	BC Ministry of Forest, Lands and Natural Resources
Date Received:	<u>8-Mar-17</u>

Copper Reference Toxicant Results:

Reference Toxicant ID:	CC01					
Stock Solution ID:	Boric Acid					
Date Initiated:	4-Aug-17					
28-d EC50 (95% CL):	508.1 (347.5 - 615.5) mg/kg boric acid					
28-d IC50 (95% CL):	491.9 (385.0 - 799.4) mg/kg boric acid					

 EC50 Reference Toxicant Mean (Acceptable Range) :
 n/a*
 CV (%):
 n/a*

 IC50 Reference Toxicant Mean (Acceptable Range) :
 n/a*
 CV (%):
 n/a*

* : Insufficient data points to calculate a reference toxicant historical mean, range and CV

Test Results:

g/L NaCl	Emergence	Shoot Length	Shoot Weight	Root Length	Root Weight
EC50 (95% CL)	4.8 (4.0 - 5.8)				
IC25 (95% CL)		2.5 (2.1 - 3.0)	3.2 (2.6 - 4.2)	3.1 (2.5 - 3.5)	3.3 (2.6 - 4.7)
IC50 (95% CL)		3.7 (3.1 - 4.3)	3.9 (3.1 - 5.6)	3.8 (3.2 - 4.9)	4.2 (3.1 - 5.8)

Reviewed by:

U

Dec J, XII Date reviewed:

Nautilus Environmental Environmental Quality Data - 28-Day Soil Test

	Jin	Ľ
Client:	Hemerra	Hemmera
WO #:_	170519	·

9/L Naci

Organism Tested: Paper Birch Start Date/Time: AUG 4 / 17 @ 1700h End Date/Time: Sept 8 / 17 @ 1600 h

				9/L Naci				ond Date	/ I IIIC; _	SEPT 8	114 (0	1600 h	
Test Day				Sample ID	Rep	% N initia	foistare I final		(units) I final		iivity (µS/cı final		urvival il final
0	23.0) JN		Control	1	31.9	29.7	T			\top	5	3
1	22.5	5 Emm	-	SOIL	2							5	4
2	12.	555	_		3							5	5
3	23.0	MY			4							5	4
4.	23.0	JW			5								
5	23.0	JW.		CONTROL	1	269.1	238.5	; 6.5	6.7			5	· 4
6	23.0	JW		Peat moss	, 2							5	5
.7	33.0	JW			3							5	1
8	21.0	EC			4							5	5
9.	22.0	> 3 -2			5								
10	21.0	MLT		0.34	1	289.4	307.8	6.5	6-8		. /	5	5
11	21.0	MH	· ·		2							5	5
12	21.0	MH			3							5	2
13	21.0	MET			4							5	4
14 	21.0	JW		-	5							<u> </u>	+
15	210	JN		0.56	1	286.4	298.3	, 6.6	6.7			5	2
16	21.0	EL			2							5	4
17	21.0	nH			3							5	4
18	21.0	wc			4							5	<u> </u>
19	21.0	WC.			-5								
20	21.0	MIT		0.93	. 1	304.4	303.5	6-7	6-9	-		5	h h
21	21.0	YML			2							5	2
22	21.0	EC			3							5	3.
23	21:0				4							5	5
	20121.0	- M			5							<u> </u>	
25	21.0	MET		1.6	1	299.9	270.4	6-7	6-8	·	/	5	3
26	21.0	MET	•		· 2							S	
27	21.0	UC WC		:	3							5	3
28	21.0	JW	;		4							'5	3
;					5								
		• •	·	Tech Init		WC	JW	192	ĸ	WC	JW .	JW	WC
											~~~	~~~	

Reviewed by: ٠٧.,

0et-2 - 2017-**Review Date:** 

## Nautilus Environmental

### Environmental Quality Data - 28-Day Soil Test

4 ЭW Client: Hemerra Hemmera WO #: 170519

> ę i. ř.

 $\epsilon_{\rm c}$ 

.....

.

20

Organism Tested: Paper Birch Start Date/Time: AUG 4/17 @ 1700h End Date/Time: Sept 8 /17 @ 1600h.

Des       CO       Initials       Dis       Rep.       Initial       Initi	-		9. ·			• .					<u></u>	our.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	The second se	Tech Initials		Sample ID	Rep	% M initial	loistare final			Conducti initial			irvival I final
1/20       21.0       ML1       5       3         1/20       30       3       5       3         1/20       30       3       5       3         1/20       30       4       5       5         1/20       30       4       5       5       3         1/20       30       4       5       5       3         1/20       30       2       5       3       5       3         1/20       30       2       5       3       5       3         1/20       30       2       5       3       5       3         1/20       3       4       5       5       1       5       3         1/2       1       20       5       6.4       6.7       5       1         1/2       1       20       5       6.4       6.7       5       0         1/2       1       20       5       5       0       5       1         1/2       1       20       5       6.7       6.4       6.4       5       0         1/2       1       3       5       5		MC		2.6	1	291.0	295.5	6=6				1	
33 $3$ $5$ $3$ $92$ $31.0$ $3N$ $4$ $5$ $5$ $932$ $21.0$ $5N$ $4$ $5$ $5$ $5$ $932$ $21.0$ $5N$ $21$ $5$ $3$ $5$ $3$ $945$ $52.0$ $50$ $2485$ $65$ $67$ $5$ $3$ $8$ $9$ $3$ $5$ $3$ $5$ $3$ $10$ $11$ $2$ $5$ $3$ $5$ $3$ $10$ $12$ $12$ $12$ $5$ $3$ $5$ $3$ $11$ $2$ $5$ $3$ $5$ $3$ $5$ $1$ $12$ $12$ $12$ $12$ $12$ $5$ $5$ $1$ $13$ $4$ $5$ $5$ $5$ $5$ $5$ $5$ $14$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$	130 21.0	MET			2							28	
$y_{32}$ $21.0$ $31.0$ $5$ $5$ $y_{33}$ $21.0$ $30.0$ $4.3$ $5$ $5.4.3$ $5$ $2$ $y_{435}$ $21.0$ $30.0$ $2$ $5$ $2$ $5$ $2$ $y_{435}$ $21.0$ $30.0$ $2$ $5$ $2$ $5$ $3$ $y_{435}$ $21.0$ $30.0$ $5$ $5$ $5$ $5$ $2$ $y_{435}$ $21.0$ $30.0$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$	231 21.0.	JW			3								
332 $21.0$ $500$ $334$ $21.0$ $500$ $345$ $21.0$ $700$ $38$ $21.0$ $700$ $38$ $21.0$ $700$ $38$ $31.0$ $53.3$ $38$ $31.0$ $53.3$ $39$ $21.0$ $53.3$ $31.0$ $21.0$ $55.3$ $31.0$ $31.3$ $55.3$ $10$ $21.3$ $55.2$ $11.1$ $22.5$ $6.4$ $6.7$ $55.2$ $11.1$ $22.5$ $6.4$ $6.7$ $55.2$ $11.1$ $22.5$ $6.4$ $6.7$ $55.2$ $11.2$ $12.42.7$ $293.5$ $6.3$ $6.6$ $50.0$ $12.1$ $12.1$ $21.2.7$ $50.0$ $50.0$ $50.0$ $18$ $44.5$ $50.0$ $50.0$ $50.0$ $50.0$ $22.5$ $20.1$ $25.0$ $20.1$ $6.4$ $6.4$ $50.0$ $22.5$ $23.5$ $50.0$ $50.0$ $50.$		שב		· .								100	
334 $21.0$ $700$ $4.3$ $129.5$ $33.44$ $56.5$ $6.7$ $57.2$ $57.2$ $3$ $2$ $30$ $2$ $57.2$ $57.3$ $57.3$ $30$ $2$ $30.5$ $57.2$ $57.3$ $57.3$ $57.3$ $30$ $2$ $57.3$ $57.3$ $57.3$ $57.3$ $57.3$ $10$ $2.7$ $20.12$ $206.5$ $6.44$ $6.7$ $-7.5$ $51.1$ $11$ $2.2$ $57.3$ $51.1$ $57.2$ $57.1$ $57.1$ $11$ $2.2$ $57.5$ $57.1$ $57.5$ $57.1$ $57.5$ $57.5$ $112$ $124.37.7$ $293.5$ $6.3$ $6.4$ $-7.55.0$ $50.0$ $16$ $2.2$ $57.0$ $50.0$ $57.0$ $50.0$ $57.0$ $50.0$ $17.7$ $3.2$ $3.2$ $5.0.2$ $5.0.2$ $50.0$ $50.0$ $50.0$ $50.0$ $50.0$ $50.0$ $50.0$ $50.0$ $50.0$ $50.0$ $50.0$ $5$	433 21.0	JW										<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	\$34 21.0	JW .				276.5	287.4	6.5	6 7				2
3       3       5       3         8       9       5       3       5       3         10       7.2       1 $26.1$ $26.5$ $6.4$ $6.7$ $5$ 1         11       2       3       5       1 $5$ $2$ $5$ $1$ 12       3       3 $5$ $5$ $1$ $5$ $2$ 13       4 $5$ $5$ $1$ $5$ $1$ 14 $5$ $1$ $5$ $1$ $5$ $1$ 14 $5$ $1$ $5$ $5$ $1$ $5$ $1$ 14 $5$ $1$ $12$ $1$ $12$ $1$ $2$ $5$ $0$ 16 $2$ $2$ $5$ $0$ $5$ $0$ $2$ $5$ $0$ 18 $4$ $5$ $0$ $2$ $5$ $0$ $2$ $5$ $0$ 20 $1$ $26.5$ $20.1$ $6.4$ $5$ $5$ $0$		אד					2.2					39	
8       4       5       3         9       5       3       5       3         10       7(2)       12691 $2655$ 6.4       6.7       5       1         11       2       5       3       5       1       1       5       2         13       4       5       1       5       1       1       5       1         14       5       1       4       5       1       1       5       0         16       2       5       0       1       1       5       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	1											8	i
9       5       5       5       5       1         10       7'.2       1       26.1 $205.5$ 6.4       6.7       5       1         12       3       5       1       5       2       5       1         13       4       5       1       5       1       1         14       5       1       13       5       1         15       1       2       5       0       5       0         16       2       5       0       5       0       5       0         17       3       5       0       5       0       5       0       0       2       5       0         19       5       2       5       0       20.1       6.4       6.4       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5	8											8	
10 $7'.2$ 1 $269.1$ $205.5$ $6-4$ $6.7$ $5$ $1$ 12 $2$ $3$ $5$ $5$ $1$ 13 $4$ $5$ $5$ $1$ 14 $5$ $5$ $5$ $5$ $5$ 16 $4$ $5$ $5$ $5$ $5$ $5$ 16 $2$ $2$ $5$ $5$ $5$ $5$ $5$ 18 $4$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$	9											ל	2
11       2       5       7       5       7         13       3       3       5       1         14       5       5       1         15       1       5       1         14       5       5       1         15       1       1       5       1         16       12       1       243.5 $6.3$ $6.6$ 5       0         17       3       3       5       0       5       0       1       5       0       1       1       5       0       1       1       5       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	10			71.2		269 1	200.5	h.u	( )				
12       3       5       1         13       4       5       1         14       5       1       5       1         15       1       14       5       1         16       5       1       14       5       0         16       5       1       14       5       0         16       7       1       243.7       293.5       6.3       6.6       5       0         17       3       4       5       0       5       0       0       5       0       0       5       0       0       0       5       0       0       0       5       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td>11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.1</td> <td>6.7</td> <td></td> <td></td> <td></td> <td></td>	11							0.1	6.7				
13       4       5       1         14       5       1       5       1         15       1 $3,3,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7$	12					<del> </del>				<del></del>			
14       .5       .5       .6       .6       .5       .6       .6       .5       .0         16       .2       .2       .5       .6       .5       .5       .0         17       .3       .5       .5       .5       .0       .5       .0         18       .4       .5       .5       .0       .5       .0       .5       .0         20       .1       .26       .20       .5       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0	13	· .										8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14											<u> </u>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15		• .	12			<u> 202 г</u>	<u></u>					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16		-			~~~	a-10,5	<u>6')</u>	6-6				I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Ave						<u></u>		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	· ·									<u></u>		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19				S.							5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20			20	100	206.0		<u>8888</u>			<u> </u>		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21				· 🔅	<u>~30.0</u>		64	6.4				0
23     4     5     0       24     5     5     0       25     1     0     5       26     2     0     0       27     3     0     0       3     0     0     0       5     0     0     0       1     0     0     0       1     0     0     0       1     0     0     0	22											·····	0.
24     5       25       26       27       3       28       4       5       1       2       3       4       5       1       1       2       3       4       5       1       1       1       1       1       2       3       4       5       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td< td=""><td>23</td><td></td><td></td><td></td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	23				8								
25     1     1     1       26     2     2     1       27     3     2     1       28     4     1     1       5     1     1     1       7     1     1     1       1     1     1     1	24											<del>د</del> .	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			. :										
27     3			-										
28         4         5           5         5           Tech Init         JW           JW         KL           YL         JW           JW         JW	27			.									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28												
Tech Init JW JW KL KL JW JW JW JW		بر الــــــــــــــــــــــــــــــــــــ	3 -										
			L	I ech Init		<u>in 13</u>	JW	h.	192	aw	JW	JW	JW

Reviewed by: 

**Review Date:** 

Oct- 24, 2017

### Nautilus Environmental Environmental Quality Data - Day 0 Soil Test

Client: Hemerra Hemmera WO #: 170519

Organism Tested:	Paper	Birch	
Start Date/Time:	AU9 4	117 @	(700h
End Date/Time:	sept 8	117 @	1600h

<b>2</b> 00.5				Pan t		
g/L Naci		MC	(ing)	Wet soil weight	Pan + dry soil	
Sample ID	Rep.	Pan No.	Pan weight (g)	JW Lat ma	Jw weight (g) mg	% Moisture
Control soil	1	1	1011.85	JW (g) mg	4044.56	31.9
	2		an 1997 - Carlo Star Barra	5011-42		김 사람 문제하는
	3					
	4					
	5					
Peat Moss	1	2	1005-54	#894.10 K	2060.57	269.1
Control	2			4857-46		
	3					
	4 5					
0.34		3	1012 20	1(A)13	2000	000 11
0.34	2	0	1017-38	4943 60 K	2028.40	289.4
	3			<u> </u>		
	4					
	5					
0.56	1 ·	ч	996-38	4906.95-h	2005.01	286.4
	2			4894.10		
	3					
	4					1. ····································
	5	10000				and the second second second
0.93	1	5	1029.62	4943.00	1997.33	304.4
·	2					and a second
	3 4					
1-6	1	ی ک	(0)5.65	400/ 2-	1000 ( 0	200
	2	<u>×</u>	(~12 . 62	4906-95	1988.63	299.9
	3					
	4					
	5			ji.		
2.6	1	F	1002.00	490\$4.76	2000 . 10	291.0
	· 2					
	3					
	4					and the second
	5					
Tech Init			K_	yr.	JW	JM

Ú)

Reviewed by:

Review Date:

bet-24, 2017

1/2

### Nautilus Environmental Environmental Quality Data - Day 0 Soil Test

SW

Client: Hemerra Hemmera

WO #: 170519

Organism Tested: Paper Birch Start Date/Time: AU9 4 / 17 @ 1700 h

End Date/Time:	AUT S	iept 8/17	@ 1600h	
·	MC		,	
Pan +				

····				Pan t		
911 Naci		MC	. mg	Wet soil weight	Pan + dry soil	
Sample ID	Rep.	Pan No.	Pan weight (g) כאי	ow (g) mg	JW weight (g) mg	
4.3	1	. 8	1006.58	4908-94	2045.83	275.5
	2					
	3					
	4					
	5					
キ・ス	1	9	1022.02	4943.14	2084.36	269.1
	2					
	3					化化化化剂 化不能
	4					
	5					1999年1月1日
12	1	lD	1009.69	4874.24	2134.15	243.7
	2					and the state of the second
	- 3					
	4					
	5					and the set of the
20	1	11	K-1004. (005.00	4922.38	2105.46	256.0
·	2			(100.000		
· · · · · · · · · · · ·	3	157220				
	4					
a and a second	5					
e de la composition de	1					
	2					
ne internetie	3	22253				
	4					
and the second second	5			And the second second second		
	1		·			
	2				Antophysical	
	3					
	4					
	5	2232250				
	1					
	2					
· · · · · · · · · · · · · · · · · · ·	3					
	4					
	5					
Tech Init			K_	K	- MC	WC
Reviewed by:		U		Review Date:	6 0	

Review Date:

# Nautilus Environmental ୍ର ଅଭ Environmental Quality Data - Day Ø Soil Test

35

	VIC	
Client:	Hemerra	Hemmera
WO #:	170519	

Organism Tested:	Pape	r	8	irch			
Start Date/Time:	Aug	Ą	1	Ţ	0	1700h	
End Date/Time:	sept	8	1	17	0	1600h	

9/L Naci		PM Red		· ·	·	
Sample ID	Rep.	Pan No.	Pan weight (mg)	Pan + wet soil weight (mg)	Pan + dry soil weight (mg)	% Moisture
Control	1	1 411110.	1274.92	5087.50	2'4213·71	29.7
Soil	2	*	1214.42	300,030	JW	54 (1- 1
	3					
	4					
	5					
Control	1	2	1285.37	51687.80	2421. 20	238.5
Reat Moss	2			2100 1.00	2432.19	
	3					
	4					
	5					
0.34	1	3	1278 - 18	5071.73	220 <b>8</b> .34	307.8
	2					
	3					
	4					
,	5					
0.56	1	4	1280.00	5116.32	2243.08	298.3
	2					
	3					
×.	4					
	5					
0.93	1	. 5	1279.33	5119.64	22301.15	303.5
	2					
	3					
	4					
	. 5					NC
1.6	1	6	1282.96	4022.20	2022.51	270.04
	2					
	3					
	4					
	5					
2.6	1	7	1286.36	5476.67	2345.90	295-5
	2					And the second second
	3					
	4					
	5					
ech Init			, WC	.JW	OW	- Jw

Det. 24 217

### Nautilus Environmental ସଧ Environmental Quality Data - Day Ø Soil Test

35

Client: Hemerra Hemerra WO #: 170519

Organism Tested: Paper Birch Start Date/Time: AUG 4 / 17 @ 1700h End Date/Time: Sept 8 / 17 @ 1600h

9/L Naci		PM Red				
				Pan + wet soil	Pan + dry soil	
Sample ID	Rep.	Pan No.	Pan weight (mg)	weight (mg)	weight (mg)	% Moisture
4.3	1	8	1281 . 41	5089.14	2264.39	287.4
	2					
	3					
	4					
	5					
7-2	1	9	1277.58	5325.77	2300.	295.5
	2				2301-17	
	4					
	- 5					
12	1	10	1276.35	5130.50	2255 . 74	293.5
	2			2130.30	ax 33. 14	
• .	3					
· · ·	4					
	5					
20	1	1)	1275.95	5118.53	2343.14	260.1
	2					
	3					
	4					
	1					
	2					
	3			and the second se		
	4					
	5					
	1		·			
	· 2·					
	3					
	4					
	5					
	2					
	3					
	4					
	5					
hard and the second sec				the second state of the second		

Reviewed by:

UU

Review Date:

Oct-24, 2017

JW

WO#: 170519

Client: Hemerra Hemmera

Nautilus Environmental No. of Emergence - 21-day Soil Test 35 JW Organism Tested: Paper Birch

Start Date: <u>AU9 4 /17</u> End Date: <u>K Sept 8 / 17</u> DW

WO#: (405(1)		<b>-</b> '		•	NO. C	of Emerger		ay Soil Tes	t.				Date: AUG u
9/L Nacl		,			-		35 3			-			oate: <u>K</u> se
Sample ID	Rep	Day 6	Day io	Day 12	Day 14	Day 17	Day 19	Day 21	Day 24	Day 26	Day 🔊	Day 31	Day 33
Control Soil	1	3	3	3	3	3	3	3	3	3	3	3	3
	2	4	4	4	4	4	4	4	4.	4	4	4	- 4
	3	3	5	5	5	5	5	9	5	5	5	S	5
	4	JW X 3	Ч	4	4	4	4	4	ų	4	4	4	4
control Peat	1	2	4	4	4	5	5	S	9	4 84	4	4	4
Moss	2	2	4	5	5	5	5	5	5	5	5	5	5
	3		JWX 1	JWX	JWZ	JUZI	JWZ 1	JWZ 1	JW Z I	12h	4	١	1
·	4	Ц.	5	5	5	5	5	5	5	5	5	5	5
0.34	1	3	5	5	5	5	5	9	5	F	S	5	5
	2	щ.	5	5	5	5	5	9	5	5	S	5	S
	3	1	2	2	2	7	2	え	2	2	2	a	a
	4	3	3	3	3	3	3	3	3	3	4	ų	μ
0.56	1	2	2	2	Э	2	2	2	2	2	2	2	2
;	2	3	4	.4	4	4	ų	4	4	4	4	4	4
	3	2	4	ų.	4	Ψ	4	4	4	4	4	4	4
	4	2.	4 ~	4	4	4	4	4	Ч	¥	ч	4	. 4
0.93	1	3	4	4	4	4	4	4	4	14	4	4	4
	2	.	2	2	2	2	2	2	2	.2	2	2	2
	3	1	3	3	3	3	3	3	3	3	3	3	3
	4	ん	4	4	5	.5	5	9	5	5	5	5	5
1.6	1	JWZI	2	3	3	7	3	3	3	3	3	3.	3
	2	3	JWA 3	JW 44 3	3W 4 3	JWH 3	TW YX 3	JW ¥3	JW 4 3	4-34-3	3	3	3
	3	1	2	. 3	3	3	3	3	3	3	3	3	3
	4	0	l	3	4	4	4.	. 4	4	4	4	4	ц
2.6	1	1	5	5	5	5	5	S	5	5	5	5	5
	2	a	3	3	3	3	3	3.	3	3	3	3	3
	3	2	3	4	4	4	4	4	4	M43	3	3	3
	4	2	5	5	5	5	S	5	5	5	5	5	5
4.3	1	2	З	3	JN4 3	Div J 3	JW /4 3	JWX 3	JW 14 3	x #3	3	З	3
	2	0	1	2	3	2	2	ಎ	2	2	2	2	2
	3	0	JN/2	ઝ	3	3	3	3	3	3	3	3	3
	4	1	3	3	Ŋ	n	3	3	3	. 3	З	3	3
7.2	1	0	1	15421	3001	#1	YK 1	¥ 1	14 1	19-44	1	1	1
	2	0	0	1 200	1	NE I	1 300	1 300	UNE 1	2	2	2	2
	3	0	0		(	ĺ	1	1	1	1	1	1	· 1
	4	0	0	0	0	0	0	0	1	· 1	1	1	1
Tech Init		JM	JW	MET	MCI	MU	JW	JW	JW	MET	NC	JW	JW

Ell 000-25,2017

JW

Client: Hemerra Hemmera

Organism Tested: Paper Birch

WO#: 170519

### Nautilus Environmental No. of Emergence - 21-day Soil Test

Start Date: AU9 4 /17 End Date: Sept 8/17

9/L NACI		<b>-</b> .			NO. 0	r Emerger	35 3	ay Soli Tes wi	οί, ·			End D	ate: Aug ate: Sept
Sample ID	Rep	Day 6	Day 10	Day 12	Day 14	Day 17	Day 19	Day 🤉	Day 24	Day >6	Day 28		Day 33
Control JW	1	0	0	0	0	3	0	0	0	1000	0	6	0
12	2	0	0	0	0	1	0	0	0	0	0	0	0
	3	0	0	0	b	0	Ŏ.	0	0	0	6	0	0
	4	0	0	0	ŏ	0	0	0	0	D	0	0	0
20	1	0	0	0	0	v	0	0	0	0	0	0	0
	2	0	0 .	0	٥ ٥	2	0	Ö	0	0	0	0	0
	3	0	0	0	0	0	0	0	Ŏ	0	0	0	0
· · · · · · · · · · · · · · · · · · ·	4	0	0	0	Э.	0	D	Ö	0	D	0	0	0
	1			¥				Ī					
	2	·						1					
	3												
	4		1										
	1							1				·	
-	2					• .				•	· · ·		
	3	•					······································						
	4			·					1			1	
	1							· · ·					
	2												
·	3			······									
	4										· · · ·		
	1												
······································	2												
	3									·			
	4												
· · ·	1							1					
	2					·····							
	3								1	· · · ·			
	4												
	1								1		••••••••••••••••••••••••••••••••••••••		
	2				*****								
	3												
	4												
	1												
	2												
	3							1					
· · · · · · · · · · · · · · · · · · ·	4												
ech Init		WC:	WC	ME	MET	MA	WC	JW	50	MLT	SM	JW	JW

### Nautilus Environmental Toxicology Laboratory Weight Monitoring Data

JW Client/ Project ID: <u>Hemorra</u> Hemmera WO #: 170519

SIL NACI

Organism Tested: Paper Birch.

Start Date/Time: AU9 4 / 17 @ 1700 h End Date/Time: Sept 8 / 17 @ 1600 h

Sample Total Wet Weight (jar + soil + organisms) (g) - Before and after hydration, Day of Test																	
a south from		Initial			Pre & Post I	Iydration	Pre & Post I	Iydration	Pre & Post I	Iydration	Pre & Post 1	Hydration	Pre & Post I		Pre & Post H		
ID	Rep.	Day 0	Dayy	Day 4	Day 6	Day 6.	Daylo	Day 10	Day12	Day 12	Day 14	Day14	Day 17	Day 17	anja	Danj19	- Children and a state of the s
Control	1	409.38	408.573		408.43	409.47	409.06	409.45	409.31	409:39		409,39					
SOÎI	2	367.73	367.3316		367.44	367.73		367.78		367.74		367.70			373-50	373.50	0365. 73
	3	390.42	389.42	390.68	390.21	390.50		390.55	390,36	390.48				790.45	389.03	390.04	
	4	403.75	403.85	403.81	403.37		403.31	403.73	403.51			403,80			402.58	403.70	
Control	1	205.99	204.41	206.12	205.77		205.55	206.07	205.83			206.08			204.77	206.07	
Pecit moss	2	242.44	240.72	242.56		242.52	242.40	242.46		242.44	241.89		240,59	242.45		242-45	
	3	260.55	258.81	260.83	260.34		260.23	260.57	260.33	260.62	260.13	260.66	258.73		259.26	260-51	
	4	236.41	234.71	236.52		236.45	236.11	236.50	236.21	236.43		236.53		236.44	234.94	236.47	
0.34	1	226.12	224.34	226.37	225.86		225.78	226.14	225.92	226.13		1 226.20	225.40	226.30	225.34	226-10	
	2	2377181	236.01	238.04	237.56	237.85	237.25	237.93	237.64	237.91	237.09	237.89	237.17	237.98	236.72	238-00	
	3	231.05	229,32	231.13	230.46	231. ID	230.60	231.10	230.81	231.05	230.19		229:97	231.24	230-03	231.09	
	4	240.48	238.78	240.58	240.01	240.52	240.06	240.53	240.33	240.55	239.77	240.54	239.71	240,48	239-06	240.65	
0.56	1	239.77	237.94	240.22	239.69	239.95	239.02	239.84	239.62	239.88	239.01	239.90	238.41	240,01	239.75	239.88	
	2	237.95	236.07	238.39		238.06	237.54	237.96	237.63	237.97	237.44	238.03	236.83	237.99	237.08	237.93	
	3	230.80	228.92	231.18	230.74	230.91	230.23	230.84	230.61	230.81	230,31	230.82	229.19	270,85	229.75	230-84	
			243.08	245.22	244.90	245.21	244.89	249.07	244.72	245,10	244.24	249.11	243,89	249,14	243.97	245-27	
0.93		232.91	231.16	232.95	232.68	232.91	232.11	232.91	232.71	232.96	232.04	222.94	231.40	232.89	231-59	232.58	
	2	225.87	224.14	225.94	225.46	225.90	225.27	229.84	125.61	225.89	224.86	225.81	224.30	225.90	224.65	225-81	
	3	245.84	244.09	246.18	245.61	245.90	249.40	245.93	245.73	245.91	245.11	245.90	244.31	245.99	244.76	246.08	
	4	233.71	231.92	234.20	233.68	233.91	233.20	233.80	233.53	233.71	233.01	233,81	232.09	233.74	232.26	233-21	
1.6	1	224.46	226.63	224.68	224.42	224,55	223.93	224.51	224.3]	224.51	223.91	224.50	222.64	224.39	222.57	224.26	
	2	237.11	235.01	237.25	236.64	237.11	236.42	237.10	236.82	237.12	236.14	237.12	235.77	237.19	235-24	237-25	
	3	228.91	227.10	229.04	228.31	229.04	228.29	228.90	228.66	228.92	228.05	228.98	227.09	228.93	229.44	228-86	·
	4	236.41	234.53	236.46	236.03	236.61	235.96	236.99	236.35	236.54	235.98	236.44	234.50	236.40	235.00	236-47	
2.6	1	246.83	245.13	246.91	246.42	-	246.17	246.88	246.61	246.83	246.08	246.35	245.63	246.91	245-44	246.80	
	2	234.00	232.33	234.46	233.70	234.15	233.60	234.00	233.74	234.02	272.23	234.03	233.01	234.01	232.89	234.06	
	3	242.25	240.52	242.71	241.96		241.64	242.29	242.04	242.25	241.56	242.26	240.95	242.33	240.93	242.27	
	4	225.31	223.63	229.38	223.30	225.54	224.94	229.60	225.1418	225.41	224.85	225.36	224.21	225.35	224.03	225.34	
4.3	1	250.66	249.03	250.86	250.41	250.80	250.33	250.64	250,44	250.67			249.43			250.72	
	2	216.78	215.17	216.96	216.11		216.36	216.80	216:54	216.83	215.93	216.72	215.62	216.84	215.40	216.68	
	3	243.11	241.14	243.47	243.06	243.29		243.35	243.09	243,17	242.64			243.14		243,12	
	4	223.68	222.24	223.85	223.04			223.70	223.48	223:73	222.61		*****			223.76	
Tech Init		JW	SW	aw	MLT	MLT	JW	SIN	MET	MLT	MET	MUT	MIT	MAD	K-	14	

QA Review/Date:

Ele bee. 25, 2017

### Nautilus Environmental Toxicology Laboratory Weight Monitoring Data

Client/ Project ID: Hemerra Hemmerra

- Sandar Sala Sala

WO #: 170519

### Organism Tested: Paper Birch

Start Date/Time: AU9 4 / 17 @ 1700h End Date/Time: SEPt 8 / 17 @ 1600h

O/L NACI

Sample					Total W	et Weight (ja	r + soil + orga	nisms) (g) - B	efore and afte	r hydration. I	Day of Test			antanokonen eksinen eksinen		······································	terre and and a second second
ID	Rep.	Initial Day 0	Pre & Pos Day y	st Hydration OC(Y 4	Pre & Post J	Hydration	Pre & Post	Hydration	Pre & Post l	Avdration	Pre & Post	Hydration	Pre & Post	Hydration	Pre & Post ]	Hydration	
		245.02	243.60	and the second se	Day 6	Days	Daylo	Dayio	Vay12	1)11/12	<u>Day 14</u>	Day 14	Day 17	Day17	Damia	Dania	
	2	228.57	243.00			245.16	244.61	245.03		245,10	244.48		243.34	245.00	244.08	245.12	
	3	226,04	224.49	228.91	228,21	228.72		228.65	228.42	228.60	229.91	228.55	227.59	228.60			1
	4	235.48		226.11	229.33		225.86			226.15	225.74	226.09	224,65	226.10	224.91		
12	4		233.88		235.12		234.78	235.49		236.50	234.84	235.51	234.71	235.60	234.65	235.45	1
100			232.91	234.53			233.67				233,55	234.37	237.17	234.22	727.96	and the second se	1
-	2	233.10			244.15			244.88	244.60		243.84	244.63	243.28	244.60	243.32	244.69	
· · · · · · · · · · · · · · · · · · ·	3			233.24		233,19		233.12	232:96		232.60	233,10	231.88	233 11	231.70	233-08	
20	4				237.55		239.25	237.83	237.61	237.84	236,94	237.89	236.88	237.88		237.92	
	1		234.47		235.23		239.41	239.82	235.54	235.84	235.42	235.91	224.28	235.80	234-63	235.90	
	2				234.41		234.51	234.99	234.76	234.99	234.36	234.99	233,46	234 91	234.23		·
	3	248.81			248.68		248.40	248.97	248.7.6	248.91	248.39	238.85	247.32	248.90	247,98	248.79	
	4	231.62	230.26	231.73	231.20	231.76	231.21	231.67	231.38	231.64	230.98	231.63	230,19	231.64		231-63	
	1												····			<u> </u>	
	2										· · ·						
	3																
	4																
	1																
	2																
	3																
	4																
	1																
	2		-					1									
	3																
	4								~								
	1																
	2																
	3																
	4																
	1																
	2																
	3			~													
	4						· · · · · · · · · · · · · · · · · · ·				·						
Tech Init	-		JW	JW	MLT	MLT	วพ	JW	641-2				0.150				
						11/1	000		MU	MLT	MUT	MUN	MD	MUT	YL	Vri 🕹	

au ba. 25, 2017

QA Review/Date:

fage. 30F4

## Nautilus Environmental Toxicology Laboratory Weight Monitoring Data

Client/ Project ID: Hemerra Hemmera

WO #: 170519

 $\sim 1$ . SM

بالمحافظ والمحافظ

Eu Oct. 25, 2017

Organism Tested: Paper Birch Start Date/Time: AU9 4 /17 @ 1700h End Date/Time: Sept 8/17@ 1600h

9/L NACI			<b></b>	Mar Evil	P 1.89					•	End	Date/Time: _	Sept 8/	17@ 1600h	
Sample				Total Wet	t Weight (jar	+ soil + organ	isms) (g) - B	efore and afte	r hydration.	Day of Test				Final	
Sumpre			t Hydration		Hydration	Pre & Post l	Aydration	Pre & Post I	<b>Iydration</b>	Pre & Post		Pre & Post I		Pre & Post Hydration	JW
D	Rep.	Day 21	109 21	Danjoy	ang24	Day26	Daysb	20428	Day 28	Day 31	Day 31	Day 33	Day 33	Day 35	
control	1		409,43		409.33	407.88	409:30	404.51		408.39	409.52	469.17	409.31	408.63	
SOIL	2	367.40		371.1103	371.03		370.40	366.36	369.25		367.76	367.09	367.84	367-51	
	3	389.52		389.49	390.50	389.59	390.47	386.30	391.73		390.47	389.63	390-51	390.19	
	4	402-81	403,81	403.09	403-84	402.88		398.25			404.71	404.16	404.15	403-63	
Control	1	204.97	205.49		206.02	204.77	206.03	200.97			206-04	205.59	205.97	205.05	
Peat Moss	2		242.47	241-69	242.53		242.45	237.13			242.49	242.06	242.44	241.694	
	3		260.61	259.59	260-65	258.93			261.06		260-59	259.78	260.59	260.005	
	: 4	235.41	236.50	235.60	236.50		236.50	231.53			236.41	235.81	236.39	235.77	
0.34	1	224.76	226.19	225.08	226.08	224.83	226.15	220.96		224.43	226-14	224.84	26.07	225-67	1
· · ·	2	236.62	237.81	232.23	237.86	236.10		232.21		236.30	237.95	237-21	237-88	232.01	/
	3	229-84	231.03	230-15	231.20	229.86	231.10		232.61		231.04	230.38	231.06	230.28	
	4	239.54	240.48	239.52	240-52	239.18	240.50	235.62			240.38	239.74	240.50	239.78	
0.56	1	238.80	239.85	239.05	239,37	237.96	239.80	236.60	239.6491	237.68	239-67	238.61	232.71	238.80	
	2	235.46	237.93	237-08	238-01	236.42	237.99	234.34	238-56	235.21	238-04	237-29	238.01	237.15	
	3		230,77	229.71	230.82	229.47	230.79	227.22	230.46	228-40		237-294	230.85	230.06	
	4	244,29	245.14	244.46	245.03	243.45	245.08	241.57	245.962	242-66	245.05	243.52	245.08	244.44	
0.93	1	231:71	232.94	231.99	232.99	231.26	232.99	229.69	233.05	231.41	232.94	232-52	232.93	232.31	
	2		225.95	225.25	2286.02	· · · · · · · · · · · · · · · · · · ·	225.93	222.05	226.11	224-37	225.87	25.25	225.92	225.29	
	3	245.25	245.89	244.88	245.95	244.71	245.86	242.34	245.88	244.29	245.84	245.23	245.87	245.25	
		Strange was a second	233.69	232.76	233-79	232.53	233.74	230.14		232.40	233.23		233.83	233.32	
1.6			224.54		224.43	223.26	224.52	221.15	224.58	223-4	224.50	223.79	224.48	223.93	
	2	236.50		236.36	237.19	235.45	237.22	233.53		236-14	237.10	in f	232.16	236.66	
	3	227.99	228.99	227.99	228-95	227.93	228,99	225.37		226.70	228.96	278.43	229.04	228.49	
	4	235.72	236.50	235.25	236.36	233.91	236.49	233.73	236.62	234.75	236.40	235.35	236-49	236.06	
2.6	1	245.96	246,89	245.81	246-85	245.78	246.95	243.56	246.89	244.52	246.79	746.07	246.88	246.32	
	2		234,07	233-16	234.02	232.38				232.57.	234.08	253.92	234.12	233-63	
	3		242.24	241.48	242.27	240.52	242.26	238.71	242.29	240.65	242.32	241.64	24232	241-67	
	4		225,31	23.98	225.27	223.50	225.32	221.66	225.72	224.09	125.78	224.72	225.34	224.89	
4.3	1			249.92	250.64	249.03	250.60	246.98		249.93	150.60		250.69	250.21	
	2	215.71		26-02	216,69	214.86		213.00		215.50	26.86	216-31	216.74	216.52	
	3		243.16		243.11	241.33	243.09	239.64		241.81		242.23	243.11	242.80	
			223.63		-27 223.64		223.67	220.11	223.69	224.89	223.69	222.82	223.69	223.12	
Tech Init		MW	YW	ya.	K	M17	M17	05	5	the state	K	~	×	w	
					I	SV1-1	1 19 (		5238.51	· · · ·	L	029.99		· ·	

QA Review/Date:

### page w 4 OF 4

## Nautilus Environmental Toxicology Laboratory Weight Monitoring Data

Client/Project ID: Hemerra Hemmera WO #: 170519

JW.

· ·	Organism Tested: Paper Birch	
	Start Date/Time: AU9 4 / 17 @ 1700h	
• •	End Date/Time: Sept 8 / 17 @ 1600 h.	ę

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9/L NAC	y			in so and t		· · · · ·					End	Date/Time: _	Sept 8:/1	7 @ 1600	<u>h.</u>		•
D         Ro.         Dec & Post Hydralon         Dec & Fost Hydralon         Dec & Fost Hydralon         Pre & Fost Hydralon         Pre & Fost Hydralon         The Start Hydralon <t< td=""><td>Sample</td><td></td><td></td><td></td><td>Total Wet</td><td>Weight (jar</td><td>+ soil + órgan</td><td>isms) (g) - Be</td><td>fore and afte</td><td>r hydration,</td><td>Day of Test</td><td></td><td></td><td></td><td>Final</td><td></td><td>1</td><td><u>ר</u> [</td></t<>	Sample				Total Wet	Weight (jar	+ soil + órgan	isms) (g) - Be	fore and afte	r hydration,	Day of Test				Final		1	<u>ר</u> [
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				t Hydration	Pre & Post I	Hydration	Pre & Post I	Iydration	Pre & Post I	Iydration	Pre & Post 1	Hydration	Pre & Post 1	Hydration	Pre & Post I	lydration-	JW	1.1
12       127       177       128.40       124.42       124.42       124.42       125.42       125.52       125.55         12       123.42       124.60       125.52       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57       125.57 </td <td>And the second se</td> <td></td> <td></td> <td>20745</td> <td></td> <td>1245.05</td> <td>747.67</td> <td>745 00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td><u> </u></td> <td>-</td>	And the second se			20745		1245.05	747.67	745 00									<u> </u>	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>																	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	,																	-
12       1       1238-66       238-79       138-72       128-79       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76       128-76 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>537232.33</td><td>235.76</td><td>234.25</td><td></td><td></td><td></td><td></td><td><u></u></td><td></td><td>-</td></td<>									537232.33	235.76	234.25					<u></u>		-
2       2144_00       2446_07       244, 41       244, 41       244, 41       244, 41       244, 41       244, 41       244, 41       244, 41       234, 44       235, 42       235, 43       235, 43       235, 43       235, 43       235, 43       235, 43       235, 43       235, 43       235, 42       235, 44       235, 42       235, 44       235, 42       235, 44       235, 42       235, 44       235, 44       235, 44       235, 45       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 44       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       235, 45       <	12	1					232.78	234.21	231.99	234.50	233.56			734.29	222.21	······	· · · ·	-
13       1322-54       133,11       231,24       135,4       135,4       123,4       123,5       123,4       123,5       123,4       123,5       123,4       123,5       123,4       123,5       123,4       123,5       123,4       123,5       123,4       123,5       123,4       123,5       123,4       123,5       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       123,4       124,4       123,4       124,5       123,4       124,5       124,5       124,5       124,5       124,5       124,5       124,5       124,5       124,5       124,5       124,5       124,5       124,5       124,5 <t< td=""><td></td><td>. 2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>244.15</td><td></td><td></td><td></td><td></td><td>-</td></t<>		. 2											244.15					-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	÷							233.05	229.44	233.83	231.75	233.12				· · ·	1 · · · ·	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														234 .85	227 28			1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	1.				2:35.25	234.55	235.20	233.15	236.75	235-22	235.90					1	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2	234.46	235.01					231.55	234.74	233.30	234.90	234,24					1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3	230,050	2215000	248.38								248.33					1
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td></td> <td>4.</td> <td>230.85</td> <td>231.54</td> <td>230-55</td> <td></td> <td>1</td>		4.	230.85	231.54	230-55													1
3		1					<u> </u>	<u>-</u>		•					631.81			1.
3		2		· · · · · · · · · · · · · · · · · · ·				·				:	· ·					1
4				· ·					·····							•		1
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.</td>							· · · · · · · · · · · · · · · · · · ·		·									1.
3		1									1							1.
3		2												-				1
1													· ·					1 :
2		4														**************************************		1
3		1																1
4     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - <td></td> <td>2</td> <td></td> <td>·</td> <td></td> <td>•</td> <td></td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>		2		·		•		·										1
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td></td> <td>3</td> <td></td> <td>-</td> <td></td> <td>1</td>		3		-														1
2		4																]
3		1			· ·				· .									1
4     1       1       2       3       4       7       4       7       1       1       1       2       3       4       7       1       1       1       1       1       2       3       4       7       10       10       11       12       13       14       1       10       11       11       12       13       14       15       15       15       16       17       10       10       11       11       12       13       14       15       15       16       17       18       11       11       11       12       13       14       16       17       17       18       18       19		2																].
1 2 3 4 Tech Init MW K K MLT MLT TS JS K K K K		3										1. 1.						]
3 4 Tech Init MW W W W MLT MLT JS JS W W W W	-	4									:							]
3 4 Tech Init MW W W W MLT MLT JS JS W W W W		1			•			-								1 1 1		
Tech Init NW MW W W W MLT MLT JS JS W W W W	1	2																
Tech Init MW W W W MLT MLT JS JS W W W W W		3			·. ·							t to see						Ι
NU NU		4				·												Ĩ
Devel He Devel CG Graziliae	Tech Init						MLT	MA	75	55	h	·K-	14	h	Yr.	·		1

0248.16 0248.89 (3)234.29 Ull Occ. 25, 2017 QA Review/Date:_

Client: Hemerra Hemmera

WO#: 170519

### Nautilus Environmental No. of Emergence - 2⁄1-day Soil Test 35 ^{つพ}

Organism Tested: Paper Birch Start Date: Aug 4 / 17 End Date: Sept 8 / 17

Shakes Sfactbreak (ang) 9/L Nac

### Post Germination Shoot and Root Length (mm)

Date	Sample	Rep A	Lengt	h (mm)	Rep B	Lengt	th <u>(</u> mm)	Rep C	Lengti	ו (mm)	Rep D	Length (mm)	
		Plant #	Shoot	Root	Plant #	Shoot	Root	Plant #	Shoot	Root	Plant #	Shoot	Root
sept 8/17	control soil	1	50	58	1	48	34	1	45	38	1	. 53	34
		2	43	38	2	50	30	2	48	37	2	49	29
		3	45	SD	3	50 °	30	3	45	35	3	43	29
		4			- 4	51.	31	4	50	33	4	ß	28
		5	.*		5			5	53	30	5		
	control	1	59	64	1	8F	. 117	1	53	48	1	54	36
	peat moss	. 2	55	75	2	65	46	2			, 2	56	109
		3	60	70	3	64	34	3			3	61	- 52
	· · · · · · · · · · · · · · · · · · ·	4	62	82	- 4	34	JW 37 27	4			4	. 50	34
		5			5	48	JW 40 70	5			5	46	33
	0.34	1	68	· 81	1	72	120	1	67	. 148	1	81	150
	· · ·	2	80	99	2	63	88	2	90	(20	2	62.	82
		3	70	,93	3	77	. 100	· 3			3	7S	74
		4	55	76	4	75	102	4		•	4	76	85
		5	33	34	5	80	80	5			5		
						,							. •
	0.56	1	87	130	1	51	70	1	=	115	1	95	130
		2	76	85	2	- 100	185	2	65	102	2	51	80
		3			3	92	80	3	5D	95	3	34	58
		4			4	[0	JW & 71	4	41	101	4 ·	56	93
1997 - 14		5			5			5			5		
	0.93	1	63	. 43 .	1	92	98	1 -	en et e	74	1	55	61
		2	62.	- 38	2	50	50	2	56	53	2	64	46
	•	3	61	JW. 5645	3			3	54	96	3	42	55
		4	80	56	4			4			4	56	105
Ý	-	5			5			5			5	44	34
											ς		
ech Init			JW	JW		DW	WC	,	JW	SW		S	JW

ba 25,2017

SM Client: Hemerra Hemmera

### WO#: 170519

### Nautilus Environmental

### Organism Tested: Paper Birch Start Date: Aug 4/17

No. of Emergence - 2⁄1-day Soil Test 35 700

End Date: Sept 8 / 17

the Court Court Real Mark

Post Germination Shoot and Root Length (mm)

9/L Nacy	

Date	Sample	Rep A		h (mm)		Lengt	h (mm)	Rep C	Lengt	h (mm)	Rep D	Lengt	h (mm) 👘
		Plant #	Shoot	Root	Plant #	Shoot	Root	Plant #	Shoot	Root	Plant #	Shoot	Root
sept 8/17	1.6	1	62	90	1	65	.103	1	67	80	1	.88	95
		2	58	89	2	55	80	2	45	87	2	60	80
		3	42	63	3	31	20	3	23	37	3	43	38
		4			4			4			4	100	73
		5			5	1.1		5			5		
	2.6	1	59	55	1	53	66	1	60	62	1	48	-35
		. 2	21	22	2	40	65	2	36	55	, 2	58	62
		3	76	78	3	JWV 34	. 57	3	49	68	3	64	67
		4	51	45	4	2		4	1		4	ß	35
		5	- 49	55	5	-	· · · · · · · · · · · · · · · · · · ·	5	: :		5	26	15
	4.3	1	56	19	. 1	15	15	1	15	12	1	52	55
		2	32	28	2	25	22	2	13	3	2	30	55
		3	20	.18	3			3	7-	3	3		2
		4			4	•		4			4		<u>~</u>
·		5			5			5			5	· · · · · · · · · · · · · · · · · · ·	
	7.2	1	3.	20	1	7	4	1	. 4.	2	1	16	5
		2			2	- 13	10	2			2		/
		.3			3			3			3		
		4			4			4			4		
		5			5			5			5		
	12	1			1			1			1		
		2			2			2			2		
		3		$ \rightarrow +$	3			3	·		3		<u> </u>
		4			4	/		4			4		
	·····	5			5			5			5	/	
						~			·			л 	
ech Init			JW	JW		JW			- WC				SR
		<u> </u>	100	000	l	UVU	JW			DM		0W	2100

600 Der. 25,2017

Client: Hemerra Hemmera

### WO#: 170519

### Nautilus Environmental No. of Emergence - 2/1-day Soil Test

Organism Tested: Paper Birch Start Date: Aug 4 / 17 End Date: Sept 8 / 17

### 35 700

### Post Germination Shoot and Root Length (mm)

9/L Naci

Date	Sample	Rep A	Length	n (mm)	Rep B	Lengt	h (mm)	Rep C	Lengt	n (mm)	Rep D	Length	ו (mm)
		Plant #	Shoot	Root	Plant #	Shoot	Root	Plant #	Shoot	Root	Plant #	Shoot	Root
sept 8/17	20	1			1		. /	1			1		
		2			2			2			2		
		3			3	/		3			3		/ .
		4			4			4			4		
$\mathbf{V}$		5			5	/		5	/		5		
						· · ·							
		1			1			1			1		
		2			2			2			2		
		3			3			3			3		
		4			- 4			4			4		
		5	·		5			5			5		
		1			1			1	÷		1		
		2	-		2			2			2		
		3		,	3			3			3		
		4			4			4			4		
		5			5			5			5		
	· · · · ·	1			1			1			1		
		2			2	• .		2			2		
		.3			3			3			3		
		4			4			4			4		
		5			5			5			5		
		1			1			1			1		
		2			2			2			2		
		3			3			3			3		
		4			4			4			4		
	-	5			5			5			5		
	·												
Tech Init			JW	SM		JW	JW	•	SW	SM		ΩC	JW

Ell 00-25,2017

### 35-d Paper Birch

## *i* <del>∛ 7-d *Lemna minor* Weight Data Sheet</del>

lient:	JN	Hemmera		Start Date: Aug 4 / 19					
ample ID:	the second s	Shoot)	Term	Termination Date: Sept 8 / 13					
/O #:	170519			Balance ID: Bal - 1					
9/L Nacl		25		n (loot (mar)	Initials				
Concentration	Rep	Pan No.	Pan weight (mg)	Pan + plant (mg)	JW				
	A	(	1274.30	1297.54					
	В	2	1277.23	1299.22					
Control Soil	C	3	1280.83	1306.00	<u></u>				
•	D	4	1272 1.96	1296.16					
	Α	5	1271.84	1351.85					
	В	6	1279.60	1381.54	· ·				
control peat moss	Ċ	7	1273.76	1293.62	· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·	D	8	1280.41	1365.92	+				
	Α	٩	1280.58	1479.48					
· · · · ·	В	lo	1280.00	1477.22					
0.34	С	11	1274.54	1422.33					
	D	. 12	1273.54	1396.04					
	A	13	1276.86	1441.74					
	В	14	1276.92	1453.01					
0.56	С	15	1276.77	1428.99					
0.00	D	16.	1276.61	1440.81					
	A	17	1278.18	1422.99					
	В	18	1276.66	1383.96	·				
0.93	С	19	1274.95	1374.03					
0.40	D	20	1272.95	1390.71					
	Α	21	1276.60	1366.91					
	В	22	1276.10	1360.59					
1-6	С	23	1275,73	1339-22					
i τ. α - α - α - α - α - α - α - α -	D	24	1280.09	1441.47					
	A	25	1274.81	1371.27					
	В	26	1279.55	1332 . 21					
and the factor of the	c		1282.09	1351. 22					
2.6	D	28	1285.22	1362.45	.V.				
Comments:			8.1365.09	# 24 . 1441.35					
	(n	ng) †	17.1422.05	# 32.1304.46					
Reviewed by:	•	Cu		Date Reviewed: 60	5 25/2				
•									

# 35-d Paper Birch

# ở <del>7-d *Lemna minor* W</del>eight Data Sheet

Olivert	NC CONCLE			Start Date: Aug 4/19	<u>۱</u>
Client: Sample ID:	Hemerre Naci	(shoot)	Te	ermination Date: Sept 8 / 17	
WO #:	170519			Balance ID: Bal - 1	······································
9/L NaCI		PS ·			Landard Statements
Concentration	Rep	Pan No.	Pan weight (mg)	Pan + plant (mg)	Initials.
	Α	29	1282.06	1331:06	UNC .
	В	30	1274.56	1280,50	· .
¹¹³ <b>4</b> .3	С	31	1280.96	1284.38	
	D	32	1277.89	1304.82	
	A	33	1280.99.	1282.96	
	В	34	1276.42	1278.41	<u> </u>
7.2	C	35	1276,54	1276.78	
	D	36	1272.36	1273.99	V
	A				1
	В				
12	С				
	D				
	A		3	5	
	В				
20					
	D				
	A	1			
	В				
	C			•	
	D	4			
	A				
	В				
	C		•		
ter and the second	D				
	A				
	B				
	·				
	D				

Comments:

Reviewed by:

C

Date Reviewed:

oit 25 : 2013 ĆU

Version 1.1 Issued May 29, 2015

# 35-d Paper Birch

# ⊛<del>7-d *Lemna minor* Weight Data Sheet</del>

Client:	Hemerra	tw Hemmerc	α	Start Date: Aug 4 / 9	
Sample ID:	Naci	(ROOT)		nination Date: Sept 8/17	
WO #:	170519			Balance ID: Bal - 1	
9/L Naci		PR PURF			
Concentration	Rep	Pan No.	Pan weight (mg)	Pan + plant (mg)	Initials
	A	(	1276.71	1283:71	WC
Control Soil	В	2	1275.43	1281 . 84	
COMING SOIT	C	3	1278.40	1296.34	
-	D	4	1278.90	1302.38	
	A	5	1281.58	1290.48	
	В	6	1286.97	1296.97	
control peat Moss	C	7	1281.81	1283.39	
	D	8	1282.97	1292.44	
	Α	٩	1282.98	1307.47	
	В	lo	1282.21	1302.43	
0.34	С	11	1279.23	1303.02	
	D	12	1273.48	1290-49	
	Α	13	1274.27 N 1290	.17 1306.90	
	В	14	1274.26	1296.07	
0.56	С	· 15 ····	1281.20	1300 . 82	
	D	16	1277.47	1295.71	
	A	17	1274.71	1285.09	
	В	18	1283.89	1295.15	
0.93	С	19	1279.50	1292.79	
	D	20	1277 .87	1290.92	
	A	21	1278.22	1285.98	
· ·	В	22	1279.14	1288 . 91	
1-6	С	23	1273.29	1279.84	
	D	24	1275.14	1289.04	
	A A	. 25	1272.84	1282.31	
	В	26	1273.32	1280 - 18	
2.6	С	-7 <b>-</b>	1274.20	1283 - 43	
	· D	28	1278.72	1286.02	$\checkmark$
10	% Re-We	eigh (mg)	······································		
Comments:	#6 1		# 24. 1288.9	16	
		295.98	# 30. 1275.1	63	· · · · · · · · · · · · · · · · · · ·
Reviewed by:		W	2 710		5.25,2017

Version 1.1 Issued May 29, 2015

35-d Paper Birch		
------------------	--	--

# 7-d Lemna minor Weight Data Sheet

Client:	Hemerre	t Hemmerc	A	Start Date: Aug 4 / 19	N
Sample ID:		(ROOT)	Term	ination Date: sept 8 / 13	
WO #:	170519			Balance ID: Bal - 1	
9/L Nacl		PR PURPIC			
Concentration	Rep	Pan No.	Pan weight (mg)	Pan + plant (mg)	Initials
	A	29	1276.07	1280:86	JW
	В	30	1270.80	1272.07	
4.3	С	31	1271.03	1271.66	
	D	32	1271.81	1275.68	
	Α	33	1277.60	1278.03	
	В	34	1276.75	1277.00	
7.2	Ċ	35	1272.96	1273.05	-
	D	36	1276.34	1276.38	V
	A				
	В				
12	c				
	D				
	A		732		
	В	1			
20	C				
	D				
	A	·			
	В.				
and the second sec	С				
	D			~	
	A				
	В				
	С			•	
	D				
	A				
	B			······································	
	C				×
	D			-	
				κ.	

Comments:

Reviewed by:

U

Date Reviewed:

Det 25, 2017

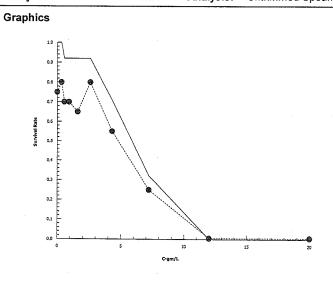
Version 1.1 Issued May 29, 2015

	CETIS Ana	alytical Rep	port					-	ort Date: t Code:			1:31 (p 1 of 2   14-2805-653
JM (	Eisenia 28-d	Survival and G	irowth Soil	Test 39	-d					Na	autilus E	nvironmental
	Analysis ID: Analyzed:	14-2696-7856 05 Dec-17 11		Endpoint: <del>Survival</del> Rate ( ๑๏เฑiิกสtiิon ) วเง Analysis: Untrimmed Spearman-Kärber					CETIS Version: CETISv1.8.7 Official Results: Yes			
-	Batch ID: Start Date: Ending Date: Duration:	12-1325-2703 04 Aug-17 08 Sep-17 35d 0h	Pr	rotocol: pecies:	Survival-Grov EC/EPS 1/RM Betula papyri BC Ministry o	//56 (2013) fera	nds and Nati	Ana Dilu Brin ural R Age	ent: Dec le:	in Wijaya hlorinated ⊺	Гар Wate	r
-	Sample ID: Sample Date Receive Date Sample Age:	01-2024-9676 04 Aug-17 : 04 Aug-17	5 Co M So	ode: aterial: ource:	72ADD4C Sodium chlor Hemmera Sodium Chlor	ide	·	Clie Proj	nt: Hen	nmera		
-		arber Estimates										
_	Threshold Op		» Threshold	Trim	Mu	Sigma		EC50	95% LCL	95% UCL		
_	Control Thres	hold	0.25	0.00%	0.6818	0.04209		4.806	3.959	5.834		
- 0W	Survival-Rate	Summary				Calo	ulated Varia	ate(A/B)				
-	9ermination C-gm/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	в
	0 I 0.34	Reference Sed	4 4	0.75 0.8	0.2 0.4	1	0.1893 0.1414	0.3786	50.48% 35.36%	0.0% -6.67%	15 16	20 20
	0.56		4	0.7	0.4	0.8	0.1	0.2	28.57%	6.67%	14	20
	0.93		4	0.7	0.4	1	0.1291	0.2582	36.89%	6.67%	14	20
	1.6		4	0.65	0.6	0.8	0.05	0.1	15.38%	13.33%	13	20
	2.6		4	0.8	0.6	1	0.1155	0.2309	28.87%	-6.67%	16	20
	4.3		4	0.55	0.4	0.6	0.05	0.1	18.18%	26.67%	11	20
	7.2		4	0.25	0.2	0.4	0.05	0.1	40.0%	66.67%	5	20
	12		4	0	0	0	0	0		100.0%	0	20
_	20		4	0	0	0	0	0		100.0%	0	20
	Survival Rate		Don 4	D	D 0							·
~~		Control Type Reference Sed	Rep 1 0.8	Rep 2	Rep 3	Rep 4						
	0.34	veletence Seu		1	0.2	1 .						
			1	1	0.4	0.8						
	0.56		0.4	0.8	0.8	0.8						
	0.93		0.8	0.4	0.6	1						
	1.6		0.6	0.6	0.6	0.8						
	2.6		1	0.6	0.6	1						
	4.3		0.6	0.4	0.6	0.6						
	7.2		0.2	0.4	0.2	0.2						
	12		0	0	0	0						
	20		0	0	0	0						
	Survival Rate	Binomials										
_	C-gm/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
	0	Negative Contr		4/5	5/5	4/5						
1	0	Reference Sed		5/5	1/5	5/5						
I	0.34		5/5	5/5	2/5	4/5						
	0.56		2/5	4/5	4/5	4/5						
	0.93		2/5 4/5	4/5 2/5								
	1.6				3/5	5/5						
			3/5	3/5	3/5	4/5						
	2.6		5/5	3/5	3/5	5/5						
	4.3		3/5	2/5	3/5	3/5			,			
	7.2		1/5	2/5	1/5	1/5						
	12		0/5	0/5	0/5	0/5						
	20		0/5	0/5	0/5	0/5						

Dec. 5/17 QA:

Analyst: JW

0/5


0/5

0/5

20

0/5

CETIS Ana	alytical Report		Report Date: Test Code:	05 Dec-17 11:31 (p 2 of 2) 170519-S   14-2805-6538
CW Eisenia 28-d	<del>Survival and Gro</del> wth	Soil Test 35-d		Nautilus Environmental
Analysis ID: Analyzed:	14-2696-7856 05 Dec-17 11:24	Endpoint: <u>Survival</u> Rate (germination) w Analysis: Untrimmed Spearman-Kärber	CETIS Version: Official Results:	CETISv1.8.7 Yes



Dec-5/17

Analyst: <u></u>

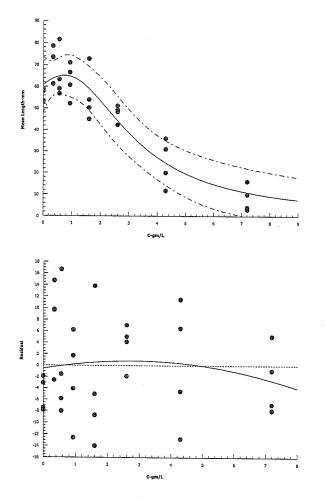
CETI	S Ana	lytical Repo	ort					Report Date: Test Code:		7 11:44 (p 1 of -S   14-2805-653
Eiseni	<del>a 28-d 9</del>	urvival and Gr	<del>owth</del> Soil T	est 35-d	l				Nautilus	Environmenta
Analys Analyz		18-3322-9011 05 Dec-17 11:4								
Batch Start I Ending Durati	Date: g Date:	12-1325-2703 04 Aug-17 08 Sep-17 35d 0h	Pro Spe	tocol: EC cies: Be	rvival-Growth /EPS 1/RM/ tula papyrife	56 (2013) ra	ids and Natu	Diluent: De Brine:	slin Wijaya echlorinated Tap W	ater
Sampl Sampl Receiv	le ID: le Date:	01-2024-9676 04 Aug-17 04 Aug-17	Coc Mat Sou	le: 72/ erial: So rce: He	ADD4C dium chlorid mmera dium Chlorid	e			emmera	
	inear Re Functio	gression Optic	ns			X Tran	sform Y Tra	ansform Weighting	Function	PTBS Function
4P Log	g-Logistic	+Hormesis EV	Y=A(1+EX)	/(1+(2ED+1	)(X/D)^C)]	None	None			Off [Y*=Y]
Regre	ssion Sı	immary								
Iters	Log L	L AICc	BIC	Adj R2	Optimize	F Stat	Critical	P-Value Decisio	n(α:5%)	
25	-83.81	177.1	181.5	0.8355	Yes	1.748	2.776	0.1724 Non-Sig	nificant Lack of Fit	
Point	Estimate	s								
Level	gm/L	95% LCL	95% UCL							
IC5	1.689	N/A	2.107							
IC10	1.903	N/A	2.324							
IC15	2.104	1.646	2.538							
IC20	2.302	1.855	2.753							
IC25	2.5	2.057	2.971							
IC40	3.146	2.682	3.695							
IC50	3.664	3.142	4.327							
Regree	ssion Pa	rameters								
Param	eter	Estimate	Std Error	95% LCL	95% UCL	t Stat	P-Value	Decision(α:5%)		
А		60.89	3.933	53.18	68.6	15.48	<0.0001	Significant Paramete	er	
С		2.403	0.386	1.646	3.159	6.225	<0.0001	Significant Paramete	er	
D		3.664	0.321	3.035	4.293	11.42	<0.0001	Significant Paramete	er	
E		0.1612	0.1769	-0.1854	0.5079	0.9117	0.3697	Non-Significant Para	ameter	
ANOV	A Table									
Source	e	Sum Squ	ares Mea	n Square	DF	F Stat	P-Value	Decision(a:5%)		
Model		12705.52	127	05.52	1	160.5	<0.0001	Significant		
Lack of		500.1089	125	0272	4	1.748	0.1724	Non-Significant		
Pure E		1716.335	71.5	1396	24					
Residu	al	2216.444	79.1	5871	28					
Residu	ual Analy	sis								
Attribu	Ite	Method			Test Stat	Critical	P-Value	Decision(α:5%)		
Variand	ces	Bartlett Ec	uality of Va	riance	7.651	14.07	0.3644	Equal Variances		
		Mod Lever	ne Equality	of Variance	0.7598	2.423	0.6256	Equal Variances		
Distribu	ution	Shapiro-W	ilk W Norm	ality	0.9586	0.9338	0.2511	Normal Distribution		
		Anderson-	Darling A2 I	Vormality	0.5155	2.492	0.1949	Normal Distribution		

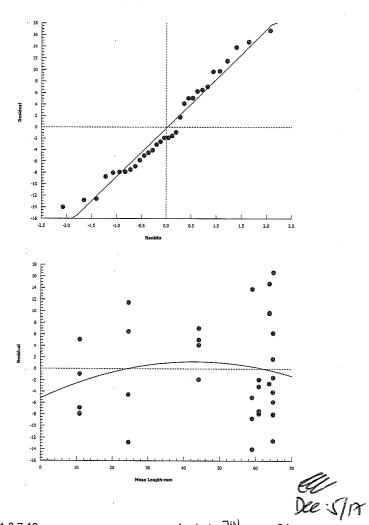
Analyst: JW QA: Dee-SIPT

# **CETIS Analytical Report**

Report Date: 05 Dec-17 11:44 (p 2 of 2) 170519-S | 14-2805-6538

Test Code:


#### JW Eisenia 28-d Survival and Growth Soil Test 35-d


Eisenia 20	8-d Survival and Gr	<del>owth</del> Soil	Test 35	d					Nautilus Environmental
Analysis I Analyzed:			•	ean Length onlinear Re	i-mm (Sha gression	ot)	CET	CETISv1.8.7 Yes	
Mean Len	gth-mm Summary				C	alculated Va	riate		
C-gm/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Reference Sed	.4	55.8	53	59	1.523	3.046	5.46%	0.0%
0.34		4	71.65	61.2	78.5	3.681	7.362	10.28%	-28.41%
0.56		4	65.15	56.8	81.5	5.615	11.23	17.24%	-16.76%
0.93		4	62.6	52.2	71	4.057	8.115	12.96%	-12.19%
1.6		4	55.53	45	72.8	6.047	12.09	21.78%	0.49%
2.6		4	47.75	42.3	51.2	1.915	3.83	8.02%	14.43%
4.3		4	24.67	11.7	36	5.466	10.93	44.3%	55.78%
7.2		4	8.25	3	16	3.01	6.021	72.98%	85.22%

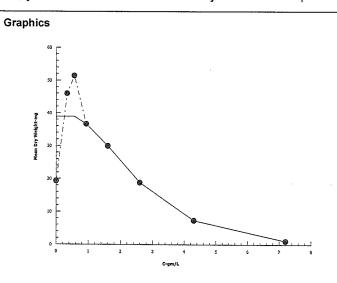
C-gm/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Reference Sed	59	57.8	53	53.4	 
0.34		61.2	73.4	78.5	73.5	
0.56		81.5	63.3	56.8	59	
0.93		66.5	71	60.7	52.2	
1.6		54	50.3	45	72.8	
2.6		51.2	42.3	48.3	49.2	
4.3		36	20	11.7	31	
7.2		3	10	4	16	

Graphics

4P Log-Logistic+Hormesis EV [Y=A(1+EX)/(1+(2ED+1)(X/D)^C)]






QA

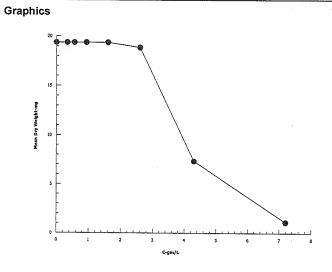
CETIS	Anal	ytical Repo	ort					•	ort Date: t Code:		Dec-17 11:31 (p 1 o 0519-S   14-2805-6
Eisenia	<del>28-d S</del>	urvival and Gr	<del>owth</del> Soil	Test 3	5-d		Shoot			Na	utilus Environmer
Analysi: Analyze		08-7944-7794 05 Dec-17 11:2		ndpoint: nalysis:	Mean Dry We Linear Interpo		Bees) IN) ^{SW}		TIS Version	-	8.7
Batch II	D:	12-1325-2703	Te	est Type:	Survival-Grov	vth		Ana	lyst: Jes	slin Wijaya	
Start Da	ate:	04 Aug-17		rotocol:	EC/EPS 1/RM				-	chlorinated T	ap Water
Ending	Date:	08 Sep-17	S	pecies:	Betula papyri			Brir			- <b>P</b>
Duratio	n:	35d Oh	S	ource:	BC Ministry o	f Forest, La	nds and Nati	ural R Age			
Sample	ID:	01-2024-9676	C	ode:	72ADD4C	·		Clie	nt: He	mmera	· · · · · · · · · · · · · · · · · · ·
Sample	Date:	04 Aug-17	М	aterial:	Sodium chlor	ide			ject:		
Receive	Date:	04 Aug-17	S	ource:	Hemmera						
Sample	Age:	NA	St	ation:	Sodium Chlo	ride					
Linear I	nterpol	ation Options									
X Trans		Y Transform	n Se	eed	Resamples	Exp 95	% CL Met	hod			
Log(X+1	)	Linear	11	74228	200	Yes		-Point Interp	polation		
Point Es	stimate	s									
Level	gm/L	95% LCL	95% UC	L							
IC5	0.8703	3 0.4563	2.103		······································						· · · · · · · · · · · · · · · · · · ·
IC10	1.074	0.4194	2.14								
IC15	1.262	0.3945	2.207								
IC20	1.468	0.3621	2.272								
IC25	1.66	0.3409	2.352								
IC40	2.155	0.9933	2.957								
IC50	2.536	1.578	3.436	·····	<del>.</del>						
		ht-mg Summa	ry	·		С	alculated Va	ariate			
C-gm/L 0		ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	
0.34	Re	eference Sed	4	19.34	17.1	20.39	0.7537	1.507	7.8%	0.0%	
0.54			4	45.94	30.63	73.89	9.558	19.12	41.61%	-137.5%	
0.93			4 4	51.39 36.61	38.05	82.44	10.42	20.84	40.55%	-165.8%	
1.6			4	29.94	23.55 21.16	53.65	6.284	12.57	34.33%	-89.3%	
2.6			4	18.83	15.45	40.35 23.04	3.963 1.608	7.926 3.217	26.47%	-54.84%	
4.3			4	7.355	1.14	23.04 16.33	3.429	5.217 6.858	17.08%	2.61%	
7.2			4	1.109	0.24	1.63	0.323	0.6461	93.24% 58.27%	61.97% 94.27%	
Mean Dr	y Weig	ht-mg Detail		<del></del>							
C-gm/L		ontrol Type	Rep 1	Rep 2	Rep 3	Rep 4					
0	Re	ference Sed	20	20.39	19.86	17.1					
0.34			39.78	39.44	73.89	30.63					
0.56			82.44	44.02	38.05	41.05					
0.93			36.2	53.65	33.03	23.55					
1.6			30.1	28.16	21.16	40.35					
2.6			19.29	17.55	23.04	15.45					
10			16.33	2.97	1.14	8.977					
4.3											

Dec-STA QA:

Analyst:____N

	CETIS Ana	alytical Report			Report Date: Test Code:	05 Dec-17 11:31 (p 2 of 2) 170519-S   14-2805-6538	
JW	Eisenia 28-d	Survival and Growth	Soil Test 3	5-d		Nautilus Environmental	•
	Analysis ID: Analyzed:	08-7944-7794 05 Dec-17 11:29	Endpoint: Analysis:	Mean Dry Weight-mg (Sh∞t) Linear Interpolation (ICPIN)	CETIS Version: Official Results:		•




Analyst: JW

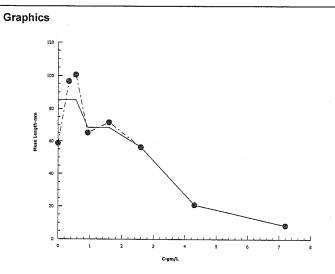
CETIS	S Ana	lytical Repo আ							Report Date: est Code:	05 Dec-17 11:40 (p 1 of 2) 170519-S1   16-8569-4353
Eisenia	<del>a 28-d S</del>	<del>Jurvival and Gr</del>	<del>owth</del> -So	il Test 39	s-d					Nautilus Environmental
Analys	is ID:	07-1469-1761	I	Endpoint:	Mean Dry We	ight-mg (≦	shoot)	C	ETIS Version:	CETISv1.8.7
Analyz	ed:	05 Dec-17 11:4	40	Analysis:	Linear Interpo	lation (ICPI	N)	c	Official Results	: Yes
Batch I	ID:	12-1325-2703	•	Test Type:	Survival-Grow	rth .		A	nalyst: Jes	lin Wijaya
Start D	ate:	04 Aug-17	. I	Protocol:	EC/EPS 1/RM	1/56 (2013)		Ē	<b>iluent:</b> Dec	chlorinated Tap Water
Ending	J Date:	08 Sep-17	:	Species:	Betula papyrif	era		E	Brine:	
Duratio	on:	35d Oh	ę	Source:	BC Ministry o	Forest, La	nds and Nat	tural R 🛛 A	lge:	
Sample	e ID:	02-2289-4098	(	Code:	D491812			c	lient: Her	nmera
		04 Aug-17	T	Material:	Sodium chlori	de		F	roject:	
Receiv	e Date:	04 Aug-17	5	Source:	Hemmera					
Sample	e Age:	NA		Station:	Sodium Chlor	ide				
Linear	Interpo	lation Options								
X Trans		Y Transform		Seed	Resamples	Exp 95		thod		
Log(X+		Linear		365804	200	Yes	Tw	o-Point In	terpolation	
	stimate									
Level IC5	<u>gm/L</u> 2.657	95% LCL N/A		CL						
IC10	2.057		2.841 3.194						•	
IC15	2.903		3.5							
IC20	3.032		3.827							
IC25	3.165		4.192							
IC40	3.593		5.139							
IC50	3.902		5.626							
Mean D	Dry Wei	ght-mg Summa	ry			C	alculated V	/ariate	<del></del>	
C-gm/L		ontrol Type	Count	Mean	Min	Max	Std Err	Std D	ev CV%	%Effect
0	R	eference Sed	4	19.34	17.1	20.39	0.7537	1.507	7.8%	0.0%
0.34			4	19.34	17.1	20.39	0.7537	1.507	7.8%	0.0%
0.56			4	19.34	17.1	20.39	0.7537	1.507	7.8%	0.0%
0.93			4	19.34	17.1	20.39	0.7537	1.507	7.8%	0.0%
1.6 2.6			4	19.34	17.1	20.39	0.7537	1.507	7.8%	0.0%
2.0 4.3			4	18.83	15.45	23.04	1.608	3.217	17.08%	2.61%
4.3 7.2			.4 4	7.355 1.109	1.14 0.24	16.33	3.429	6.858	93.24%	61.97%
	nv Weir	ght-mg Detail	<del>т</del>	1.109	0.24	1.63	0.323	0.6461	58.27%	94.27%
C-gm/L		ontrol Type	Rep 1	Rep 2	Rep 3	Rep 4				
0		eference Sed	20	20.39	19.86	17.1	· · · · · · · · · · · · · · · · · · ·			
0.34			20	20.39	19.86	17.1				
0.56			20	20.39	19.86	17.1				
0.93			20	20.39						
1.6			20	20.39	19.86	17.1 17.1				
2.6			20 19.29	20.39 17.55	19.86	17.1 15.45				
4.3			16.33		23.04	15.45				
4.3 7.2				2.97	1.14	8.977				
			1.57	0.995	0.24	1.63				

ll Dec SIA QA:

Analyst:____W

<b>CETIS Ana</b>	alytical Report	Report Date:	05 Dec-17 11:40 (p 2 of 2)		
	MC .	Test Code:	170519-S1   16-8569-4353		
Eisenia 28-d	Survival-and-Growth	Soil Test 35-d		Nautilus Environmental	
Analysis ID: Analyzed:	07-1469-1761 05 Dec-17 11:40	Endpoint: Mean Dry Weight-mg (Shcot) Analysis: Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.8.7 Yes	




Dee . 51/7 Analyst:_JW__QA:____

								Те	st Code:	170519-R   05-9925-005
Eisenia	<del>128-d S</del>	urvival and Gro	<del>owth</del> Soil	<b>Test</b> З	5-d					Nautilus Environmenta
Analysi		04-6395-7743		dpoint:	Mean Length			CE	TIS Version	: CETISv1.8.7
Analyze	ed:	05 Dec-17 12:3	39 <b>A</b> n	alysis:	Linear Interpo	plation (ICP	IN)	Of	ficial Result	s: Yes
Batch I	D:	11-5215-0357	Те	st Type:	Survival-Grov	vth		An	alyst: Jes	slin Wijaya
Start D	ate:	04 Aug-17	Pr	otocol:	EC/EPS 1/RM	//56 (2013)	,			chlorinated Tap Water
Ending	Date:	08 Sep-17	Sp	ecies:	Betula papyri				ne:	
Duratio		35d Oh	So	urce:	BC Ministry o		nds and Nati			
Sample	D:	01-2024-9676	Co	de:	72ADD4C			_		mmera
Sample	Date:	04 Aug-17		aterial:	Sodium chlori	ide			oject:	annera
		04 Aug-17		urce:	Hemmera			FD	Jeci.	
Sample		NA		ation:	Sodium Chlor	ide				
Linear	Interpol	ation Options								
X Trans	form	Y Transform	se Se	ed	Resamples	Exp 95	% CL Met	hod		
Log(X+	1)	Linear	84	0271	200	Yes		-Point Inte	polation	· · · · · · · · · · · · · · · · · · ·
Point E	stimate	s			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Level	gm/L	95% LCL	95% UCI							
IC5	0.646	0.6033	0.8248	<u> </u>	•			······		
IC10	0.7368	0.6474	2.164							
IC15	0.8325	0.6922	2.506							
IC20	1.61	0.3316	2.576							
IC25	1.928	0.2512	2.984							
IC40	2.807	2.11	3.261							
IC50	3.179	2.722	3.817							
Mean L	ength-m	nm Summary				С	alculated Va	ariate		
C-gm/L		ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Re	eference Sed	4	58.65	48	72.8	5.175	10.35	17.65%	0.0%
0.34			4	96.65	73.5	134	14.05	28.09	29.06%	-64.79%
0.56			4	100.6	90.2	107.5	3.689	7.379	7.34%	-71.53%
0.93			4	65.15	45.5	74.3	6.776	13.55	20.8%	-11.08%
1.6			4	71.63	67.7	79.3	2.7	5.4	7.54%	-22.12%
2.6			4	56.3	49.8	62.7	3.421	6.843	12.15%	4.01%
4.3 7.2			4	20.88	6	37.3	6.438	12.88	61.68%	64.41%
7.2			4	8.5	2	20	3.969	7.937	93.38%	85.51%
	-	ım Detail								
C-gm/L		ntrol Type	Rep 1	Rep 2		Rep 4				
0	Re	ference Sed	72.8	56	48	57.8				
0.34			76.6	102.5	134	73.5				
0.56			107.5	101.5	103.2	90.2				
0.93			45.5	74	74.3	66.8				
1.6			79.3	67.7	68	71.5				
2.6			51	62.7	61.7	49.8				
4.3			21.7	18.5	6	37.3				
7.2			20	7	2	5				

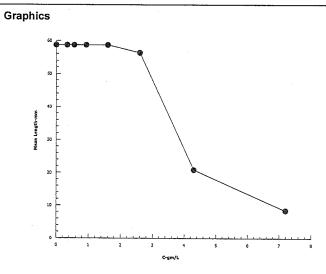
Dec.S/A QA:

Analyst:____N

CETIS An	alytical Report	Report Date: Test Code:	05 Dec-17 12:40 (p 2 of 2) 170519-R   05-9925-0056		
JW Eisenia 28-d	Survival and Growth	-Soil Test ⊰		Nautilus Environmental	
Analysis ID: Analyzed:	04-6395-7743 05 Dec-17 12:39	-	Mean Length-mm (R <i>O</i> Dt) Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.8.7 Yes



# JW QA: DEC. ST/7


Analyst:_

		ytical Repo	ort						port Date: st Code:		c-17 12:48 (p 1 of 9-R1   03-2159-05
Eisenia	a 28-d S	urvival and Gro	wth Soil	Test 3	5-d					Nauti	lus Environment
Analys		12-9497-1552		ndpoint:	Mean Length			CE	TIS Version	: CETISv1.8.	7
Analyz	ed:	05 Dec-17 12:4	8 Ar	alysis:	Linear Interpo	plation (ICPI	N)	Of	icial Result	s: Yes	
Batch	ID:	06-2115-2074	Te	st Type:	Survival-Grov	vth	·····	An	alyst: Jes	slin Wijaya	
Start D	ate:	04 Aug-17	Pr	otocol:	EC/EPS 1/RM	A/56 (2013)				chlorinated Tap	Water
Ending	J Date:	08 Sep-17	Sp	ecies:	Betula papyri				ne:		
Duratio	on:	35d Oh	-	ource:	BC Ministry o		nds and Nati				
Sample	e ID:	01-2024-9676	Co	de:	72ADD4C			Cli	ent: He	mmera	
Sample	e Date:	04 Aug-17	Ма	aterial:	Sodium chlori	ide			oject:		
		04 Aug-17		urce:	Hemmera						
	e Age:	-		ation:	Sodium Chlor	ide	•				
Linear	Interpol	ation Options									
X Tran		Y Transform	Se	ed	Resamples	Exp 95	% CL Met	hod			
Log(X+	1)	Linear	11	47931	200	Yes	Two	-Point Inter	polation		
Point E	stimate	s									
Level	gm/L	95% LCL	95% UC	L							
IC5	2.623	N/A	2.787								
IC10	2.741	N/A	2.934								
IC15	2.863	N/A	3.13								
IC20	2.988	2.373	3.316								
IC25	3.118	2.534	3.51								
IC40	3.533	2.971	4.221								
IC50	3.833	3.239	4.888	<u> </u>							
		nm Summary				C	alculated Va	ariate			
C-gm/L		ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	Re	ference Sed	4	58.65	48	72.8	5.175	10.35	17.65%	0.0%	
0.34			4	58.65	48	72.8	5.175	10.35	17.65%	0.0%	
0.56			4	58.65	48	72.8	5.175	10.35	17.65%	0.0%	
0.93			4	58.65	48	72.8	5.175	10.35	17.65%	0.0%	
1.6			4	58.65	48	72.8	5.175	10.35	17.65%	0.0%	
2.6			4	56.3	49.8	62.7	3.421	6.843	12.15%	4.01%	
4.3			4	20.88	6	37.3	6.438	12.88	61.68%	64.41%	
7.2			4	8.5	2	20	3.969	7.937	93.38%	85.51%	
		m Detail	_								
C-gm/L		ntrol Type	Rep 1	Rep 2		Rep 4					
0	Re	ference Sed	72.8	56	48	57.8					
0.34			72.8	56	48	57.8					
0.56			72.8	56	48	57.8					
0.93			72.8	56	48	57.8					
1.6			72.8	56	48	57.8					
2.6			51	62.7	61.7	49.8					
			21.7	18.5	6						
4.3 7.2			£ 1.1	10.0	0	37.3					

Dec:5/17 QA:

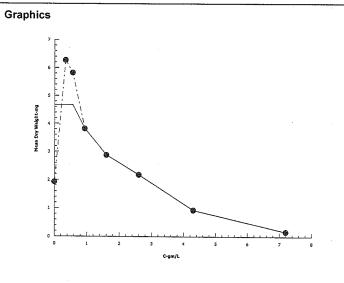
Analyst:_____N

	CETIS Ana	lytical Report			Report Date: Test Code:	05 Dec-17 12:48 (p 2 of 2) 170519-R1   03-2159-0526
JW	Eisenia 28-d	Survival and Growth	-Soil Test 3	15-d		Nautilus Environmental
	Analysis ID: Analyzed:	12-9497-1552 05 Dec-17 12:48	•	Mean Length-mm ( Root ) Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.8.7 Yes



CETIS™ v1.8.7.16




66 Dee:5/17

QA

		ytical Repo	ort					-	ort Date: Code:		12:40 (p 1 of R   05-9925-00
Eisenia	28-d-S	urvival and Gro	wth Soi	Test 3	5-d			·			Environment
Analys Analyz		20-5457-6536 05 Dec-17 12:3		ndpoint: nalysis:	Mean Dry We Linear Interpo				IS Version cial Results	• • • • • • • • • • • • • • • • • • • •	
Batch I	D:	11-5215-0357	т.	est Type:	Survival-Grow	th		Ana	lyst: Jes	slin Wijaya	
Start D	ate:	04 Aug-17		rotocol:	EC/EPS 1/RM			Dilu	-	chlorinated Tap Wa	ter
Ending	Date:	08 Sep-17		pecies:	Betula papyrif	· ·		Brin			
Duratio		35d Oh		ource:	BC Ministry of		ds and Natu				
Sample	D:	01-2024-9676	с	ode:	72ADD4C			Clie	nt: Hei	mmera	
Sample	Date:	04 Aug-17	N	aterial:	Sodium chlori	de		Proj	ect:		
Receiv	e Date:	04 Aug-17	S	ource:	Hemmera						
Sample	e Age:	NA	S	tation:	Sodium Chlori	ide					
Linear	Interpol	ation Options				- <u></u> ,					
X Trans		Y Transform	s s	eed	Resamples	Exp 95%	CL Met	hod			
Log(X+	1)	Linear	1	309007	200	Yes	Two	-Point Interp	olation		
Point E	stimate	s			•••• · · · · · · · · · · · · · · · · ·						····· · ··· · ·
Level	gm/L	95% LCL	95% UC	L							
IC5	0.6533	0.5117	1.324								
IC10	0.7521		1.698								
IC15	0.8569		2.046								
IC20	0.9784		2.286								
IC25	1.13	0.521	2.437								
IC40	1.689	0.3877	3.443								
IC50	2.345	0.7656	3.649								
		ht-mg Summa	•				Iculated Va	ariate		<u></u>	
C-gm/L 0		eference Sed	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	
0.34	rte	elefence Sed	4	1.925	1.58	2.225	0.1341	0.2681	13.93%	0.0%	
0.56			4	6.272	4.044	11.9	1.883	3.766	60.04%	-225.9%	
0.93			4	5.821 3.816	4.56	8.365	0.8678	1.736	29.82%	-202.4%	
1.6			4 4	2.875	2.595 2.183	5.63	0.7423	1.485	38.9%	-98.27%	
2.6			4	2.675	2.183	3.475 3.077	0.2982 0.3435	0.5964	20.74%	-49.39%	
4.3			4	0.932		3.077 1.597	0.3435 0.3135	0.6869	31.52%	-13.23%	
7.2			4	0.3323		0.4301	0.3135	0.627 0.176	67.21% 102.7%	51.53% 91.1%	
Mean D	ry Weig	ht-mg Detail									
C-gm/L	-	ontrol Type	Rep 1	Rep 2	Rep 3	Rep 4					
0	Re	ference Sed	2.225	2	1.58	1.894					
0.34			4.898	4.044	11.9	4.253					
0.56			8.365	5.452	4.905	4.56					
0.93			2.595	5.63	4.43	2.61					
1.6			2.587	3.257	2.183	3.475					
2.6			1.894	2.287	3.077	1.40					
2.6 4.3			1.597	0.6349	3.077 0.21	1.46 1.29					

611 Dec:5/17 QA:

	CETIS Ana	alytical Report			Report Date: Test Code:	05 Dec-17 12:40 (p 2 of 2) 170519-R   05-9925-0056
WC	Eisenia 28-d	Survival-and Growth	i Soil Test ∋	95-d		Nautilus Environmental
	Analysis ID: Analyzed:	20-5457-6536 05 Dec-17 12:39	Endpoint: Analysis:	Mean Dry Weight-mg ( Roc+ ) Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.8.7 Yes



. .

• •

> . .

Dec: 5/17

0/

CETIS	Anal	ytical Repo	ort						port Date: st Code:		05 Dec-17 12:52 (p 1 of 1 170519-R2   01-8760-099
Eisenia	-28-d-S	urvival and Gro	<del>owth</del> Soil	Test 3	5-d						Nautilus Environmenta
Analysi Analyze		05-0304-4058 05 Dec-17 12:5		dpoint: alysis:	Mean Dry Wei Linear Interpol		ROOT) N)		TIS Version		FISv1.8.7
Batch I	D:	04-8043-5599	Te	st Type:	Survival-Growt	th	<b>*</b> - 10	An	alyst: Jes	slin Wija	va
Start Da	ate:	04 Aug-17	Pr	otocol:	EC/EPS 1/RM	/56 (2013)			-	-	ted Tap Water
Ending		08 Sep-17		ecies:	Betula papyrife				ine:		
Duratio		35d Oh		urce:	BC Ministry of		nds and Nati				
Sample	ID:	01-2024-9676	Co	de:	72ADD4C			Cli	ent: He	mmera	
Sample	Date:	04 Aug-17	Ма	terial:	Sodium chlorid	le			oject:		
		04 Aug-17		ource:	Hemmera			1.11			
Sample		-		ation:	Sodium Chlorid	de					
Linear I	nterpol	ation Options		·							
X Trans		Y Transform	ı Se	ed	Resamples	Exp 95	% CL Met	hod			
Log(X+*	1)	Linear	15	68665	200	Yes		-Point Inte	rpolation		
Point E	stimate	s									
Level	gm/L	95% LCL	95% UC	L							
IC5	2.738	N/A	2.82								
IC10	2.881	N/A	3.129								
IC15	3.029	1.187	3.476								
IC20	3.183	2.424	4.062								
IC25	3.343	2.553	4.712								
IC40	3.861	2.916	5.359								
IC50	4.239	3.069	5.751				·				
Mean D	ry Weig	ht-mg Summa	ry			Ci	alculated Va	ariate			
C-gm/L	Cc	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Eff	ect
0	Re	eference Sed	4	1.925	1.58	2.225	0.1341	0.2681	13.93%	0.0%	
0.34			4	1.925	1.58	2.225	0.1341	0.2681	13.93%	0.0%	
0.56			4	1.925	1.58	2.225	0.1341	0.2681	13.93%	0.0%	
0.93			4	1.925	1.58	2.225	0.1341	0.2681	13.93%	0.0%	
1.6			4	1.925	1.58	2.225	0.1341	0.2681	13.93%	0.0%	
2.6			4	1.925	1.58	2.225	0.1341	0.2681	13.93%	0.0%	
4.3			4	0.932	9 0.21	1.597	0.3135	0.627	67.21%	51.53	
7.2			4	0.171	3 0.04004	0.4301	0.088	0.176	102.7%	91.19	
	ry Weig	ht-mg Detail									
C-gm/L		ontrol Type	Rep 1	Rep 2		Rep 4					
0	Re	ference Sed	2.225	2	1.58	1.894					
0.34			2.225	2	1.58	1.894					
0.56			2.225	2	1.58	1.894					
0 93			2 225	~	4 50						

Dec. 5/17

Analyst: <u>JW</u>

0.93

1.6

2.6

4.3

7.2

2.225

2.225

2.225

1.597

0.4301

2

2

2

0.6349

0.125

1.58

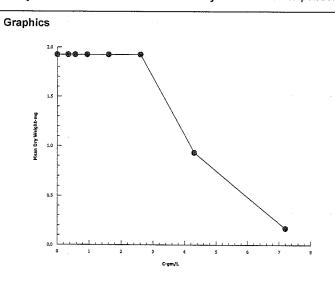
1.58

1.58

0.21

0.09009

1.894


1.894

1.894

1.29

0.04004

	CETIS Analytical Report				Report Date: Test Code:	05 Dec-17 12:52 (p 2 of 2) 170519-R2   01-8760-0991	
ЗM	Eisenia 28-d	Survival and Growth	Soil Test	Nautilus Envi			
	Analysis ID: Analyzed:	05-0304-4058 05 Dec-17 12:52	Endpoint: Analysis:	Mean Dry Weight-mg (ROC+) Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.8.7 Yes	



Dee 5/17 QA:

Analyst:____W

#### Soil Test Summary Sheet

Client:	Hemmera	Start Date: 4-Aug-17

Set up by: <u>JW / MLT</u>

Sample Information:

Work Order No .:

	sodium chloride
Sample ID:	^{⊲w} Chloride - made in-house
Sample Date:	4-Aug-17
Date Received:	n/a
Stock Solution ID:	17Na02

170518

#### Test Organism Information:

Species:	Camalogrostis canadensis
Source:	Premier Pacific Seeds Ltd., BC
Date Received:	13-Mar-17

#### Copper Reference Toxicant Results:

Reference Toxicant ID:	CC01
Stock Solution ID:	Boric Acid
Date Initiated:	4-Aug-17
14-d EC50 (95% CL):	381.6 (38.7 - 596.6) mg/kg boric acid
7-d IC50 (95% CL):	138.1 (53.7 - 297.3) mg/kg boric acid

 EC50 Reference Toxicant Mean (Acceptable Range) :
 n/a*
 CV (%):
 n/a*

 IC50 Reference Toxicant Mean (Acceptable Range) :
 n/a*
 CV (%):
 n/a*

* : Insufficient data points to calculate a reference toxicant historical mean, range and CV

#### **Test Results:**

g/L NaCl	Emergence	Shoot Length	Shoot Weight	Root Length	Root Weight
EC50 (95% CL)	4.9 (0.6 - 7.0)				
IC25 (95% CL)		4.5 (0.8 - 4.9)	1.4 (0.9 - 2.2)	3.9 (n/a - 5.3)	4.1 (n/a - 5.1)
IC50 (95% CL)		6.1 (5.1 - 6.3)	2.7 (1.7 - 5.1)	5.2 (3.6 - 7.4)	5.1 (n/a - 5.7)

n/a = not available.

Reviewed by:

U

Date reviewed: Deer S, 2017

#### **Nautilus Environmental** Environmental Quality Data - 28-Day Soil Test

	SUN .	
Client:	Hemerra	Hemmera
WO #:	170518	

Tech

Temp

Test:

Day

Organism Tested: Blue Joint Reedgrass Start Date/Time: AUG 4 / 17 @ 1700h End Date/Time: Sept 1 / 17 @ 1600h

9/L Naci							117 @ 1		
Sample ID	Rep	% M initial	oisture final	pH initial	(units) final	Conducti initial	vity (µS/cm final	) Su initial	rvival final
Control	1		34.7	1		///		5	2
SOÍI	2							5	4
	3							5	3
	4							5	3
	5								
Control	1	265.1	207.5	6.5	62	/	/	5	· ų
Peat moss	2							5	3
	3							5	3
	4							5	2
	5								
0.34	1	289.4	170.1	6.5	6-3		·	5	ч
	2							5	0
	3							5	3
	4							5	2
	5								
0.56	1	286.4	111-1	6.6	6-3			5	ł
	2							5	1
	3							5	5
	4							5	1
	5								
0.93	1	304.4	185.6	6-7	6.5			5	2
	2`							5	1
	3							5	3
	4							5	1
·	5								
1.6	_1	299.9	153.9	6.7	65	<u></u>		5	_3
	2							5	1
	3							5	2
	4							5	3
·····	5								
Tech Init		JW	MC	162	ĸ	JN	JM	JW	MC

(°C) Initials 0 23.0 JN 1 22.5 EMM 11 2 3 230 MI 4. 23.0 JW 5 23.0 JW 6 23.0 JW 7 33.0 ЭW 8 21.0 EC 22:0 σS 9 10 )1.o MLT 11 21.0 加口 12 21.0 Mb 13 21.0 協门 14 21.0 JW 15 21.0 JN 16 21.0 EL 17 21.0 nH 18 ЭW 21.0 19 JW 21.0 20 21.0 MU 21 21.0 YML ΞC 22 21:0 21:0 12 23 2021.0 24 K 25 21.0 MUT 26 21.0 MD 27 21.0 ЭW 28 21.0 JW

U Reviewed by:

00T-25 2017 **Review Date:** 

# Nautilus Environmental Environmental Quality Data - 28-Day Soil Test

JWC Client: Hemerra Hemmera WO #: 170518

Test

Day

Organism Tested: BIUEJOINT Reedgrass Start Date/Time: AUG 4/17 @ 1700h End Date/Time: Sept 1 / 17 @ 1600h

		1. *	-									
Temp (°C)	Lech Initials		Sample ID	Rep.	% M initial	oisture final	pH ( initial	units) final	Conductiv initial	ity (µS/cm final	) Sur Initial	vival final
			2.6	1	291.0	164.1	6:6	64			S	2
				2						100	5	2
· ·				3							5	1
				4							5	2
	-			5								
			4.3	1	275.5	123.7	65	6-3	<u> </u>	/	5	0
81			· ·	.2							5	1
			<u> </u>	· 3							5	2
				4							5	2
				5								
	-		7:2	1	269.1	256.5	6-4	6.4	<u> </u>		5	1
				_2							5	0
				3							5	2
				_4							5.	0
				5								
			12	1 .	243.7	273.0	6-3	6.6	/		5	O
				_2							5	0
-				3							5	0
				4							5	0
				5								
<u></u>			20	1	256.0	247.4	6-4	6-5			5	0
				_2							5	0
				3							5	0
<u>Aria</u> San ^{Na} ri	<u> </u>			_4							5	0
				5								
				_1								
				2								
		L		3								
				4								
	) J			5	-14.1			<u>.</u>				
	00		Tech Init		JM	JM	řî.	No.	MC	JW	JW	SN

: 31 U Reviewed by: st.

002-25,2017 **Review Date:** 

## Nautilus Environmental Environmental Quality Data - Day 0 Soil Test

Client: Hemerra Hemmera

WO #: 170518

Organism Tested:BluebointReederassStart Date/Time:AUG4/17@ 1700 hEnd Date/Time:Sept1/17@ 1600 h

	•		· · · · ·	Pan t		
9/L Naci		MC	(ing)	Wet soil weight	Pan + dry soil	
Sample ID	Rep.	Pan No.	Pan weight (g)	JW (g) mg	⊃w weight (g) mg	% Moisture
Control soil	1	1	1011.85	-49581 47 h	4044.56	31.9
	2			5011-42		D. D. T.
	3					
	4					
	5					
Peat Moss	1	ລ	1005-54	4894-10K	2060.57	265.1
Control	2			4857-46		
	• 3					
	4					
	5					计算法 化合金
0.34	-1	3	1017-38	1943 10h	2028,40	289.4
	2			4954 पर		
	3					
	4					
0.56	5 1		(alice )	1000 0 <i>C</i> 1		
	2	4	996-38	489410	2009.01	286.4
	3			45 14 10		
	4					
and the second	5					
0.93	1	5	1029.62	4943.00	1997.33	304.4
	2		021.62	1110-00	1111.55	
	3					
	4					
	5					
1-6	1	6	10/5-65	4906.95	1988.63	299.9
	2					
	- 3					
	4					
	5			ik_ s		
2.6	1	F	1002.00	49084.76	2000.10	291.0
	· 2					
	3					
	4					
Tooh Init	5	20042				
Tech Init			<u> </u>	YL VL	JW	JW

Reviewed by:

Review Date:

Det-25,2017

### Nautilus Environmental Environmental Quality Data - Day 0 Soil Test

NIC Client: Hemerra Hemmera

WO #: 170518

Organism Tested: Blue Joint Reedgrass Start Date/Time: AU9 4 / 17 @ 17006 End Date/Time: @ 1600h Sept 1 / 17

				Pan t		
9/L'Nacl		MC		Wet soil weight	.Pan + dry soil	
Sample ID	Rep.	Pan No.	mງ Pan weight (g)ວ⊳	ow (g) mg	weight (g) mg	% Moistur
4.3	1	8	1006.58	4908-94	2045.83	275.5
				<u> </u>		
	2 3					
	4					
	- 5					
7.2	1	9	1022.02	4943.14	2084.36	269.1
	2					
	3					
- 1979. - 1979.	4					
er en la calactería.	5					
12	1	10	1009.69	4874.24	2134.15	243.7
	2					<u> </u>
. As a set of a set of a	- 3					1
	4					
			1 10011 10 000	iso		22
20	1 2	11	K-1004. 1005.00	497.2.38	2105.46	256.0
	3					
	4				Contract of the second	
	5					
	1					
the second s	2					
	3					
	4					
	5					
	1					
	2			÷		
	3					
	4					
	5					
	1	ANTIGUES IN THE PARTY AND ADDRESS OF ADDRESS				
	2					
	3					
	4				A CONTRACTOR OF THE	
ech Init	5		200 C			
			K_	Ki.	- MC	ЭW

Review Date:

Oet 2017 æ

# 

28

	Jin	
Client:	Hemenra	Hemmera
WO #:	170518	

Organism Tested:	Bluejoint Reedgrass
Start Date/Time:	Aug 4/17 @ 1700h
End Date/Time:	Sept 1 /17 @ 1600h

9/L Nacl		j orange	· .	· · · · · · · · · · · · · · · · · · ·		
Sample ID	Rep.	Pan No.	mg Pan weight (g) ວພ	Wet soil weight ଅନ୍ଧ (g) ଲର୍ଚ୍ଚ	Pan + dry soil ଆ weight (g) ୩୨	% Moisture
CONTROL	1	٩.	1285.46	5031.50	4069-51	34.7
SDÎL	2					
	3 ·					
	4					
	5					
control	1	コ	1286.90.	5156.10	2545 · 31	207.5
Peat Moss	2					
	3					
	4					
	5			The walk of a structure		
0.34	1	3	1281.99	5104.01	2696.84	1-07)
	2					
	3					
	4					
	5				0.344	
0.56	1	Ч.	1280.03	5109.05	3294.04	JW. 96. 1 11.1
	2					
	3					
	4					
and a second	5					
0.93	1	5	1280.86	5075.36	2609.66	185.6
	2					
	3					
	4					
	5			and the second second second		
1.6	1	ð	1282.01	5266.24	2851.09	153.9
	2					
	3					
	4					
	5					
2.6	1	7	1282.71	4981.30	2683 · 27	164 . L
	2					
	3					
	4					
	5					
Tech Init			5W	55	JW	JW

Reviewed by:

(U

Review Date:

Det. 25, 2017

# Nautilus Environmental JW Environmental Quality Data - Day Ø Soil Test

28

Client:	Hemerra	Hemmera
WO #:	170518	

Organism Tested:	Bluesoint	Reedgrass
Start Date/Time:	AU9 4/17	@ 1700h
End Date/Time:	Sept 11	17 @ 1600h

9/L Nacl		orange		Pan t		· · · · ·
Sample ID	Rep.	Pan No.	m9 Pan weight (gُ) ت⊮	Wet soil weight mg (g) วเม	Pan + dry soil Jw weight (g) mg	% Moisture
4.3	1	8	1278 . 82	5070.95	2974.28	123.7
-(-2	2	0	1270.02	<u> </u>	2117.00	
	3			All a strategy of		
	4					
	5					
7.2	1	DW Z 9	1279 - 25	5086.05	2346.97	256.5
1.5	2					
	3					
	4					
	5					
12	1	JW 7 ID	1279 36	4869.71	2225.72	273.0
	2					
	3					
	4					
· · · · · · · ·	5					
20	1	11	1283.01	4858.64	2312.38	247.4
	2					
	3					
	4					
	5					
	1					
	2					
	3					
	4 5					
	1		and the second secon			
<u>_</u>	2	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				
	3					
· · · · ·	4					
	5					
	1					
	2					
	3					
	4					
······································	5					
Tech Init			WC	22	MC	JW
Reviewed by:		lu		Review Date:	bet . 25	7,2017

Det. 25 Review Date:

Client: <u>Hemerrer</u> WO#: <u>170518</u>	Hemmer	<u>r</u> a			No. d	Nautilus of Emerger	Environmonce - 21-da		t.		Or		sted: <u>Blue</u> Date: <u>Ave</u>			ass
9/L Nacl					· · · ·	Ŭ		MC	•				Date: Aug			
Sample ID	Rep	Day 6	Day to	Day 12	Day 14	Day 17	Day 19	Day 21	Day 24	Day 26	Day 28	Day	Day	7		
Control Soil	1	3	2	2	2	2	2	2	2	2	2		1	-	· · ·	
6. J	2	3	3	3	W134	14	ų	4	4.	4-	4	-	- ·	-1		
	3	3	3	3	3	3	3	3	3	3	3					
	4	·2	3	3	3.	3	3	3	3	3	3			1		
control Peat	1	4	4	4	4	4	4	4	4	4	4			-		
Moss	2	1	i	1	JW Z 2	2	3	3	3	3	3					
·	3	1			JW # 2	2	3	3	3	3	3			1		
	4	2	ュ	2	2	2	2	2	2	2	2			1		
0.34	1	3	Ц	4	4	4	4	4	4	4	4	1	•	1		
	2	<u> </u>	0	0	0.	0	0	0	0	30	Ů			1		
	3	2	3	3	3	· 77 ···	3	3	3	3	3			7		
	4	2	2	2	2	2	2	2	2.	2	2					
0.56	1	1	1 .		1		1	1	· 1	1				7		
	2		1				· 1	l ( ·	1	1	1			]		
· · ·	3	S	5	5	. 5	5	5	5	5	5	5			]		
	4	1		j				1	1	1	1			]		
0.93	1	2	2	2	2	2	· 🤉	2	2 .	2	2			]		
	2	0	1	ŀ				1.	1	· ]						
	3	3	3	3	3	3.	3	3	3	3	3					
		JWZ1	l		<u> </u>	· 1 ·	1	2	2				•	].		
1.6	1	2	3	3	ろ	3	3	3	3	M743	Milto 3			]		
	2	0		· ]			1	1	1	<u> </u>	1'			]		
	3 4	2	3	.3	3	3	3	3	3	2	2					
		2	3	3	3	3	3.	. 3	3	3	3					
2.6	1	2	2	2	2	2	2	2	2	2	2			]		
	23	0	2	2	2	2	2	2	2	2	2				1. <b>1</b>	
	$\frac{3}{4}$	- Ž		32	24.0		1	1	1					1		
4.3	$\frac{7}{1}$	<u>~</u> 0	32	0	No.	32	22	32	20	83	30			4		
4.2	2		P		0	D	0	0	6	0	0			1		
	3	1	2	2									,	4 .		
	4	<u>/</u>			2	2	2	2	2	10171		<u>.</u>		4		
7.2	1	0	1		MER 1	- <del>3</del>	2	2	2	M9+2	2			4		
	2	0	0	0			0		0				<u></u>	1		
	3	0	$-\frac{1}{1}$	2	2	<u>.</u>		0	25.5	0	<u> </u>	** %** . 4		fa station	1983 A.	, š.,
	4	- Ö	0			2	<u>р</u>	<u>э</u>	9	2	2	- mark gi Arr i sana	en and some service of the second	ing Section		
Tech Init	-T (	JW	JW	O MLT	MUT	MET	<u> </u>	UC	0 70	- 0 K	MLT		l an	· ·		

U

Oct-25,2017

Page 1 of 2

	MC					,									*	
	Client: Hemerro	Hemm	era			•		Environme		÷		Orç	រ្វanism Ter	sted: <u>Biue</u>	<u>Joint Reed</u> ard	ass
	WO#: 170518		<u></u>			No. c	of Emergen	ice - 21-da	y Soil Tes	it .			Start D	Date: AU9	144/17 JW	1
	9/L Naci	·· ·		4					WG			· · ·	End [	Date: Sept	1/17	
1	Sample ID	Rep	Day ら	Day io	Day 12	Day 14	Day 17	Day 19	Day 21	Day 24	Day 26	Day 29	Day	Day	1	
· · · · · · · · · · · · · · · · · · ·	Control JW	1	0	O.	0.0	0	Ū,	0.	O	0	e o	0				21. 1. 1. 1. 1. 1.
· · · · · · · · · · · · · · · · · · ·	12	2	0	0	0	0	0	0	0	0	6	0			· · · · · · · · · · · · · · · · · · ·	
		3	Ŏ	0	0	0	0	0.	0	0	0	0				
$\sim 10^{-1}$	i	4	0	0	Ŏ	0	. 0	0	0	0	0	0	-	1		
1. A I	20	1		0	0	0	. 0	0	0	0	0	0	1		1	
	1	2	0	0	0	0	0	0	0	1 ŏ	0	0	1	1	1	
	1	3	0	0	0	0	· Q ·	0	0	0	0	U U	+	1	1	
<u> </u>	1	4	6	0	0	0	0	0	0	0	0	Ŭ	-			
1	[·······	1	<u> ``</u>	1	1				1	1		1	1	+	1	
	······	2	⁻	1	· ·	·			<u> </u>			+	·	·	1 1	÷ .
ţ	( ····································	3	·	+	1	+	f		-		+	<u> </u>	1.	1		4.1
· · · • • • •	1	. 4	·'				[	1	· · · ·		+	1	1		1	
· · · · • • •		1		+	· +	<u>†</u>		<u> </u>		1	·	1 .	+	+	1	
ţ		2	'	+		+	<u>+</u>		<u> </u>	1	• • •	1	+	+	1	
	·+	3	f	1		<del> .</del>	f'	<u> </u>		+	·		-	+'	f ····	÷
. †	r+	4	+	+	·'		·'	t		+		+	+		1	
ŀ		1	·	+	·'	+	·'			+	+	+	+	·'	1	
• • •		2	·'		'	+	+'	<b> </b>		+		+		·'	1.	
. F		3	+'		·'	<u>+</u>	<u> </u> '		+	· · · · ·		+		+'	1	•
· · · · · · · · · · · · · · · · · · ·	r}	3	<u>+'</u>	· · · · · · · · · · · · · · · · · · ·	·'	<u> </u>	<u>+</u> '	<u> </u> '	'				+	<i>'</i>	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	а. К
· • • •	·/		<u> </u>		+'	<u></u>	<u> </u>	<u> </u>	·	+	<u> </u>	+	<u> </u>	<u> </u>	🖌 👘 👘 👘	· · · · <u>·</u>
ł	/	1	<u> </u>	<b>_</b>	'		<u> </u>	ļ				· · · · · · · · · · · · · · · · · · ·	+	<u> </u>	4	
•	·	2	<u> </u>		'		<b></b> '	<b> </b> '			· · · · · · · · · · · · · · · · · · ·			<u>  · · · · · · · · · · · · · · · · · · ·</u>	f - marine traine	
ł	/	3	'		·'	───	<u>  '</u>	<u> '</u>	·'					<u> </u>	4.	
·	·		<b></b> '	<b></b>	<u> </u>		<u> </u>	·'	<u> </u>	<b></b>		<u></u>	4	<i>ل</i> ــــــل	4	
-	·	1	<u>  ''''''''''''''''''''''''''''''''''''</u>	ļ	<u> </u>		<b> '</b>	<u> </u>	4	<u></u>	·  '	<u>  </u>		ļ	1	•. •
		2	<u> </u>	ļ	·'	·	<u> </u>	<u> </u>	·	·	- <b> </b> '	<u></u>		<u> </u>	t generation in the	9 C - 14
ŀ		3	<b>↓</b> '	·	'	· · ·	<u> </u>	<b>!</b> '	· · · · · · · · · · · · · · · · · · ·			<u> </u>			f · · · · · · · · ·	
		4	<u> </u>	<u> </u>	<u> </u>	Ļ'	<u> </u>	<b>.</b>	<u> </u>	<u> </u>			-	<u></u>	and and and a	senta n
ŀ		1	<u> </u>		<u>                                     </u>	<u> </u> '	<u>                                     </u>	·'	<u> '</u>	<b></b>	<u> </u> '	ļ	'	L	t en	
		2		., 	<u> </u> '	ļ'	<u> '</u>	<u> </u>	<u> </u>		'	<b>_</b>		ļ!	4	
-		3	<u>                                     </u>	ļ'	<u> '</u>		<u> </u>	<b> </b> '	<u> </u> '	<b>_</b>		<b></b>	- <b> </b> '	LJ	te a construction of the	
		4	الستسسا	<u> </u> '	<u> </u>	<u> </u> '	<u> </u>	<u> </u>	<u> </u>		'		!	<u></u>	Lange Street and	i. Alexandra
4		1	<u>                                     </u>	<u> </u>	<u> </u> ''''''''''''''''''''''''''''''''''''	-	<u>                                     </u>	<u> </u>	<u> </u>		′	<u> </u>	<u> </u>	ليستنص	I a secondary .	a 27.9
		2		<u> </u>	<u> </u>		<u>[</u> '	<u> </u>			<u> </u> !		<u> </u>	<u> </u>	1. and a second s	netta program. Netta program.
· · · · · · ·		3			<u> </u>		1								In the second second	ىرى بەربوغۇمۇمىيە
	an Anna Anna Anna Anna Anna Anna Anna A	4		in the second	<u>[</u> ]		1 1 1	and sugar inage and sugar sign and sugar s							1	
F	Tech Init	, <u> </u>	UC	SIN	MI	MET	MET	JN	. JW	JW	I. VL	MUT	7		1	

Ell 000-25, 2017

page 20F2

JW

· . .

#### Nautilus Environmental Toxicology Laboratory Weight Monitoring Data

Client/ Project ]	m. <del>t</del>	JW Hemerra-	Hemmer	à			•		•			Orga	nism Tested	Bluegoir	nt Reeds	erass	
WO #: 17051					- Sect. 81,920	entre de la compañía	1	····· · · ·	•			Start	Date/Time:	AU9 4 /	17 @ 17	00h	
					Section 2 Section 2		en de la composition de la composition Composition de la composition de la comp	na ter bas and a sub-	e diet en la Literation	· · ·		End	Date/Time:	sept 1 /	17 @ 16	coh	
9/L NACI	·																· · ·
Sample		Tuitial	Due 6 De	st Hydration						r hydration, D Judration	ay of Test Pre & Post I	Indration	Pre & Post I	Indration	Pre & Post I	Indration	
D	Rep.	Initial Day 0	Day 4	Day 4	Day 6	Day 6	Day 10	Day io	Day12	Day 12	Day14	Dayly	Day Hor		Pan 19	· ·	
Control	1	396.86	396.41	397.15	396.76	397.03	396.52	396.89	396.68	396.88	396.56	396A4	395.159	396.86	394.712	396.37	
SOÎI	2	433:79	433.22	433.83	433.40	433.93	433.55	433.94	433,65		4773.60	433.81	432.20	433.81	366-476	433.84	Q 433.00
	3	399.37	398.87	399-41	399.06	399.44	399.03	399.58	299.26	399.45	399.18	399.40	398.08		397-86	399.26	
	4	383.49	382.92	383.52	383.08	383.61	383.25	383 . 59	383.37	383.58	383.06	783.52	382,60		m366-470		0360.56
Control	. 1	242.34	241.19	242.40	242.05	242.44	242.05	242.37	242.12	242.39	242.03	242.40	241.12	242.35	240.28	242.42	
Peat moss	2	245.59	244.36	249.74	245.19	245.62	245.40	246.04	244.92	245.63	245.19	245,61	243.68	245.61	242.92	245-55	
	3	216.99	215.81	217.06	210.21	217.04	216.66	217.05	216.81	217.11	216.90	217.21	216.01	217,00	214.84	216.92	
	4	232.06	230.95	232.12	231.82	232.07	231.61	232.03	231.70	\$\$272.08			230.49		229.27	232.03	
0.34	1	237.08	235.52	237.21	236.64	237.21	236.72	237.02	236.71	237.10	236.71	237.15	2315.98	237.21	235.38	237,22	
	2	240.08	238.87	240.17	239.61	240.14	239.24	240.05	239.72	240.13	239.44	240.08	228.20	240.10	237.92	240.02	
	3	232.71	231.34	232.72	232.12	232.84	232.30	232.90	232.61	232,91	220.81	232.84	231.20	232.78	229.63	232.71	
	4	229.33	228.08	229.37	228.82	229.40	228.62	229.40	229.01	229.35	228.14	229,40	228.78	229.50	227.77	229.38	
0.56	1.	230.04	228.80	230.07	229.31	230.21	229.69	230.03	229.84	230,10	229.77	2.30.20	229.10	230.15	229.39	230.28	
	2	227.81	226.40	227.81	227.24	227.89	227.44	227.80	227.75	227,90	227.40	227.92	226.90	227.88	217.46	227.73	•••
•	3	227.3b	226.10	227.38	226.34	the second s	226.98	227 58	227,21	227.50	227.18	227.49	226.57	227.50	224.52	227.25	
	4	234.04	232.80	234.10	233.39	234.18	233.62	234.14	233.90	234.10	237,80	234.15	238.93	234.10	234.42	235-12	
0.93	1	233.01	231.95	233.04	232.41	233.20	232.78	233.07	232.75	233.05	232.66	237.18	231.10	223,05	221.03	233.10	
	2	231.39	230.15		230.83.	231.46	231.08	231.47	231.26	231.46	230.99	231.40		231.40	229.80	231.22	
	3	237.82	236.64	237.89		238.15	237.84	237.84	237.26	237.82	237.64	237.010	235.61	237.85	235.08	237.70	
	4	232.18	231.01			232.31	231.82	232.37	231.99	232.21	231.86		230.35	232.21	228-96.	232.54	
1.6	1	235.94	234.74		235.24	236.01	235.57	236.15	235.84	236.11		235.99	234.46	235,94	233-21	235-86	
	2	243.28	242.07	243.36	242.44	243.31	242.66	243.26	242.83	243,29	242.98	247.35	241.75	243.30	240-97	243.38	
	3	232.77	231.54	232.82	232.24	232.78	231.97	232.79	232.52	232.79		232.85	230.78	232.91	230.13	252.72	
	4	236.82	234.95	Construction of the second	236.21	236.93	236.44	236.86	236.61	236.87		236.90		236.82	234.74	236.83	
2.6	1	244 .73	243.64	244.73	243,92	244.79	244.10	244.74	244.50	244.77	243.77	244.80	242.58	244.74		244.73	
	2	226.75	225.66	226.80	226.33	226.80	226.22	226.82	29225.29	226.78	226.70	226.80	224.37	226.71	223-84	226.62	
		240.38	238.99	240.48	239.92	240.42	240.04	240.36	240.08	240.39	239.84	240.33	238,21	240.31	238.04	240.30	· .
	4	209.77	208.62	209.88	209.10	209.81	209.32	209.82	209.53	209.84	209.50	209.90	207.90	209.77	208.06	209-70	
4.3	1	237 . 70	236.33	237.89	237.14	237.83	236.89	237.94	237.68	237.88	237.32	237.75	239,51	237.71	235.72	237.60	
	2	243.80	242.71	243.85	243.37		243.43	243.82	243.54	243.91	243.41	243.83	242.45	243.81	241.48	243.95	
			239.77	240.99	240.32	240.88		240.89	240.74	240.98		240.91	239.22		237.98	240.82	
		223.19	222.01		222.70	223.33	Commentant and a second second	223 39	223,13	223.34	222.84	223.34	221.40	223,21	221.47	223.18	
Tech Init		WC	JW	JW	ML-1	MUT	JW	าม	MIS	MUT	MD	MD	MET	MET	K	VI.	

24 Review/Date: 000 000 - 25, 2017

Øn

.

# Nautilus Environmental Toxicology Laboratory Weight Monitoring Data

an italia kanan

NE Selentities

ana nanima ana ana ang

ЭW Client/ Project ID: Hemerra Hemmera

WO #: 170518

#### Organism Tested: BlueJoint Reedgrass

9/L Nacl

 Start Date/Time:
 AU9 4 / 17 @ 1700h

 End Date/Time:
 Sept 1 / 17 @ 1600h

Sample					Total W	et Weight (ja	r + soil + orga	unisms) (g) - B	efore and afte	r hydration 1	Day of Teet				- mail in the section of the section		
1 Capital Capital	-	Initial	Pre & Pos Day 4	t Hydration	Pre & Post I	Hydration	Pre & Post	Hydration	Pre & Post 1	Hydration	Pre & Post	Hydration	Pre & Post 1	Avdration	Pre & Post I	Induction	st for All so
	Rep.	Day 0	<u>122: 12</u>	yay4	Dayb	Dayb	Dayio		Vay 12	Day 12	Pre & Post	Day 14	Day 17	Day 17	amin	20m (9	
7.2		237.21	236.18	237.34		237.40	236.99	237.24	237.00	237.22	236.84	237.21	335.77	237.21	234.93	237.43	
	2	220.54				220.66	219.68	220.51	220.71	220.58	220.26	220.55	218.71	220,56	218.44	220.52	
	3	239.20	238.02		238.24	239.24	239.01	239.56	239.15	239.49	238.41	239.18	237.06	239.15	236.40	239.31	
	4	243.54	242.58	243.56	242.73	243.70	243.17	243.64		243.68	243.24	243.65	241.44	243.59	240.90	243.68	
12	1	239.52	238.61	2 39.63	238.72	239.60	238.95	239.59	279.40	239.58	234.25	239.56	227.11	239.48	237-28	239-62	· ·····
	2	234.08	233.13	234.15	233.40	234.23	233.80	224 48	233.82	234.15		234.11	231.65	224.07	231.82	234 14	
	3	229.88	228.91	229.89	9 229.16	229.90	229.64	229.99	229.74	229.93	229 000	229.80	126.01	229.95	228.06	229.15	
	4	230.10	229.09	230.68	229.82	230.32		230.10	229.93	230.21	228 21		227.13	230.05		230.11	
26	1	231.26	230.40	231.26	230.87	231,30	230.94	231.23	231.01				229.41	231.27	227.81	231-27	
	2	231.85	230.92	231.88	230.92		231.39	231.90		231.97	271 72	231.90	720.37	12100	229.70	231-97	
	3	241.22	240.36	241,22	240.45	241.23	240.75	241.56	241.20		74118	241.33	220 KK	74114		24634	
	4	230.56	229.27	230.63	229.70		230.24		230.42	230.61	230.20	270.80	228.76	271.11	227.65		
	1					<u>/</u>				a	2 10.95	270.20	228.70	279,31	1.664.63	230.63	
	2									*							
	3											·					
	4																
	1							· · · · · · · · · · · · · · · · · · ·									
	2																
	3									·····							
	4													····			
									65								
	2											<u>·</u>					
	3																
	4																
······································	2																
	3													····			
	4																
	4																
	2		<u> </u> .							·							
	3													-			
	4																
Tech Init	I		MLI	MLT	MET	MLT	JW	ow	MET	MIT	ML7	MD	MO	MD	re	vu l	

Ele 001-25, 2017 QA Review/Date:

Fage Kof X Sw Jw

#### Nautilus Environmental Toxicology Laboratory Weight Monitoring Data

JN Client/Project ID: Hemmerg Hemmerg

WO #: 170518

9/L Naci

#### Organism Tested: Blue Joint Reed 91935

Start Date/Time: Aug 4 / 17 @ 1700 h End Date/Time: Sept 1 / 17 @ 1600 h

Sample Total Wet Weight (jar + soil + organisms) (g) - Before and after hydration, Day of Test . . . Pre & Post Hydration Pre & Post Hydration Pre & Post Hydration Pre & Post Hydration JW Pre & Post Hydration Pre & Post Hydration Pre & Post Hydration Day 21 Day 24 Day 24 Day 26 Day 28 FingL ID Rep. 0019 21 3896.86 36 394.85 396.80 control 395.97 396.96 345,36 394.79 1 SOIL 432.80 433.75 432.81 433.91 432.69 433.79 2 432.59 372.20 399.35 3 299.32/368-04 399.48 352.18 333 48 352.35 383-68 352.98 383.41 336.53 24230 194.21 Control 194-32 219.81 242.33 242.16 184.10 Peat Moss 245-57 211.95 245.60 209.21 2 216,72245.63 203-35 185-85 26.98 187-35 211.92 212.35 217,03 191.63 3 209,14 232,12 232.25 193.29 232.08 189.60 198-64 4 237-69 190,28 227,29 187.00 198.57 237.05 187-85 0.34 239.33240.10 240.06 235.18 240.05 238.34 2 238-93 195.03 232.80 182.05 234.24 184.34 232.22 12.56 3 205.34 22937 182.58 229.45 180.76 229.55 188.07 0.56 197.52 230.06 230.11 193,99 230.15 191.57 187,95 1 199.49 227.80 195.86 228,10 200.34 2 189.00 227.89 193,47 227.29 171.61 227.50 174.66 179.01 227-36 3 209.37 234.08 192.98 236. 22 ( 200,50 234.10 4 20.96 0.93 200,16 233.07 188.01 232.99 191.42 233.20 189.42 1 . 2 231.02 231.44 229.92 231.30 227.33 231.47 205.06 192 23" 241.16 198.55 237.91 181.46 205.64 237.77 3 200.99 232,30 212.81 192.23 240-11. 23224 207.91 200,63 235.99 180.69 1.6 205,00 23593 184-62 245.76 243.35 239.01 243.20 211.80 2 243.11 243.32 241.40 199.99 232.77 235.76 196.12 233,01 190.42 194.47 3 237.35 193.85 236.91 210.20 226.84 195.76 189.57 244.90 211.63 244.45 20.23 2.6 21469 244.72 207-51 226.77 192.65 226.92 186.72 226.59 188.91 2 198.50 39.25 242 40 211.08 245.25 212.75 240.90 210.02 209-82 209.68 182.31 186-97 176.03 189.77 209.81 234.99 237.57 240235.01 4.3 237.17 237.74 226.90 235.81 243,44 243.90 242.56 243.74 213.35 243.60 20.55 2 206-59 241.05 210.63 240.90 3 209,55 240,95 208.83 4 204.10 223.25 193-57 225.54 190.46 223.30 190.80 NW YUL r 1/1/1 ĸ Tech Init r MLT

0 187.85

Charles / Plane

Ell Det. 25, 2017

QA Review/Date:

در الروج

#### Nautilus Environmental Toxicology Laboratory Weight Monitoring Data

Client/Project ID: Hemerro- Hemmero

Organism Tested:	Biue	thiocs	Ree	edgrass	
Start Date/Time:					

WO #: 170518 End Date/Time: Sept 1 / 17 @ 1600h 9/L NACI SampleTotal Wet Weight (jar + soil + organisms) (g) - Before and after hydration, Day of TestPre & Post HydrationPre & Post Hydration Rep. Day 21 Day 21 Day 24 buy 24 Day 26 Day 26 Final CIA ID 7.2 237.00 237.29 235.83 237.42 233,69 237.21 234.60 1 2 220.19 220.04 219.12 220.65 218.09 220.57 216,37 238.76 239.28 237.13 239-18 234:75 239.10 236.51 3 243.14 243.53 241.52 243-67 239.45 243.71 241.28 4 239.\$20239.54 237-79 239.64 235 53 239,51 237.30 12 1 234.27 229.93 234.12 232.37 233.64 234.08 232.39 2 226,23 229.82 225,23 229.91 227.68 229.44 229.89 3 22970 230,18 228.52 230.10 225.24 230.16 227.38 4 231.25 226.91 231.28 228.72 230.93 231.36 20 1 229.52 231 51 231.89 231-19 231.80 2237.75 231.90 729.95 2 240.97 241.30 240.31 241.48 236.94 241.2= 238.73 3 230.66 228.62 230.62 226.23 230.30 228.09 220,19 4 1 2 3 4 1 2 3 4 1 . 2 3 4 1 2 3 4 1 2 3 4

K

Ell Oct - 25, 2017 QA Review/Date:

1m

ĸ

SWN

Tech Init

MET

16-

MD

Client: Hemerra Hemmera

## WO#: 170518

#### Nautilus Environmental No. of Emergence - 28-day Soil Test

Organism Tested: Blue Joint Reed grass

Start Date: AU9 4 / 17 End Date: Sept 1 / 17

# Post Germination Shoot and Root Length (mm)

JW JNG/L NACI

	M9/L Nag												
Date	Sample	Rep A		n (mm)	Rep B	Lengt	th (mm)	Rep C	Length	า (mm)	Rep D	Length	
sept 1/1	7	Plant #	Shoot	Root	Plant #	Shoot	Root	Plant #	Shoot	Root	Plant #	Shoot	Root
	Control	1	468170	60	1	124	52	1	229	33	1	938240	110
	SOIL	2	136	66	2	154	85	2	220	ৰম	2	148	62
		3			3	174	64	3	226	86	3	179 181	91
		4			4	233	84 . 54 h	4			4		• •
		5			· 5			5			5		
	control	1	191	19	1	262	138	1	141	92	1	334	165
	Peat Moss	2	278	152	2	222	122	2	119	82	2	(6)	88
		3	188	114 30K	3	302	154	3	163	102	3		
		4	302	(33	4			4			4		
		5			5			5			5		
											· .		
	0.34	1	292	231	1		-	.1	222	211	1	296	(66
	*	2	144	124	2			2	312	160	2	285	174
		3	262	204 ·	3			3	248	124	3		
		4	260	156	4			4			4		
		5		-	5			5			. 5		
						,							
	0.56	1	1202283	202	1	282	152	1	297	200	1	256	125
		2			2		-	- 2	125	123	2		
		3			3			3	151	no	. 3		
		4			4			4	289	127	4		
		5			5			5	289 2558	152	5		
		· ·											
	0.93	1	276	róf	1	••••	~~~.	1	245	129	1	236	(35
		2	250	182	2	159	96	2	247	134	2		
		3		:	3			3	217	192	3		
		4			4			4	· · ·		4		
·↓·		5			5			5		. •	5		
		·											
ech Init			JW/KL	JW/KL		JW/KL	JW/KL		JW/KL	JW/KL		JW/KL	JW/KL

Ele bet 25, 2017

Client: <u>Hemerpe</u> Hemmeroq WO#: 170518

### Nautilus Environmental No. of Emergence - 28-day Soil Test

Organism Tested: <u>Buejoint Ree</u>derass

Start Date: AU9 4 / 17 End Date: Sept 1 / 17

#### Post Germination Shoot and Root Length (mm)

Mg/L Naci

	ABL NUCI												
Date	Sample	Rep A	Lengtl	n (mm)	Rep B	Lengt	h (mm)	Rep C	Lengtl	n (mm)	Rep D	Length	ı (mm)
		Plant #	Shoot	Root	Plant #	Shoot	Root	Plant #	Shoot	Root	Plant #	Shoot	Root
Sept 1/17	1.6	1	258	151	1	126	80	1	265	159	1	(77	115
	-	2	272	130	2	126 173	134	2			2	305	240
		3	231	199	3	1.1		3	**********		3	252	ron
		4			4			4			4		
		5			5			5			5		
					· · · · ·	447		· · · ·					
•	2.6	1	240	120	1	261	182	1	235	152	1	187	(00
		2	235	13500-	2	249	125	2			2	239	110
		3	2644	- <del>182</del> 4	3			3			3		•
		4			4			4			4		
	· · · · · · · · · · · · · · · · · · ·	5			5.	1		5			5		
	4.3	1		ingerse.	1	180	90	1	243.	120	1	77	69
		2			2			2	123	83	2	240	125
		3			3		······	3			3		
		4			4			4			4		
		5		•:	5			5			5		
	キ・ス	1	79	33	1			1	69	12	1	74 K	69K
		2	· · · ·		2			2	88	33	2		•
		3			3	2 2 2	·····	3			3		
		4			4			4			4		
		5	•		5			5			5		
	12	1			1			1			1		
		2			2			2			2		
		3		cur	3		we ,	3		ue /	3		WG
		4			4			4			4		
		5	······································	$\overline{}$	5			5			5		
										^			
					4								
ech Init			JW/ KL	JW/KL	~	JW/KL	JW/KL	· · · · · · ·	JN/KL	JW/KL		JW/KL	JW/KI

El Det 25, 2017

NC

Client: Hemerra Hemmera WO#: 170518

#### Nautilus Environmental No. of Emergence - 28-day Soil Test

Organism Tested: Blueboint Reedarass

Start Date: Aug 4 / 17 End Date: Sept 1 / 17

# Post Germination Shoot and Root Length (mm)

9/L Nacl

Date	Sample	Rep A	Lengt	h (mm)	Rep B	Lengt	h (mm)	Rep C	Length	า (mm)	Rep D	Lengt	ו (mm)
· · · · · · · · · · · · · · · · · · ·		Plant #	Shoot	Root	Plant #	Shoot	Root	Plant #	Shoot	Root	Plant #	Shoot	Root
Sept 1/17	20	1	<u>\.</u>		1			1			1		
1		2			. 2 .		· · · ·	2			2	$\overline{}$	
		3		WG	3		WC /	3	-	WC /	3		UNC .
		4			4			4			4		
$\checkmark$		5			5	·		5	*******		5		
		1			- 1			1			1		
		2			2			2			2		
		3			3			3			3		
	*. 	4			4			4			4		
		5			5			5			5		
										h			
		1			1			1			1		
	· · · · · · · · · · · · · · · · · · ·	2			2			2			2		
		3			3			3			3		
		4	~		4			4			4		
		5			5			5			5		
	·											·	
		1	**		1			1			1		
		2			2			2			2		
		3			3			3			3		
		. 4	·····		4			4			4		
		5			5			5			5		
			-					·					
· · · · · · · · · · · · · · · · · · ·	· ·	1 2			1			1			1		
		2		· ·	2 3			2			2		
		3 4						3			3		
		4 5			4 5			<u>4</u> 5			<u>4</u> 5		
					<u> </u>		······	5			5		
ech Init			JW/KL	JW/KL		JW/KL	JW/KL		JW/ KL	JW / KI		JW/KL	JW/K

002.25,2017

28 - d Blueboint Reedgrass 310 - <del>7-d Lemna minor</del> Weight Data Sheet

Client:	WC Hemerro	- Hemmer	α	کس Start Date: BilleSoint	AU9 4/17
Sample ID:	Naci (	shoot)	Ter	mination Date: Sept 1 / 17	
NO #:	170518			Balance ID: Bal - 1	
9/L Naci		SB Réd	·		
Concentration		Pan No.	Pan weight (mg)	Pan + plant (mg)	Initials
control	. <u>A</u>	l	1280.15	1342.47	JW
soil	B	2	1281 - 82	1373.97	
SUIC	C	3	1281 - 83	1403.60	
	D	ц.	1284.08	1403.99	
Control	A	5	1284.74	1703.48	
	В	6	1285.49	1674.89	
Peat Moss	С	7	1280.86	1606-23	
	D	8	1285.49	1582.45	
	Α	٩	1286.28	1739.58	
	В	10	1285.90		· ·
0.34	С	()	1284.7×67	1770.94	
	D	12	1282, 63	1604.05	
	A	13	1281.37	1485.85	
· .	В	14	1275.10	1410.02	
0.56	С	IS	1271.40	1788 . 68	
	D	. lb	1276.68	1442.84	
	Α	17	1278.08	1533.99	
	В	18	1277.45	1289.13	
0.93	С	19	1274.06	1576.43	
	D	20	1275 . 30	1408.73	
	Α	21	1275 . 02	1669.98	
	В	22	1276.30	1286.90	
1.6	С	23	1003.87	1223.08	
	D	24	1018-13	1368.29	
	Α	25	1018.66	1162.12	
	В	26	1032.01	1226.48	
2.6	С	27	1025 . 08	1106.31	
	D	28	1040.60	1170.85	V
				n mile state a sintan tanàna a sa ao	
Comments:	10 % Re	- weigh =	# 1.1342.85	4 20.1408.87	s.
	(1)	ng)	# 12.1604.11	# 26.1227.00	
Poviowod by:		(11)		Det.	~ ~ ~ ~
Reviewed by:		W	D	ate Reviewed: 0-ec -	25.20

Version 1.1 Issued May 29, 2015

0	8-d	Bluejoint	Reed	igrass		
JW	-7-d-l	.emna m	inor-	Weight	Data	Sheet

Client:	NC	a Hemmer	a	Start Date: AU9 4/17	
Sample ID:		(Shoot)		mination Date: Sept 1 /17	
WO #:	170518	<b>`</b>	<u></u>	Balance ID: Bal - 1	
oll naci		sb Red			
Concentration	Rep	Pan No.	Pan weight (mg)	Pan + plant (mg)	Initials
	A	29	1016 - 68		NC
	B	30	1034.56	1098-88	5
4.3	C	31	1030.48	1109.90	
	D	32	988.89	1049.19	
	Α	33	1008.70	1012.45	
	B	зц	1028 . 32		
7.2	С	35	1039.34	1043.22	
	D	36	1011.63		$\checkmark$
	A				
	В		· · ·		
12	С				:
	D		WC		
	Α				
	В				
20	С				
	D				
	Α				
	В				
	С			· · ·	
	D				
· · · ·	Α				
	В				
	С				
	D				
	Α		,		
	В				
	С		· · · · · · · · · · · · · · · · · · ·		
	D	····			

Comments:

Reviewed by:

U

Date Reviewed:

bet. 25, 2017

Version 1.1 Issued May 29, 2015

28-d Bluejoint Reedgrass

# w 7-d Lemna minor Weight Data Sheet

Client: JW	Hemerre	a Hemmer	۹	Start Date: Aug 4/13				
Sample ID:	Naci	(ROOT)	Ter	mination Date: sept 1 / 17				
WO #:	170518			Balance ID:Bal - 1				
9/L Naci		RB green						
Concentration	Rep	Pan No.	Pan weight (mg)	Pan + plant (mg)	Initials			
Control	A	1	1284 . 40	1306-85	JW			
soil	В	2	1279.92	1308.53	1			
Soli	C	З	1279.94	1323.40				
· ·	D	ц	1283.08	1330.61				
	A	5	1283.93	1458 . 63	· ·			
Control	В	6	1279.98	1310.21				
Peat moss	С	7	1276.35	1287.20				
	D	8	1274.97	Ju 1336.19				
	Α	9	1276.81	1458-62 +500 - 32 34 1500	.32			
	В	10	1281.8D	JW 1503-84				
0.34	С	11	1285.83	1503 . 84				
	D	12	1278.9 56	1411.52				
	A	13	1285 . 71	1363 . 89				
	В	14	1279.40	1365.17				
0.56	- C - 1	15	1279.86	1641.59				
	D	16	1281.98	1369.55				
	Α	17	1280.90	1398.25				
	В	· 18	1279.27	1282.87				
0.93	С	19	1281.06	1454 - 18				
	D	20	1279.78	1356 . 87				
	A	21	1282.30	1511.36				
	В	22	1286.47	1293 · 31				
1.6	C	23	1282.54	1387 . 75				
	D	зų	1281 . 56	1474.05				
	Α	25	1280 - 25	1337.39				
	В	26	i280.76	1349.72				
2.6	С	27	1281.27	1314.16				
	D	28	1283.64	1336.12	V			
				· ·				
Comments:	10 % R	e-weigh :	# 9.1499.51	#.22 1293.13	-			
	(	mg)	# 19. 1455.95	# 31. 1318.24				
Reviewed by:		U	D	rate Reviewed: 607-2	5,2017			

Version 1.1 Issued May 29, 2015

Nautilus Environmental Company Inc.

Client: ow	Homern	a Hemmer	-a	Start Date: Aug 4 /17	
Sample ID:	Naci			nination Date: Sept X 1 /	UC F)
WO #:	170518			Balance ID: Bal - 1	· · · · · · · · · · · · · · · · · · ·
9/L Naci		RB 9reer	\ \		
Concentration	Rep	Pan No.	Pan weight (mg)	Pan + plant (mg)	Initials
	A	29	1282.39		Ś
	В	30	1282. 867	1295.82	
4.3	С	31	1277 . 78	1318 - 24	
	D	32	1276.47	1304.72	
	А	33	1277.78	1278-88	
	в	34	1279.49		
7.2	С	35	1282.57	1283.37	
•	D	36	1277 - 78		$\checkmark$
	Α				
	В		,		
12.	С				
	D				
	Α		UE		· · ·
	В				
20	С			· · ·	
	D				
	А				
	В				
	Ċ			· · · · · · · · · · · · · · · · · · ·	
	D	·			
	Α				
4	B				
	С		·		
×	D			· · · · · · · · · · · · · · · · · · ·	
	Α				
ж. 17	В				
	С				
	D				

ς - ε

### 28-d Biuejoint Reedgrass aw <del>7-d Lemna minor</del> Weight Data Sheet

Comments:

Reviewed by:

U

Date Reviewed:

Oct-2 2017

Version 1.1 Issued May 29, 2015

Nautilus Environmental Company Inc.

								les	t Code:	170518-S   08-5914-090
Eisenia	<del>a 28-d S</del>	urvival and Gr								Nautilus Environmenta
Analys Analyz		10-2165-1921 04 Dec-17 13:4	ا 18 م	Endpoint: <del>〈</del> Analysis: ^{Ə⋈} l	<del>Survival</del> Rate ₋inear Regress	<del>vival</del> Rate(9ermination) ear Regression (MLE)			'IS Version: cial Results:	CETISv1.8.7 Yes
Batch I	D:	07-5675-8645			Survival-Growt	urvival-Growth				n Wijaya
Start D		04 Aug-17 17:0			EC/EPS 1/RM/			Dilu	ent: Dech	nlorinated Tap Water
•	Date:	01 Sep-17 16:0	•		Camalogrostis			Brin	ie:	
Duratio	on:	27d 23h		Source:	Premier Pacific	Seeds Ltd.		Age	:	
Sample	e ID:	01-2024-9676	(	Code: 7	2ADD4C			Clie	nt: Hem	mera
		04 Aug-17	I	Material: S	Sodium chlorid	le		Proj	ect:	
		04 Aug-17	9	Source:	Hemmera					
Sample	e Age:	17h	ę	Station: (	Control Soil					
		sion Options					·· · · ······	<u></u>	······································	
	Functio				old Option		Optimized		Het Corr	Weighted
Log-Go	mpertz	[log(-log(1-P)=A	+B*log(>	()] Control	Threshold	0.4	Yes	No	No	Yes
Regres	sion Su	Immary								
Iters	LL	AICc	BIC	Mu	Sigma	Adj R2	F Stat	Critical	P-Value	Decision(a:5%)
26	-101.8	210.2	214.6	0.7744		0.4442	0.5297	2.334	0.8050	Non-Significant Lack of Fit
Point E	stimate	S								
Level	gm/L	95% LCL	95% U	CL						
EC5	1.217	0.0003965								
EC10	1.788	0.003011	3.632							
EC15 EC20	2.254	0.01018	4.164							
EC20 EC25	2.669 3.057	0.02474 0.05031	4.612 5.017							
EC40	4.155	0.2468	6.151							
EC50	4.891	0.5658	6.964							
Regres	sion Pa	rameters					· · · ·			· · · · · · · · · · · · · · · · · · ·
Parame	eter	Estimate	Std Er	ror 95% LC	L 95% UCL	t Stat	P-Value	Decision	(α:5%)	
Thresho	old	0.5404	0.0578	1 0.4271	0.6537	9.348	<0.0001		t Parameter	
Slope		4.31	1.784	0.8136	7.807	2.416	0.0207	Significan	t Parameter	
Intercep	ot	-3.338	1.551	-6.379	-0.297	-2.151	0.0380	Significan	t Parameter	
ANOVA	Table									
Source		Sum Squa		lean Square	DF	F Stat	P-Value	Decision	(α:5%)	
Model		31.51636		1.51636	1	33.17	<0.0001	Significan		
Lack of Pure Eri		3.866728		.5523897	7	0.5297	0.8050	Non-Signi	ficant	
Pure ⊑ri Residua		31.28358 35.15031		.042786 .9500083	30 37					
	al Analy	· · · · · · · · · · · · · · · · · · ·								
Attribut	-	Method			Test Stat	Critical	D Value	Declair	<b></b> 0( )	
Goodness-of-Fit Pearson Chi-Sq GOF				35.15	Critical 52.19		Decision(	( <b>α:5%)</b> ficant Heterog	nenity	
		Likelihood	-		40.83	52.19		-	ficant Heterog	
Variance	es	Mod Lever	e Equal	ity of Varianc		2.211		Equal Var		90.mj
Distribut	tion	Shapiro-W	ilk W No	ormality	0.9645	0.9447		Normal Di		
		Anderson-I	Darling A	2 Normality	0.6291	2.492		Normal Di		

Dec SIJ

Analyst:____N

## **CETIS Analytical Report**

 Report Date:
 04 Dec-17 15:03 (p 2 of 3)

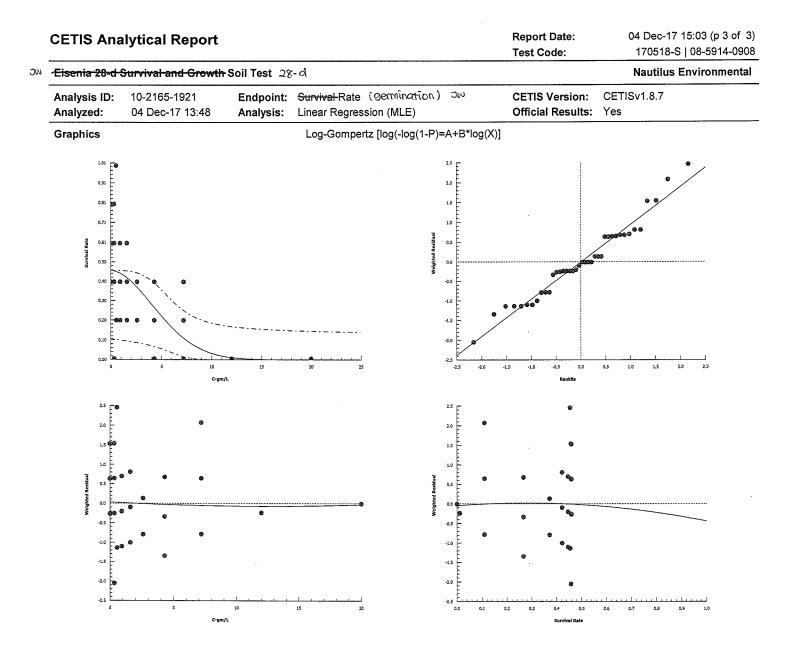
 Test Code:
 170518-S | 08-5914-0908

Nautilus Environmental

#### আ Eisenia 28-d Survival and Growth Soil Test ু ২৪ - এ

Analysis ID Analyzed:	: 10-2165-1921 04 Dec-17 13:		•		e (germînc ssion (MLE)			S Version: ial Results		.8.7	
Survival Rate Summary					Cal	culated Varia	iate(A/B)				
9ermination C-gm/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Reference Sed	4	0.6	0.4	0.8	0.08165	0.1633	27.22%	0.0%	12	20
0.34		4	0.45	0	0.8	0.1708	0.3416	75.9%	25.0%	9	20
0.56		4	0.4	0.2	1	0.2	0.4	100.0%	33.33%	8	20
0.93		4	0.35	0.2	0.6	0.09574	0.1915	54.71%	41.67%	7	20
1.6		4	0.45	0.2	0.6	0.09574	0.1915	42.55%	25.0%	9	20
2.6		4	0.35	0.2	0.4	0.05	0.1	28.57%	41.67%	7	20
4.3		4	0.25	0	0.4	0.09574	0.1915	76.59%	58.33%	5	20
7.2		4	0.15	0	0.4	0.09574	0.1915	127.7%	75.0%	3	20
12		4	0	0	0	0	0		100.0%	0	20
20		4	0	0	0	0	0		100.0%	0	20

#### Div -Survival-Rate Detail


Germinatio C-gm/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	* Reference sed = Control pect moss *
0	Reference Sed	0.8	0.6	0.6	0.4	
0.34		0.8	0	0.6	0.4	
0.56		0.2	0.2	1	0.2	
0.93		0.4	0.2	0.6	0.2	
1.6		0.6	0.2	0.4	0.6	
2.6		0.4	0.4	0.2	0.4	
4.3		0	0.2	0.4	0.4	
7.2		0.2	0	0.4	0	
12		0	0	0	0	
20		0	0	0	0	

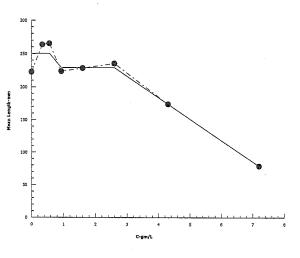
# Survival Rate Binomials

0.34       4/5       0/5       3/5       2/5         0.56       1/5       1/5       5/5       1/5         0.93       2/5       1/5       3/5       1/5         1.6       3/5       1/5       2/5       3/5         2.6       2/5       2/5       1/5       2/5
0.56       1/5       1/5       5/5       1/5         0.93       2/5       1/5       3/5       1/5         1.6       3/5       1/5       2/5       3/5         2.6       2/5       2/5       1/5       2/5
0.93       2/5       1/5       3/5       1/5         1.6       3/5       1/5       2/5       3/5         2.6       2/5       2/5       1/5       2/5
1.6         3/5         1/5         2/5         3/5           2.6         2/5         2/5         1/5         2/5
2.6 2/5 2/5 1/5 2/5
4.3 0/5 1/5 2/5 2/5
7.2 1/5 0/5 2/5 0/5
12 0/5 0/5 0/5 0/5
20 0/5 0/5 0/5 0/5

*[[]* Dec 5/17 QA:_

Analyst:______




Dee:SIA QA:

Analyst: JW

		ytical Repo	JN						ort Date: Code:		170518-S   0	03 (p 1 of 2 8-5914-090
Eisenia	<del>28-d S</del>	urvival and Gro	<del>wth</del> Soil T	est 21	3-d						Nautilus Env	rironmental
Analysi		04-3778-5410		•	Mean Length-r				S Version:		Sv1.8.7	
Analyze	d:	04 Dec-17 15:0	2 Ana	lysis:	Linear Interpol	ation (ICPI	N)	Offic	ial Results	: Yes		
Batch II		07-5675-8645		•••	Survival-Grow			Anal	-	lin Wijaya		
Start Da		04 Aug-17 17:0		tocol:	EC/EPS 1/RM	/56 (2013)		Dilue	ent: Dec	chlorinate	d Tap Water	
Ending	Date:	01 Sep-17 16:0	0 <b>Spe</b>	cies:	Camalogrostis			Brin	e:			
Duratio	n:	27d 23h	Sou	irce:	Premier Pacifi	c Seeds Lto	d.	Age:				
Sample		01-2024-9676	Coc	le:	72ADD4C			Clier	nt: Her	nmera		
		04 Aug-17	Mat	erial:	Sodium chlorid	de		Proj	ect:			
Receive	Date:	04 Aug-17	Soι	rce:	Hemmera							
Sample	Age:	17h	Stat	tion:	Control Soil							
Linear I	nterpol	ation Options										
X Trans		Y Transform	See	d	Resamples	Exp 95	% CL Met	hod				
Log(X+1	)	Linear	256	132	200	Yes	Two	-Point Interp	olation			
Point E	stimate	s						•				
Level	gm/L	95% LCL										
IC5	0.766	0.3514	5.073									
IC10	2.691	N/A	3.605									
IC15	3.03	N/A	4.039									
IC20	3.4	N/A	4.7									
IC25 IC40	3.804 4.905	2.324 3.874	5.092 5.745									
IC50	4.905 5.625	3.074 4.727	5.745 6.331									
Mean L	ength-r	nm Summary				 C	alculated Va	ariate				
C-gm/L		ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effec	 ct	
0	R	eference Sed	4	222.6	141	262	27.58	55.16	24.78%	0.0%		
0.34			3	263.6	239.5	290.5	14.79	25.62	9.72%	-18.42	%	
0.56			4	265.3	240	283	10.48	20.97	7.9%	-19.17	%	
0.93			4	223.6	159	263	22.44	44.87	20.07%	-0.45%		
1.6			4	228.2	149.5	265	26.57	53.14	23.28%	-2.54%	, ,	
2.6			4	235.1	213	255	8.613	17.23	7.33%	-5.64%	)	
4.3			3	173.8		183	7.715	13.36	7.69%	21.9%		
7.2			2	78.75	78.5	79	0.25	0.3536	0.45%	64.62%	6	
Mean Lo	ength-r	nm Detail										
C-gm/L		ontrol Type	Rep 1	Rep 2	· · · · · · · · · · · · · · · · · · ·	Rep 4		* Refer	ence sea	d = CO	ntrol peat	moss
0	Re	eference Sed	239.8	262	141	247.5						
0.34			239.5	260.7								
0.56			283	282	240	256						
0.93			263	159	236.3	236						
1.6			253.7	149.5		244.7						
2.6			237.5	255	235	213						
4.3			180	183	158.5							

Analyst:_____N

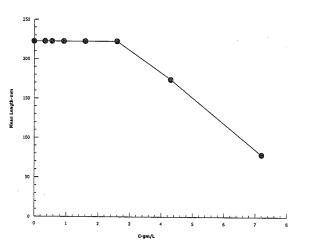
CETIS Ana	alytical Report		Report Date: Test Code:	04 Dec-17 15:03 (p 2 of 2) 170518-S   08-5914-0908 Nautilus Environmental	
Eisenia 28-d	Survival and Growth	r Soil Test ୁନ-d ୦୦୦			
Analysis ID: Analyzed:	04-3778-5410 04 Dec-17 15:02	Endpoint: Mean Length-mm (Shoct) Analysis: Linear Interpolation (ICPIN)	CETIS Version: Official Results:		



000-469-187-2

CETIS™ v1.8.7.16





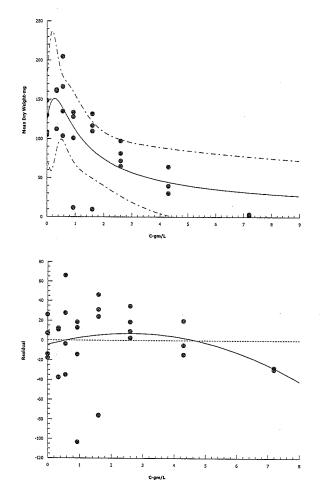

	S Ana	lytical Repo	ort					-	ort Date: t Code:	04 Dec-17 15:27 (p 1 of 2 170518-S1   17-8597-960-
Eisenia	a 28-d S	urvival and Gro	wth Soil	l Test ୁହ	s-d Jw					Nautilus Environmental
Analys Analyz		02-5659-9325 04 Dec-17 15:20		Endpoint: Mean Length-mm (Shoot) Analysis: Linear Interpolation (ICPIN)					'IS Version: cial Results	
Batch	ID:	07-5675-8645	T	est Type:	Survival-Grow	th		Ana	lvst: Jes	lin Wijaya
Start D	ate:	04 Aug-17 17:00		rotocol:	EC/EPS 1/RM			Dilu	-	chlorinated Tap Water
Ending	J Date:	01 Sep-17 16:00		pecies:	Camalogrostis	• •	s	Brin		
Duratio	on:	27d 23h	S	ource:	Premier Pacifi			Age	:	
Sample	e ID:	02-2289-4098	С	ode:	D491812			Clie	nt: Her	nmera
Sample	e Date:	04 Aug-17	М	aterial:	Sodium chlori	de		Proj	ect:	
Receiv	e Date:	04 Aug-17	S	ource:	Hemmera			•		
Sample	e Age:	17h	S	tation:	Control Soil					
Linear	Interpo	lation Options								
X Tran	sform	Y Transform	S	eed	Resamples	Exp 95	% CL Me	ethod		
Log(X+	1)	Linear	16	354870	200	Yes	Τw	vo-Point Interp	olation	
Point E	Estimate	es								
Level	gm/L	95% LCL	95% UC	CL						
IC5	2.932	N/A	3.046		,					····
IC10	3.295		3.546							
IC15	3.692		4.245							
IC20	4.125		4.655							
IC25	4.471	0.848	4.863				•			
IC40 IC50	5.377 6.062		5.688 6.316							
		mm Summary	0.010							
C-gm/L		ontrol Type	Count	Mean	Min	Max	alculated \		C)/0/	9/ <b>F</b> ffe et
0		eference Sed	4	222.6	141	262	27.58	55.16	<u>CV%</u> 24.78%	%Effect 0.0%
0.34			4	222.6	141	262	27.58	55.16	24.78%	0.0%
0.56			4	222.6	141	262	27.58	55.16	24.78%	0.0%
0.93			4	222.6	141	262	27.58	55.16	24.78%	0.0%
1.6			4	222.6	141	262	27.58	55.16	24.78%	0.0%
2.6			4	222.6	141	262	27.58	55.16	24.78%	0.0%
4.3			3	173.8	158.5	183	7.715	13.36	7.69%	21.9%
7.2			2	78.75	78.5	79	0.25	0.3536	0.45%	64.62%
Mean L	.ength-r	nm Detail								
C-gm/L		ontrol Type	Rep 1	Rep 2	Rep 3	Rep 4	Ť	Reference	e sed =	control peat moss
0	R	eference Sed	239.8	262	141	247.5				
0.34			239.8	262	141	247.5				
0.56			239.8	262	141	247.5				
0.93			239.8	262	141	247.5				
1.6			239.8	262	141	247.5				
2.6			239.8	262	141	247.5				
4.3			180	183	158.5					
7.2			79	78.5						

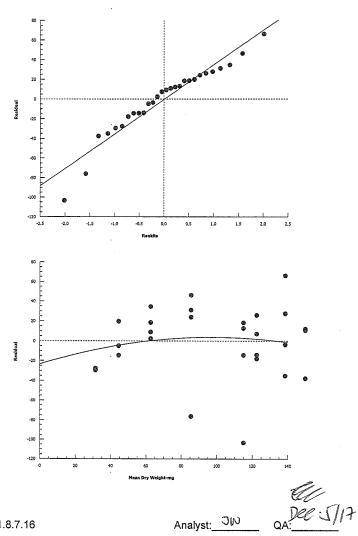
6e Dec 5/17 QA:

Analyst: ^{つい}

CETIS Ana	alytical Report ວ	UN	Report Date: Test Code:	04 Dec-17 15:27 (p 2 of 2) 170518-S1   17-8597-9604		
Eisenia 28-d	Survival and Growth	n Soil Test 28- A		Nautilus Environmental		
Analysis ID: Analyzed:	02-5659-9325 04 Dec-17 15:26	Endpoint: Mean Length-mm (Shoo+) Analysis: Linear Interpolation (ICPIN)	CETIS Version: Official Results:			




*EE* Dec:5/17 QA


CE 113	5 Anal	ytical Rep	ort						ort Date: Code:		7 15:03 (p 1 of 1 -S   08-5914-090
Eisenia	-28-d-S	urvival and Gr	<del>owth </del> Soil	Test 28-0	k						Environmenta
Analysi Analyze		16-1010-0378 04 Dec-17 13:		•	ean Dry Weig onlinear Regr		noot)		S Version: ial Results:	CETISv1.8.7 Yes	
Batch I	D:	07-5675-8645	Te	est Type: Su	urvival-Growth	h	. <u></u>	Anal	yst: Jeslin	Wijaya	
Start D	ate:	04 Aug-17 17:0	00 <b>P</b> I	otocol: E	C/EPS 1/RM/	56 (2013)		Dilue	ent: Dechl	lorinated Tap Wa	ater
Ending	Date:	01 Sep-17 16:0	00 <b>S</b> I	becies: Ca	amalogrostis	canadensis	;	Brine	9:		
Duratio	n:	27d 23h	S	ource: Pr	emier Pacific	Seeds Ltd	•	Age:			
Sample	D:	01-2024-9676	C	o <b>de:</b> 72	ADD4C			Clier	nt: Hemr	nera	
Sample	e Date:	04 Aug-17	М	aterial: So	odium chlorid	e		Proje	ect:		
Receive	e Date:	04 Aug-17	S	ource: He	emmera						
Sample	e Age:	17h	St	ation: Co	ontrol Soil						
Non-Li	near Re	gression Optio	ons								
	Functio								eighting Fu	nction	PTBS Functi
4P Log-	-Logistic	+Hormesis EV	[Y=A(1+E	X)/(1+(2ED+	1)(X/D)^C)]	None	None	e N	ormal [W=1]		Off [Y*=Y]
Regres	sion Su	mmary									
Iters	Log L		BIC	Adj R2	Optimize		Critical	P-Value	Decision(a		
10	-113.4	236.6	240.2	0.5075	Yes	0.9718	2.866	0.4448	Non-Signifi	cant Lack of Fit	
Point E	stimate	s									
Level	gm/L	95% LCL		L							
IC5	0.9074		1.467								
IC10	1.017	N/A	1.638								
IC15	1.136	N/A	1.818								
IC20	1.27	0.8163	2.012								
IC25	1.421	0.941	2.231								
IC40	2.039	1.374	3.309								
IC50	2.69	1.689	5.102								
Regres	sion Pa	rameters									
Parame	eter	Estimate		or 95% LCI		*****	P-Value	Decision			
A		122.5	18.81	85.66	159.4	6.513	<0.0001		t Parameter		
C		1.642	0.2683	1.116	2.168	6.12	<0.0001	-	t Parameter		
D		2.69	0.9525	0.8231	4.557	2.824	0.0094	-	t Parameter		
E		2.218	3.455	-4.553	8.989	0.642	0.5269	Non-Signi	ficant Parame	eter	
ANOVA											
Source Model		Sum Squ 43669.94		ean Square 669.94	DF	F Stat	P-Value	Decision			
Lack of	Fit	5533.441		383.36	1 4	30.82 0.9718	<0.0001 0.4448	Significan Non-Signi			
Pure Er		28469.73		23.486	4 20	0.9710	0.4440	Non-Signi	ncant		
Residua		34003.17		16.799	24						
Residu	al Analy	sis						·			
Attribut	-	Method			Test Stat	Critical	P-Value	Decision(	α:5%)		
Varianc	es	Bartlett E	quality of V	/ariance	12.87	14.07	0.0754	Equal Var			
		Mod Leve	ne Equalit	y of Variance		2.577	0.7724	Equal Var			
Distribu	tion	Shapiro-V	-	-	0.9386	0.9264	0.1016	Normal Di			
		Andoroon	Deuline A	2 Normality	0.6384	2.492	0.0965		stribution		

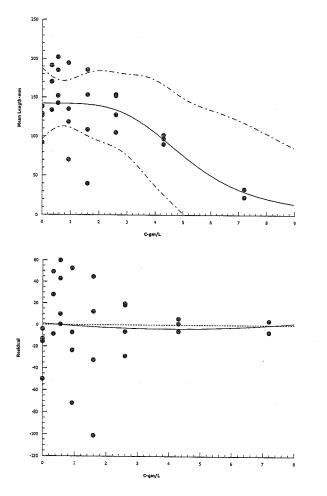
lee SIA QA:

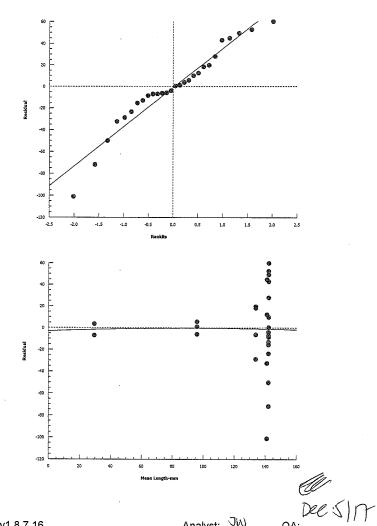
CETIS An	alytical Rep	ort ow					•	ort Date: Code:		Dec-17 15:03 70518-S   08-	
Eisenia 28-d	Survival and Gr	<del>owth</del> So	il Test	s-d					Na	autilus Envir	onmental
Analysis ID: Analyzed:	•			ndpoint: Mean Dry Weight-mg nalysis: Nonlinear Regression			CETIS Version: Official Results:		CETISv1 Yes	.8.7	
Mean Dry W	eight-mg Summ	ary				Calculated Va	ariate				
C-gm/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect		
0	Reference Sed	4	122.9	104.7	148.5	10.17	20.35	16.56%	0.0%		
0.34		3	145	112.3	162.1	16.36	28.34	19.54%	-18.06%		
0.56		4	152.3	103.5	204.5	21.61	43.22	28.38%	-23.93%		
0.93		4	93.46	11.68	133.4	28.18	56.36	60.3%	23.92%		
1.6		4	91.89	9.6	131.7	27.81	55.63	60.53%	25.2%		
2.6		4	78.83	65.13	97.23	6.969	13.94	17.68%	35.84%		
4.3		3	44.73	30.15	64.32	10.18	17.63	39.41%	63.59%		
7.2		2	2.845	1.94	3.75	0.905	1.28	44.99%	97.68%		
Mean Dry W	eight-mg Detail										
C-gm/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	+	Referen	ce sed =	CONTROL	peat mos	\$
0	Reference Sed	104.7	129.8	108.5	148.5						
0.34		112.3	162.1	160.7							
0.56		204.5	134.9	103.5	166.2						
0.93		128	11.68	100.8	133.4						
1.6		131.7	9.6	109.6	116.7						
2.6		71.73	97.23	81.23	65.13						
4.3		64.32	39.71	30.15							
7.2		3.75	1.94								

4P Log-Logistic+Hormesis EV [Y=A(1+EX)/(1+(2ED+1)(X/D)^C)]






	Analyti	ical Repo ಾ	ort ∾						-	ort Date: Code:		7 15:20 (p 1 of 2 -R   02-6853-392
<del>Eisenia 2</del>	8-d-Surv	ival and Gro	wth S	oil Test	28 - 0	λ					Nautilus	Environmental
Analysis Analyzed		-7133-8253 Dec-17 15:1	8	Endpoin Analysis		an Length-m nlinear Regr		)			CETISv1.8.7 Yes	
Batch ID:	: 07-	-5675-8645		Test Typ	e: Su	vival-Growth	1		Ana	lyst:		
Start Date	<b>e:</b> 04	Aug-17 17:0	0	Protoco	I: EC	/EPS 1/RM/	56 (2013)		Dilu	ent: Dechlo	orinated Tap W	ater
Ending D	oate: 01	Sep-17 16:0	0	Species	: Cai	malogrostis	canadensis		Brin	e:		
Duration:	: 270	d 23h		Source:	Pre	mier Pacific	Seeds Ltd.		Age	:		
Sample II	<b>D:</b> 20-	-9960-3271		Code:	7D2	256747			Clie	nt: Hemm	era	
Sample D	<b>Date:</b> 04	Aug-17		Material	: Soc	dium chloride	e		Proj	ect:		
Receive [	Date: 04	Aug-17		Source:	Hei	mmera						
Sample A	<b>lge:</b> 17	h		Station:	Co	ntrol Soil						
Non-Line	ar Regre	ssion Optio	ns									
Model Fu							X Trans	form Y Tra	ansform V	Veighting Fun	ction	PTBS Functio
4P Log-Lo	ogistic+H	ormesis EV [	Y=A(1	+EX)/(1+(	2ED+1	)(X/D)^C)]	None	None	9 N	lormal [W=1]		Off [Y*=Y]
Regressio	on Sumn	nary										
ters L	Log LL	AICc	BIC	Ad	j R2	Optimize	F Stat	Critical	P-Value	Decision(a:	5%)	
31 -	-114	237.7	241.3	3 0.3	543	Yes	1.596	2.866	0.2143	Non-Signific	ant Lack of Fit	
Point Est	imates					<del></del>	<u></u>					
	gm/L	95% LCL	95%									
	2.502	N/A	3.917									
	2.999 3.359	N/A N/A	4.262 4.62	2								
	3.659	N/A	4.967	7								
	3.929	N/A	5.302						•			
C40 4	4.664	3.014	6.353	3								
IC50 5	5.158	3.599	7.404	ł								
Regressio	on Paran	neters										·····
Paramete	er	Estimate	Std E	Error 95°	% LCL	95% UCL	t Stat	P-Value	Decision	(α:5%)		
4		142	13.71		5.2	168.9	10.36	<0.0001	Significan	t Parameter	·· · · ·	······································
		4.016	2.807		485	9.518	1.431	0.1654		ificant Paramet	ter	
D E		5.158 0.001	0.814			6.753	6.336	<0.0001	•	t Parameter		
		0.001	0.104	FI -0.,	203	0.205	0.009607	0.9924	Non-Sign	ificant Paramet	ier	-
	aule	C		M C		25						
Source Model		Sum Squa 26302.39	res	Mean Sc 26302.39		DF	F Stat	P-Value	Decision	· · · · · · · · · · · · · · · · · · ·		
Lack of Fi	ł	8571.362		20302.38		1 4	17.82 1.596	0.0003	Significan			
Pure Error		26860.31		1343.015		4 20	1.090	0.2143	Non-Sign	nicant		
Residual		35431.67		1476.319		24						
Residual	Analysis	;										
Attribute		Method				Test Stat	Critical	P-Value	Decision	(α:5%)		
Variances		Bartlett Eq				12.11	14.07	0.0969	Equal Var			
		Mod Lever			riance	1.629	2.577	0.1905	Equal Var			
Distributio	n	Shapiro-W				0.948	0.9264	0.1768	Normal D	istribution		
		Anderson-	Darling	A2 Norm	ality	0.5675	2.492	0.1451	Normal D	istribution		




Analyst:_ 기아

CETIS A	nalytical Rep	ort əw					•	ort Date: Code:	04 Dec-17 15:20 (p 2 of 2) 170518-R   02-6853-3928	
Eisenia 28	-d-Survival and Gr	<del>owth</del> Soil	Test 28-	d					Nautilus Environmental	
Analysis II Analyzed:	D: 06-7133-8253 04 Dec-17 15:		•	•				IS Version: ial Results:	CETISv1.8.7 Yes	
Mean Len	gth-mm Summary				C	alculated Va	ariate			
C-gm/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	Reference Sed	4	121.4	92	138	10.1	20.2	16.64%	0.0%	
0.34		3	164.9	133.5	191.3	16.86	29.21	17.71%	-35.87%	
0.56		4	170.4	142.5	202	13.93	27.86	16.35%	-40.37%	
0.93		4	129.5	70	194.5	25.68	51.37	39.67%	-6.69%	
1.6		4	121.8	39.8	185.7	31.59	63.18	51.86%	-0.37%	
2.6		4	134.5	105	153.5	11.5	23	17.1%	-10.81%	
4.3		3	96.17	90	101.5	3.346	5.795	6.03%	20.77%	
7.2		2	27.75	22.5	33	5.25	7.425	26.76%	77.14%	
Mean Len	gth-mm Detail								. <u></u>	
C-gm/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	* R(	sterence	sed = ca	ontrol peat moss	
0	Reference Sed	129	138	92	126.5					
0.34		191.3	133.5	170						
0.56		202	152	142.5	185					
0.93		194.5	70	118.5	135					
1.6		153.3	108.5	39.8	185.7					
2.6		127.5	153.5	152	105					
4.3		90	101.5	97						
7.2		33	22.5							

4P Log-Logistic+Hormesis EV [Y=A(1+EX)/(1+(2ED+1)(X/D)^C)]





Analyst:____W

QA

CETIS	Anal	ytical Repo	ort					-	ort Date: t Code:		ec-17 15:20 (p 1 ( )518-R   02-6853-
Eisenia	28-d S	urvival and Gre	wth-So	l Test _{ଅ୪}	-d					Nau	ıtilus Environme
Analysi Analyze		06-1519-5454 04 Dec-17 15:1		indpoint: nalysis:	Mean Dry We Linear Interpo				IS Version		8.7
Batch II		07-5675-8645		• •	Survival-Grov				lyst:		
Start Da	ate:	04 Aug-17 17:0	0 F	rotocol:	EC/EPS 1/R	M/56 (2013)		Dilu	ent: De	chlorinated Ta	ip Water
Ending	Date:	01 Sep-17 16:0	0 5	pecies:	Camalogrost	is canadensi	s	Brin	ie:		
Duratio	n:	27d 23h	S	ource:	Premier Paci	fic Seeds Lto	d.	Age	:		
Sample	ID:	20-9960-3271	C	ode:	7D256747			Clie	nt: Hei	mmera	
Sample	Date:	04 Aug-17	Ν	laterial:	Sodium chlor	ride		Pro	ect:		
Receive	Date:	04 Aug-17	s	ource:	Hemmera						
Sample		-		tation:	Control Soil						
Linear I	nterpol	ation Options									
X Trans		Y Transform	<u> </u>	eed	Resamples	Exp 95	% CL Me	thod			
Log(X+1	)	Linear	8	00626	200	Yes	Two	o-Point Interp	olation		
Point E	stimate	s									
Level	gm/L	95% LCL	95% U	CL							
IC5	0.7132	0.4772	2.784								
IC10	0.8814	0.38	2.815								
IC15	1.692	N/A	2.19								
IC20	1.824	N/A	2.295								
IC25	1.962	N/A	2.402								
IC40	2.418	N/A	3.066								
IC50	2.85	0.07107	3.68								
Mean D	ry Weig	ht-mg Summa	ry			С	alculated V	ariate			
C-gm/L		ontrol Type	Count	Mean	Min	Мах	Std Err	Std Dev	CV%	%Effect	
0	Re	eference Sed	4	21.99	3.617	43.67	9.238	18.48	84.0%	0.0%	
0.34			3	65.01	55.88	72.67	4.903	8.492	13.06%	-195.6%	
0.56			4	80.97	72.35	87.57	3.521	7.042	8.7%	-268.1%	
0.93			4	49.27	3.6	77.09	15.86	31.72	64.39%	-124.0%	
1.6			4	49.99	6.84	76.35	15.18	30.36	60.73%	-127.3%	
2.6			4	30.54	26.24	34.48	1.902	3.804	12.45%	-38.88%	
4.3			3	15.83	13.15	20.23	2.215	3.837	24.23%	28.01%	
7.2			2	0.75	0.4	1.1	0.35	0.4949	65.99%	96.59%	
		ht-mg Detail									
C-gm/L		ontrol Type	Rep 1	Rep 2		Rep 4		* Refere	nce sed	= Control	Peat moss
0	Re	ference Sed	43.67	10.08	3.617	30.61		•			
0.34			55.88	72.67	66.48						
0.56			78.18	85.77	72.35	87.57					
0.02			F0 07	~ ~							

QA: 200-5/17

Analyst:<u></u>つい

0.93

1.6

2.6

4.3

7.2

58.67

76.35

28.57

13.15

1.1

3.6

6.84

34.48

20.23

0.4

57.71

52.6

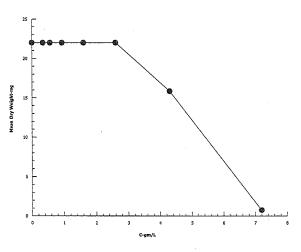
32.89

14.13

77.09

64.16

26.24


	CETIS Ana	alytical Report			Report Date: Test Code:	04 Dec-17 15:20 (p 2 of 2) 170518-R   02-6853-3928
OIN	-Eisenia 28-d	Survival and Growth	Soil Test 🤉	8-d		Nautilus Environmental
	Analysis ID: Analyzed:	06-1519-5454 04 Dec-17 15:18	•	Mean Dry Weight-mg (Root) Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.8.7 Yes

C-gm/L

CETIS	S Ana	lytical Repo	ort ວພ						ort Date: Code:		04 Dec-17 15:33 (p 1 of 2) 170518-R1   09-0294-4963
Eisenia	<del>a 28-d S</del>	urvival and Gro	wth Soil	Test 29	8-d						Nautilus Environmental
Analys	is ID:	02-1502-0882	Eı	ndpoint:	Mean Dry We	ight-mg (t	2007)	CET	S Version:	CETI	Sv1.8.7
Analyz	ed:	04 Dec-17 15:3	3 Ai	nalysis:	Linear Interpo	lation (ICPII	N)	Offic	ial Results	: Yes	
Batch	ID:	07-5675-8645	Te	est Type:	Survival-Grow	/th		Anal	yst: Jes	lin Wijay	a
Start D	ate:	04 Aug-17 17:0	0 <b>P</b> I	rotocol:	EC/EPS 1/RM	1/56 (2013)		Dilu	ent: Dec	chlorinate	ed Tap Water
Ending	Date:	01 Sep-17 16:0	0 <b>S</b> I	pecies:	Camalogrosti			Brin	e:		
Duratio	on:	27d 23h	S	ource:	Premier Pacif	ic Seeds Lto	ł.	Age:			
Sample		02-3778-0929	C	ode:	E2C3FC1			Clier	nt: Her	nmera	
		04 Aug-17	М	aterial:	Sodium chlori	de		Proj	ect:		
		04 Aug-17		ource:	Hemmera						
Sample	e Age:	17h	St	ation:	Control Soil						
Linear	Interpo	lation Options									
X Tran		Y Transform	-	ed	Resamples	Exp 959					
Log(X+	1)	Linear	13	34585	200	Yes	Two	-Point Interp	olation	,	
Point E	Estimate	es									
Level	gm/L	95% LCL	95% UC	;L	- i						
IC5 IC10	2.857 3.133		3.021								
IC15	3.429		4.776 5.032								
IC20	3.745		5.064								
IC25	4.085		5.088								
IC40	4.72	N/A	5.426								
IC50	5.096		5.72								
Mean [	Dry Wei	ght-mg Summa	ry			C	alculated Va	ariate			
C-gm/L		ontrol Type	Count	Mean	Min	Мах	Std Err	Std Dev	CV%	%Effe	ect
0	R	eference Sed	4	21.99	3.617	43.67	9.238	18.48	84.0%	0.0%	
0.34			4	21.99	3.617	43.67	9.238	18.48	84.0%	0.0%	
0.56			4	21.99	3.617	43.67	9.238	18.48	84.0%	0.0%	
0.93			4	21.99	3.617	43.67	9.238	18.48	84.0%	0.0%	
1.6			4	21.99		43.67	9.238	18.48	84.0%	0.0%	
2.6			4	21.99		43.67	9.238	18.48	84.0%	0.0%	
4.3 7.2			3 2	15.83 0.75	13.15 0.4	20.23 1.1	2.215 0.35	3.837 0.4949	24.23% 65.99%	28.019 96.599	
	)ry Wei	ght-mg Detail		0.70	<b></b>	1.1	0.55	0.4949			/6
C-gm/L		ontrol Type	Rep 1	Rep 2	Rep 3	Rep 4	*	BORDEODO	o sod =	00040	al Root Made
0		eference Sed	43.67	10.08		30.61	*	NEFEIEIIC	- 200 -	CUIAN	ol peat moss
- 0.34			43.67	10.08		30.61					
0.56			43.67	10.08		30.61					
			43.67	10.08		30.61					
0.93			43.67	10.08		30.61					
					0.017	00.01					
1.6						30.61					
0.93 1.6 2.6 4.3			43.67 13.15	10.08 20.23	3.617	30.61					

17 200 QA:

CETIS Ana	alytical Report	N	Report Date: Test Code:	04 Dec-17 15:33 (p 2 of 2) 170518-R1   09-0294-4963	
Eisenia-28-d-	Survival and Growth	Soil Test	18-d		Nautilus Environmental
Analysis ID: Analyzed:	02-1502-0882 04 Dec-17 15:33	Endpoint: Analysis:	Mean Dry Weight-mg (Root) Linear Interpolation (ICPIN)	CETIS Version: Official Results:	



Dec 5/17 QA

Analyst: つい

## Fontinalis antipyretica Summary Sheet

Client:	Hemmera	Start Date: 29-Jun-17
Work Order No.:	170521	Set up by: JW/MLT

#### Sample Information:

Sample ID:	NaCI - made in-house
Sample Date:	29-Jun-17
Date Received:	
Sample Volume:	_n/a

#### **Reference Toxicant Results:**

Reference Toxicant ID:	FA01
Stock Solution ID:	17SO01
Date Initiated:	29-Jun-17
Length 21-d EC50 (95% CL):	1012 (781.4 - 1492) mg/L SO4
Dry Wt 21-d EC50 (95% CL):	>1600 mg/L SO4

EC50 Reference Toxicant Mean (Acceptable Range) : n/a*

CV (%): n/a*

* : Insufficient data points to calculate a reference toxicant historical mean, range and CV

**Test Results:** 

g/L NaCl	IC25 (95% CL)	IC50 (95% CL)
Dry weight (mg)	2.5 (2.0 - 2.6)	>20
Chlorophyll a	1.0 (0.9 - 1.2)	1.5 (1.4 - 1.6)
Length (mm)	0.7 (0.5 - 0.9)	1.2 (1.0 - 1.5)

Reviewed by:

Dec. 6,2017 Date reviewed:

# Aquatic Moss Fresh Water Toxicity Test Water Quality Measurements

Client: Sample ID: Work Order #: Hemerra Soaium Chioriae 170521

Start Date & Time: June 29/17 @ 1500h Stop Date & Time: July 20/17 @ 1400h Test Species: Fontinalis antipyretica

9/L Naci							Da	ays						
Concentration	0	Ę.	5	•	10	U	5	2	0	Final				
control	init.	new	old	new	old	new	old	new	old	new	old	new	old	new
Temperature (°C)	14.5	15.0	16,0	15.0	160	15.0	10-di	16.0	16.0	16.0		1		
DO (mg/L)	10.2	9.9	9.4	10.0	9.7	9.9	9.7	10.0		9.5				
рН	7.2	7.4	7.4	7.2	7.3	7.2	7.7	7.3	7.1	7.4				
Cond. (µS/cm)	41	4	3	4	1		2	4	9	4	-27		L	
Initials	JW	1	Alty	MN	à-	1	ALI	1			1127		<u>, , , , , , , , , , , , , , , , , ,</u>	

		<del></del>					Da	iys						
Concentration	0	5	<u>.</u>	ι	0	1	5	20	>	Final		,		
0.34	init.	new	old	new	old	new	old	new	old	ne₩	old	new	old	new
Temperature (°C)	15.0	15.0	16.0	15.5	160	15.0	للحبطا	15.0	16.0	16.0				
DO (mg/L)	10.2	9.9	9.4	9.9	9.7	9.8	97		9.7	9.5				
рН	7.3	7.3	7.3	23	7.2	7.8	7.2	7.3	7.2	7.4				
Cond. (µS/cm)	765	7	73	73	30	14	<del>14</del>	71	44	57	28		· ·	
Initials	JW	N		YW	6	MI	7	N	NLT		LI.			

		<b></b>				a	Da	ays						
Concentration	0	t t	5	<u> </u>	>	t	<u>ç</u>	20	>	Fincl				
0.56	init.	new	old	new	old	new	old	new	old	new	old	new	old	new
Temperature (°C)	15.0	15.0	2-16.0	15.3	c.di	15.0	للجبيرا	15.0	16.0	16.0				
DO (mg/L)	10.2	9.9	9.4	9.8	9.8	9.8	9.6	10.1	9.8	9.5				
рН	7.2	7.3	7.3	7.3	7.2	7.0	7.3	7.4	7.2	74				
Cond. (µS/cm)	1208	12	69.	11(	a)	11	82	1160+	50MH	11			1	
Initials	JW	n	ALT	42					117					

				·			Da	ays						
Concentration	0.	5	- ,	i	D		IS	20	<u>с</u>	Finch		Γ		
0.93	init.	new	old	new	old	new	old	new	old	new	old	new	old	new
Temperature (°C)	15.0	15.0	16.0	15.5	16.0	15.0	16.0	15.0	16.0	16.0				
DO (mg/L)	10.2	9.9	9.3	9.3	9.6	9.8	9.7	10.1	9.8	9.5				
рН	7.2	7.3	7.3	13	7.3	7.0	7.3	7.3		7.4				
Cond. (µS/cm)	1917	19	23	181		19	1		84	180	22		L	
Initials	JW	M	」 日		N	M			ALT.		10 10			
						0 16		L		156		L		\
DO meter:	<u> </u>	·······		рН	meter:	1			Cond	uctivity	meter:	a		,
	Con	trol				-				Analys	tot			<u>м</u>
Hardness*	17									Analys	15.	<u> 000, 1</u>	Y, IN	1
Alkalinity*	15									Review	ved by:	40		
* mg/L as CaCO3					·	······			C		viewed:		1-18	Znit
Sample Description:	-	Stock	soiu	tion :	17 Nac	02.T	hermor	neter					: <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	1
Comments:	<u>H9nt</u>	inten	sîty =	1500	~ 200	olux								

## Aquatic Moss Fresh Water Toxicity Test Water Quality Measurements

Client:	
Sample ID:	
Work Order #:	

M Ju Hemeriza Socilium chloride (7052)

 Start Date & Time:
 June 29/17 @ 1500h

 Stop Date & Time:
 July 20/17 @ 1400h

 Test Species:
 Fontinalis antipyretica

9/L Naci						5-94 ⁻¹ -1	Da	ays						
Concentration	0	5			10	· (	5	2	D	Finel				
. 1.6	init.	new	old	new	old	new	old	new	old	_пе₩	old	new	old	new
Temperature (°C)	15.0	15.0	16.0	15.5	16.0	15,0	16,D	15.0	16.0	16.0				
DO (mg/L)	10.2	9.9	9.3	(0.0	9.7	9.8	9.6	10.1	9.8	9,5			-	
рН	7.2	7.3	7.3	7.3	22	7.8	7.7	7.3	7.2	7.3				
Cond. (µS/cm)	3230	3	180	310	10	31	30	31		31	50	[]		
Initials	JW	P	NLT	ЧM	r	M	121	M	LI		ΛĠ			

							Da	ays	~					
Concentration	0	5		1	D	19	5		20	Finel	)			
2.6	init.	new	old	new	old	new	old	new	old	new	old	new	old	new
Temperature (°C)	15.0	15.0	16.0	15-5	160	15.0	16.0	15.0	16.0	16,0			-	
DO (mg/L)	10.2	9.9	9.1	9.9	3.7	9,8	9.6	10.1	9.8	9,5				
рН	7-1	7. 7	7.2	7.2	7.1	7.8	7.2	7.3	7.2	7.3				
Cond. (µS/cm)	5120	49	80	So	>0	40	140		170	49	20			
Initials	ЭW	M	Lī	Yu	ł	ΪΛ	บ	M	UT.		17			

							Da	ays						
Concentration	0	5		10	>		เร	20	)	Fince				
4.3	init.	new	old	new	old	new	old	new	old	-new-	old	new	old	new
Temperature (°C)	15.0	15.0	16.0	15.5	160	15.0	16.0	15.0	16.0	16.D				
DO (mg/L)	10.2	9.9	8.7	9.9	9.8	9,8	9.7	10.1	9.8	9,5				
рН	7.1	F.7	7.0	7.2	7.0	7.1	7.1	7.2	7.2	7.3				
Cond. (µS/cm)	7880	1	04D	78	0	80	130	79	20	78	90		L	
Initials	JW .	N	117	y.		M		M			15			

							Da	ays						
Concentration	0		5	7]	>		15	21	Э ·	Finel				
7.2	init.	new	old	new	old	new	old	new	old	-new-	old	new	old	new
Temperature (°C)	15.0	15.0	16.0	15-5	160	15.0	16.0	15.0	16.0	16.0				
DO (mg/L)	10.2	9.9	8.5	9.8	9.1	9,8	9.6	10.1	9.8	9,5				
рН	9.0	7.1	7.0	7.1	6.9	7.0	7.0	7.7	7.1	7.2				
Cond. (µS/cm)	12710	12	740		170	12	30		680		540		L	
Initials	NC			M	N	Ŵ			<u>เว</u>	1				

DO meter:

pH meter:

Conductivity meter: 2

Analysts:

JW-MIT, TH-

Reviewed by: Date reviewed:

Oa- 18, 2017

Sample Description:

Hardness*

Alkalinity*

* mg/L as CaCO3

Comments:

1

Control

F)

(5

## Aquatic Moss Fresh Water Toxicity Test Water Quality Measurements

Client: Sample ID: Work Order #: Hemerra Sodium chloride (70521

Start Date & Time: June 29 /17 @ 1500k Stop Date & Time: JULY 20 / 17 @ 1400k Test Species: Fontinalis antipyretica

911 Naci							Da	ays						
Concentration	0	1	5		D	1	5		D	Final				
12	init.	new	old	new	old	new	old	new	old	new	old	new	old	new
Temperature (°C)	15.0	15.0	16,0	15-5	160	15.0	Ib.D	15.0	16.0	16,0				
DO (mg/L)	10.2	9.9	8.5	9.3	9.6	9.8	9.6	10.1	9.8	9.6				
рН	7.0	7.1	6.8	7.0	68	7.0	6.9	7.1	7.0	7.0				
Cond. (µS/cm)	20600	20	500	20	600	30	500	20	500	30	400			
Initials	SM	Μ		4v	r	M	ป	ĺΛ	Ы	N	5			

							Da	ays	,					
Concentration	0	Ę	<b>)</b>	(0	, ,	1	5	20	>	Final				
20	init.	new	old	new	old	new	old	new	old	new	old	new	old	new
Temperature (°C)	15.0	15.0	16.0	155	16.0	15.0	16.0	15.0	16.0	16,0		[		
DO (mg/L)	10.2	9.9	8.4	9.8	9.7	9.8	9.6	10.1	9.6	9.6				
рН	6.9	7.D	6.7	6.9	6.7	6.9	6.7	7.0	6.9	7,D				
Cond. (µS/cm)	32400	3	2900	33	000	33	2600	32	700		2400			
Initials	SIN	Ň	NLT	NN	<u>م</u> ــر		บา	M	17		NU			

						_	Da	ays				•		
Concentration	0													
·····	init.	new	old	new	old	new								
Temperature (°C)			• .						· ·					
DO (mg/L)														
рН														
Cond. (µS/cm)											<b>I</b>		!	
Initials														

							Da	ays				•		
Concentration	0													
	init.	new	old	new	old	new	old	new	old	new	old	new	old	new
Temperature (°C)											-			
DO (mg/L)				1						1				
pH									· · · · ·					
Cond. (µS/cm)			•				I					· · · ·		
Initials									·	1				
				•		· · · · · · · · · · · · · · · · · · ·		L						L']
DO meter:	1			рН	meter:	<u> </u>			Cond	uctivity	meter:	2		
	Con	ntrol										<b></b>		
Hardness*										Analys	ts:	JN, MI	J, TY	
Alkalinity*	15	;								Review	od by:			
* mg/L as CaCO3	··· ··· ··· ··· ··· ··· ··· ··· ··· ··						L		· [	Date rev	iewed:	0 <i>a</i>	-18,	2017
Sample Description:					<u> </u>	•	····					·		
Comments:														

	Hemmen				-	mination Dote:	June 29/17 July 20/17			
/ork Order #:	170521				l en	mination Date: Fest set up by:				
ample ID:	Naci					resi set up by.				
Concentration 9/L NAC	Rep	Plant #	Length (cm)	Chlorosis	Necrosis	Yellow	Comments	Initi	tials	
		1	22					<u>) )</u>	N	
Control		2	24						1	
	A	3	23						L	
		4	15 45-11				·		L	
		5	22				·			
		6	21						L	
		7 ·	22						L	
		8	21			.'				
		9	22							
		10	23							
		1	23							
		2	22				·			
<b>1</b>	в	3	22			4			L	
		4	22							
		5	24							
		6	23							
		7	25							
		[°] 8	21						L	
		9	23							
		10	22							
		1	25							
		2	24	5					Ľ	
	с	3	23							
		4	24							
		5	21							
		6	23							
		7	22							
		8	25							
		9	23							
		10	23					`	V	
							· · · · · · · · · · · · · · · · · · ·			
							,			
						6				

Reviewed by:

Modified Version 1.0 July 2, 2008

Ú

Oct. 18, 2017-

lient:	Hemmer	<u>и</u>			_	Start Date.	June 29/17	
Vork Order #:	170521				Tern	est set up by:	JUIY 20/17	
ample ID:	Naci	· · · · · ·	<u></u>		. 1	est set up by.		
			· · · · · · · · · · · · · · · · · · ·					<u> </u>
Concentration 9/L NACI	Rep	Plant #	Length (cm)	Chlorosis	Necrosis	Yellow	Comments	Initia
	-	1	22					JW
0.34		2	24					
•	A	3	24					
		4	22		·. ·			
		5	24				·	TT
		6	22					
		7 ·	22	J				
		8	22	······································		•		
		9	21			<u> </u>		
			23				· · · · · · · · · · · · · · · · · · ·	+ + +
		10	2)					++
		1	23 23					+
	_	2	~ 2322				· · · · · · · · · · · · · · · · · · ·	++
ъ	В							┿╋
		4	22					+-+
		5	25					┼╌╂
		6	23				·	+
		7	24		• .			+
		8	22		· · · ·			+
		9	23					
		10	23		<u></u>			<u>       </u>
7		1	22					<del></del>
		2	23					_
	С	3	22		· · · · · · · · · · · · · · · · · · ·			$\downarrow$
		4	*-20 22	-				_
		5	24					
:		6	22					
•		7	. 22.					
		8	22					
		9	23					
		10	23				•	11
• • • •								-
			-					1.
			·					
· · · ·								
	· · ·		<u> </u>		· ·		· · ·	
					1		· · · · · · · · · · · · · · · · · · ·	+
•				<u> </u>				
			· · · · · · · · · · · · · · · · · · ·		<u> </u>	·•		
	<u> </u>	<u> </u>	1	l	<u> </u>	1	1	

Comments:

Reviewed by:

U

bot - 18, 2017

Client:	Hemmer	a				Start Date:	June 29/17		
Work Order #:	170521			· · · · · · · · · · · · · · · · · · ·	Terr	nination Date:	JUIU 20/17		
Sample ID:	Naci			<u></u> ,	Т	est set up by:	JW.		
			1				· · · · · · · · · · · · · · · · · · ·		
Concentration	Rep	Plant #	Length (cm)	Chlorosis	Necrosis	Yellow	Comments	Init	tia
		1	25				· · · · ·	<u> </u>	N
0.56		2	24				•		1_
,	A	3	23						
		4	23				·····		T
		5	23				• •	1	t
		6	24						t
•••		7 ·	21		•.			+-	t
•.		8	22				· · · · · · · · · · · · · · · · · · ·		t
•		9	25						t
		10	22		•			- <del> </del> .	t
		1	K 24 22						$\dagger$
		1	73 21					+	$^{+}$
•		2	27 22						$\dagger$
	В		23 23				· · · · · · · · · · · · · · · · · · ·		$^{+}$
		<u>4</u> 5	1			· · ·			╀
			23 22 72 23						+
		6	17 72						+
		7	72 23		•				+
		8	22 21					+	+
•		9	20 21			 			+
		10							+
		1	24		<u></u>				÷
. ·		2	24				· · · · · · · · · · · · · · · · · · ·		+
	c	3	21		·······				+
		-4	22	· · · · · · · · · · · · · · · · · · ·	·	· ·	······		+
		5		· · · · · · · · ·					╇
•		6	22				· · · · · · · · · · · · · · · · · · ·		+
		7	20						╇
		8	20						$\downarrow$
		9	N-20-22		·····		·····		+
		10	. 23			ļ		_ <b>_</b>	4
							·		
ta ang sa			·]				· · · · · · · · · · · · · · · · · · ·		
		ļ							
• 10									
				·	·		-		
	·	ļ							
· .									
<u> </u>									

Comments:

Reviewed by:

Modified Version 1.0 July 2, 2008

U

Pet - 18, 2017

Client:	Hemmen	<u>a</u>			Start Date: JUNE 29/17 Termination Date: JUIU 20/17						
Vork Order #:	170521				Ten	mination Date:	DU14 20 / 17				
ample ID:	Naci			<u> </u>		Fest set up by:					
Concentration 3/L NAC	Rep	Plant #	Length (cm)	Chlorosis	Necrosis	Yellow	Comments	Initial			
	•	. 1 .	22				·	WC			
0.93		2	22								
	A	3	20								
		4	22		•		· · ·				
		5	21								
		6	22								
•		7 ·	22								
•	-	8	23								
,		9	21	. ·							
		10	22					·			
		1	22			· ·					
		2	23								
	в	3	12				· · · · · · · · · · · · · · · · · · ·				
•		4	20								
		5	23				· · · · · · · · · · · · · · · · · · ·				
		6	25								
		7	22				······································				
		- 7 - 8	20				······································				
		9	21								
		10	21								
• ·		1	21								
		2	21								
	с	3	21		· · · ·		· · · · · · · · · · · · · · · · · · ·				
	U U	.4	24		· .						
			22								
· · ·		5	20								
· · ·		6	23	· · · · · · · · · · · · · · · · · · ·		-					
•		7	21				· · · · · · · · · · · · · · · · · · ·				
		8	21								
			22				•				
		10									
				· ·			· · · · · · · · · · · · · · · · · · ·				
							······································				
			· · · · ·								
							•				
	-										
				·							
					· ·		,, <u>,</u> ,,				
	•				<u> </u>		·				
· · · ·			•								

Comments:

Reviewed by:

ŰV

Oct - 18, 2017

ent:	Hemmen	<u>a</u>				Start Date:	June 29/17	
ork Order #:	170521				Теп	mination Date:	JUIU 20/17	·····
mple ID:	Naci		<u>.</u>			Fest set up by:	- MC	
Concentration	Rep	Plant #	Length (cm)	Chlorosis	Necrosis	Yellow	Comments	Initia
•		1	21	$\checkmark$		· · · ·		Jh
1.6		2	22-24					
	A	3	20					
		4	21					
		5	20	~			· .	
		6	21	$\checkmark$				
		7 ·	21	$\checkmark$	V			
		8	20	1		· ·		
		9	20	J .				
		10	23		· ·			$\neg$
			25	-				
		1	22	· · · · · ·				
		2					······································	
'.	В		21	V .				
		4	21				· · ·	-+
		5	22					
		6 .						
		7	21	S J				
		8	20					
		9	21	V	· · · · ·	· ·		
		10	20	5				·
		1	22	<ul> <li>✓</li> </ul>				
		2	20			. ···		
	С	3	23				· · ·	
		.4	23	ļ			· · · · · · · · · · · · · · · · · · ·	
		5	21	$\checkmark$	<u> </u>			
		6	20	~			· · · · · · · · · · · · · · · · · · ·	
internet in the second s		7	21	$\checkmark$	$\checkmark$			
		8	20	$\checkmark$				
		9	22	$\checkmark$				
		10 .	20	$\checkmark$			•	
						·	• .	
					· .			
			1					
							······································	
•				· · ·				
			-l	-				

Reviewed by:

U

Det. 18, 2017

lient:	Hemmer	a			Start Date: JUNE 29/17						
ork Order #:	170521				Ten	mination Date: 3	UIU 20/17				
ample ID:	Naci				- 	Test set up by:	JW .				
Concentration	Rep	Plant #	Length (cm)	Chlorosis	Necrosis	Yellow	Comments	Initia			
	•	1	20	V	J			JN			
· •		2	21	√ ¹	$\sim$		•				
2.6	A	3	20	$\checkmark$	$\checkmark$						
		4	21	5	V .						
		5	1-2021	7	~						
		6	19	$\checkmark$	$\checkmark$		······································				
		7 ·	20								
			20								
		8		$\overline{}$	$\overline{\checkmark}$		·····				
		9	20 1 1 2021								
		10 -	<u>nar</u>	·····							
		1	20	<u> </u>			······································				
		2	2 " 18	<u> </u>	1	<u> </u>	<u></u>				
•	В	3 .	2	<u> </u>							
		4	22	5		· · ·					
		5	20	<u> </u>	$\checkmark$						
		6	18	$\checkmark$	V						
		7	2	<u>у</u>	V		·				
		8	20	$\checkmark$	$\checkmark$		•				
		9	20	<u></u>							
		10	20								
		1 .	20	$\checkmark$			· · · · · · · · · · · · · · · · · · ·				
		2	21	$\checkmark$							
	c	3	20	¥			· · · · · · · · · · · · · · · · · · ·				
		4	21		J.		· · · · · · · · · · · · · · · · · · ·				
			20	5	J						
		5	20		+	·	· · · · · · · · · · · · · · · · · · ·				
		6	20	5		++					
		7									
		8	21			- <u> </u>					
		9									
		10	. 20	<u> </u>			·····				
• • • •			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				
			1			_					
			·								
							·				
• 2							•				
			· ·	1							
			-								
				1							

Comments:

Reviewed by:

Modified Version 1.0 July 2, 2008

U

007-18,2017

.

Inde Orden He		a			Tor	Start Date:	1010 20 /17	Termination Date: JUIU 20 / 17							
ork Order #: ample ID:	170521 Naci					Test set up by:									
anipie iD.	NUCI														
Concentration	Rep	Plant #	Length (cm)	Chlorosis	Necrosis	Yellow	Comments	_ In	nitial						
		1	21	$\checkmark$	$\checkmark$		· · ·	J	IN						
4.3		2	n	$\checkmark$			•		1						
	А	3	21	V .	$\checkmark$										
		4	20	$\checkmark$	$\sqrt{2}$										
•		5	20	5			•								
		6	20	$\checkmark$											
•		7 ·	20	× .	$\overline{\checkmark}$		· · · · · · · · · · · · · · · · · · ·								
		8	22	~	$\checkmark$										
		9	20	$\sqrt{\cdot}$	$\checkmark$		<u>, , , , , , , , , , , , , , , , , , , </u>		Τ						
		10	20	V .			· · · · · · · · · · · · · · · · · · ·								
		1	20	$\checkmark$	<b>\</b>	<u> </u>	·····								
		2	20	$\sim$	~				1						
	в	3	W 2022	$\sim$											
ъ.			17	$\checkmark$	$\checkmark$				╈						
		4	21	$\overline{\checkmark}$	$\checkmark$	-			$\uparrow$						
			20	$\overline{\checkmark}$	<b>V</b>	· ·			+						
		6	20	× .	<u> </u>	1			╈						
		7		$\checkmark$	$\checkmark$		······································		+						
		8	20	~					+						
		9				 			-						
		10	20 22	v v	$\overline{\checkmark}$				+						
		1		~~~~~					╉						
		2	21		V	<u> </u>			+						
	С	3		<u>~ ·</u>	V		· · · · · · · · · · · · · · · · · · ·		+						
		4	20												
· ·		5	20	$\checkmark$	<i>√</i>										
		6	20	$\checkmark$			· · · · · · · · · · · · · · · · · · ·		-+						
	· ·	7	20				/		_						
		8	20	V	V.										
		9	22	$\checkmark$											
	· · · · ·	10	20	<u>√</u>			•		$\checkmark$						
4.00 × 1							·								
·															
							4								
· •						· · ·									
				· · · · ·											

Comments:

.

Reviewed by:

U

OCT. 18, 2017

ent: ork Order #:	Hemmer 170521				Ten	mination Date:	June 29/17 July 20/17	
mple ID:	Naci				•	fest set up by:	SW	
	1							
Concentration	Rep	Plant #	Length (cm)	Chlorosis	Necrosis	Yellow	Comments	Initial
		1	20		<u>v</u>		· · · · · · · · · · · · · · · · · · ·	MC
7.2		2	20		$\checkmark$		·	
	A	3	21417					
. ·		4	20					
		5	20		V		•	
		6	20	``				
1. A.	Ň	· 7 ·	- <u>1</u> 0				· · · · · · · · · · · · · · · · · · ·	
•		8	20	·	<b>J</b>	•		
		9	20		5			
		10	15					<u> </u>
		1	22		~			
		2	20		~			
· ·	в	3	23		~			
		4	20		~			
		5	20		J			
		· 6	20		V			
		7	21		V			
		8	20		<u> </u>	1		
		9	20	<u> </u>	U U			
· ·		10	21		J			
		1	21		V			
		. 2	20		- - -			
	c	3	2		V .	-		
		4	17		<b>V</b>			
		5	20	1.	J			
1	-	6	20				· · ·	
		7	20		- V - V			
		8	20		- V - V			
		9	20	<u></u>	<del>v</del>			
		9 10	20				· ·	
		10 .	~~~					
					·			
				· · · · ·				
			·	+				
		h						
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -					· · ·			
,								
		· · · · · · · · · · · · · · · · · · ·	·		· · ·			
				· · · ·				
<u> </u>	<u> </u>		<u> </u>	<u> </u>			•	

Reviewed by:

Modified Version 1.0 July 2, 2008

<u>U</u>

2117

bet-18

Date Reviewed:

1.

lient:	Hemmer	u			Start Date: <u>JUIQ 29 / 17</u> Termination Date: <u>JUIQ 20 / 17</u>						
ork Order #:	170521				. ier	Test set up by:	JW				
ample ID:	Naci		**************************************		••	lest set up by.					
Concentration	Rep	Plant #	Length (cm)	Chlorosis	Necrosis	Yellow	Comments	Initia			
		1	20		<u>v</u>		·	WC			
12		2	21		~						
	A	3	17		<ul> <li>✓</li> </ul>						
		4	21								
		5	20								
		6	20		<b>v</b>						
. *		7	20		J						
		8	20		5						
		9	20								
	· ·	10	21		∠ ·			·			
		1	મ		~						
		2	21		V						
	в	3	21		V						
		4	20		~		· · ·	· ·			
		5	2(		~	· · · ·					
		6	20		v 1			·			
		7	20		V.						
		8	20				· · · · · · · · · · · · · · · · · · ·				
		9	20		V V						
		10	20	-	- V						
		10	20								
		2	20		~						
	с	3	20			+					
		4	20		· · ·		·····				
			20	·   · · · ·	V						
		5	22				• • •				
• . •		7	17				·····				
			21								
		8	20				·····				
		9	20				•				
		10									
		·									
					· ·						
• • • •											
					· ·						
, ,							·				
<u> </u>			·		<u> </u>						
				. *							
Comments:	•										
	······		· · · · · · · · · · · · · · · · · · ·			·····					

Reviewed by:

per

Moss	Toxicity	Test Data	Sheet - Length	Measurements
------	----------	-----------	----------------	--------------

Client:	Hemmer	2		•		Start Date:	June 29/17	<u> </u>	
Work Order #:	170521				Ten	mination Date:	JUIU 20/17		
Sample ID:	Naci				· · ·	Test set up by:	WC		
	· -	r				-	· · · · · · · · · · · · · · · · · · ·		٦
Concentration 9/L NACI	Rep	Plant #	Length (cm)	Chlorosis	Necrosis	Yellow	Comments	Initia	
· · · ·		1	20		$\sim$			JW	1
20		2	21		~				
20	A	3	20		<ul> <li>V</li> </ul>				
		4	20						
		5	21		$\checkmark$			╧╋┿	
		6	19		J				
		7 ·	20		<i>\</i>				
		8	20		<u>у</u>				
•		9	20		7				<u>.</u>
		10	20						
		1	18		~				
A.		2	20		~				
•	в	3 .	20						
		4	20		J			·	
		5	20		$\checkmark$				
		6	2)		V		· ·		
		7	20		J.				
		[.] 8	21		<u>ب</u>				
		9	20		J				
· · · ·		10	20						
		1	20		~				
		2	20		<u>~</u>				
	c	3	7		<u> </u>				ļ
		4	20		<u>·</u>				Ĺ
		5	20					·	<u> </u>
		6	20						
		7	20	· ·					<u> </u>
		8	<u> </u>		7				ļ
		9	20		5				-
		10	21				· · · · · · · · · · · · · · · · · · ·		¥
t total							· ·		
		·	<u> </u>		· .				
			1		<u> </u>				
		ļ					· · · · · · · · · · · · · · · · · · ·		
. · · · · ·					· ·	_			
					,				
					· · · · ·			·	
· .									
						•			
<u> </u>	<u></u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·		·				

Comments:

Reviewed by:

Ú

Det. 18, 2017

# 21-d Moss Dry Weight Data Sheet

Client: Sample ID: Work Order No.: g/L ญลุณ	Hemmero Nacl 170521	ג 	Term	Start Date: June 29 /17 Ination Date: July 20 / 17		
Concentration	Rep	Pan No.	Pan weight (mg)	Pan + moss (mg)	No. of moss tips	Initials
Control	A	1	1026.81	1040.98	10	JW/JW
	В	2	1027.77	1042.28	10	
	С	3	1026.60	1042.00	10	
	A	4.	1031 - 50	1046.94	10	
0.34	B	9	1005 - 23	1020.31	. 10	<u></u>
0.54	С	6	1000 . 30	1015 · 25	10	
	A.	7	1014.88	1030.25	10	
0.56	В	8	1002.83	1018.06	. 10	
	С	٩	1013.17	1027.17	10	
	A	. 10	1027.74	1041.65	01	
0.93	В	- 11	1011 - 50	1026.23	10	<u> </u>
0.45	С	ıي	1021.30.	1036.07	10	· .
·	A	13	1020.72	1033.03	10	
1.6	В	14	1033.95	1049.50	10	
(	С	15	1009.45	1024.11	10	
	A	16	1026.05	1036.94	10	
2.6	В	17	1021-62	1032.43	0	
æ. U	С	. 18	999.60	1010 . 30	10	
	A	19	1013.21	1023-35	10	
4-3	В	20	1022.71	1032.18	10	
	С	21	1023.51	1033.70	10	

Comments:

•

10% verwash: #1: 1041.00 mg, #13: 1032. 8/mg., #21: 1033-57 mg.

Reviewed by:

Ú

Date Reviewed:

Oct- 18,2017

Modified Version 1.0 June 23, 2008

## 21-d Moss Dry Weight Data Sheet

Start Date: June 29 /17 Client: Hemmera Termination Date: JUIN 20 / 17 . Sample ID: Nacl Work Order No.: 170521 g/L Nacl No. of moss Initials Pan + moss (mg) Pan No. Pan weight (mg) Concentration Rep tips MT JW/ JW 10 1019.49 1027.96 -Control- JW А 22 (0 23 в 1033.47 1023 - 68 7.2 10 С 24 1017.28 1026.81 10 1036.81 25 Α 1027.23 26 1035 . 11 10 B 1029.32 12 С 27 (0 1028 . 84 1038.87 10 A 28 1009.56 1019.54 D 29 1047.62 в 1037.89 20 1054.42 10 С 3D 1044.15 Α В С Α в С A в С Α в V С

Comments:

10% verweight: #30:1054.19 mg

UU

Reviewed by:

Date Reviewed:

Det: 18, 2017

Nominal	Da	ay 0 Analyti	ical		Average Analy	tical Values
NaCl	CI	Na	NaCl	NaCl	NaCl	Cl
(g)	(mg)	(mg)	(mg)	(g)	(g)	(g)
0	2.38	1.77	4.15	0.00415	0.004	0.00
0.34	226	149	375	0.375	0.379	0.22
0.56	361	240	601	0.601	0.594	0.35
0.93	588	389	977	0.977	0.975	0.58
1.6	981	675	1656	1.656	1.667	1.01
2.6	1650	1050	2700	2.7	2.783	1.68
4.3	2750	1620	4370	4.37	4.513	2.79
7.2	4380	2760	7140	7.14	7.280	4.47
12	7450	4680	12130	12.13	12.267	7.51
20	12200	7830	20030	20.03	20.033	12.20
Nominal	Da	y 10 Analyt	ical			
NaCl	Cl	Na	NaCl	NaCl		
(g)	(mg)	(mg)	(mg)	(g)		
0	2.27	1.46	3.73	0.00373		
0.34	234	152	386	0.386		
0.56	347	234	581	0.581		
0.93	588	382	970	0.97		
1.6	1030	660	1690	1.69		
2.6	1810	1140	2950	2.95		
4.3	2980	1820	4800	4.8		
7.2	4720	2840	7560	7.56		
12	8050	4490	12540	12.54		
20	12100	7940	20040	20.04		
Nominal		Day 21 /	Analytical	·		
NaCl	Cl	Na	NaCl	NaCl		
(g)	(mg)	(mg)	(mg)	(g)		
0	2.48	1.86	4.15	0.00415		
0.34	210	137	375	0.375		
0.56	340	221	601	0.601		
0.93	575	369	977	0.977		
1.6	1010	642	1656	1.656		
2.6	1580	1010	2700	2.7		
4.3	2650	1690	4370	4.37		
7.2	4320	2530	7140	7.14		
12	7030	4760	12130	12.13		
20	12300	7730	20030	20.03		

665. 18 ZOIT

			Initial			Mean
Concentrations	Rep	Plant #	Length	Length	Growth	growth
(g/L NaCl)			(mm)	(mm)	(mm)	(mm)
Control	A	1	20	22	2	2.1
		2	20	24	4	
		3	20	23	3	
		4	20	21	1	
		5	20	22	2	
· · · · · · · · · · · · · · · · · · ·		6	20	21	1	
		7 8	20	22	2	
		<u> </u>	20	21	1	
		9 10	20 20	22	2	
	В	10	20	23	3	2.7
· · · · · · · · · · · · · · · · · · ·	D	2	20	23	2	2.7
		3	20	22	2	
· · ·		4	20	22	2	
		5	20	22	4	
		6	20	24	3	
		7	20	25	5	
		8	20	25	5 1	
		9	20	21	3	,
		10	20	23	2	
	с	10	20	22	5	3.3
	Ť	2	20	23	4	3.3
		3	20	24	3	
		4	20	24	4	
		5	20	21	1	
		6	20	23	3	
		7	20	22	2	
		8	20	25	5	
		9	20	23	3	
		10	20	23	3	
0.34	А	1	20	23	2	2.6
		2	20	24	4	2.0
		3	20	24	4	
		4	20	22	2	
		5	20	24	4	
		6	20	22	2	
		7	20	22	2	
		8	20	22	2	
		9	20	21	1	
		10	20	23	3	
	В	1	20	23	3	3
		2	20	23	3	
		3	20	22	2	
		4	20	22	2	
		5	20	25	5	
		6	20	23	3	
		7	20	24	4	
		8	20	22	2	
		9	20	23	3	
		10	20	23	3	
	С	1	20	22	2	2.5
		2	20	23	3	
		3	20	22	2	
		4	20	22	2	· · · · ·
		5	20	24	4	
		6	20	22	2	
		7	20	22	2	
		8	20	22	2	
		9	20	23	3	
				1	-	

(g/L NaCl)       (r         0.56       A       1         2       3         3       4         5       6         7       8         9       10         8       1         9       10         8       1         9       10         8       1         9       3         10       8         10       7         8       1         10       7         8       1         10       10         10       10         10       10         10       10         10       10         10       10         10       10         11       10         11       10         11       10         11       10         11       10         11       10         12       10         13       10         14       10         15       10         10       10         10       10		ength (mm) 25 24 23 23 23 23 24 21 22 25 22 22 22 23 23 23 23 23 23 23 23 23 23	Growth (mm) 5 4 3 3 4 1 2 5 2 2 2 2 1 2 2 1 2 3 3 3 3 1 1 1 0 4 4 1 2 3 3 2 0 0 0 2 3 3 2 0 0 0 2 3 3 2 3 3 3 3	growth (mm) 3.2 1.8
0.56       A       1         2       3         3       4         5       5         6       7         8       9         10       8         9       10         8       1         2       3         9       10         8       1         2       3         4       5         6       7         3       4         5       6         7       8         9       10         7       8         9       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10 <td>20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         &lt;</td> <td>25 24 23 23 24 21 22 25 22 22 22 22 23 23 23 23 23 23 23 23 21 20 24 21 20 24 21 22 23 23 23 21 21 20 24 22 23 23 23 23 23 23 23 23 23 23 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23</td> <td>5 4 3 3 4 1 2 5 2 2 2 1 2 2 1 2 3 3 3 3 1 1 0 4 4 4 1 2 3 3 2 0 0 0 0 2 3 3</td> <td>1.8</td>	20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         <	25 24 23 23 24 21 22 25 22 22 22 22 23 23 23 23 23 23 23 23 21 20 24 21 20 24 21 22 23 23 23 21 21 20 24 22 23 23 23 23 23 23 23 23 23 23 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23	5 4 3 3 4 1 2 5 2 2 2 1 2 2 1 2 3 3 3 3 1 1 0 4 4 4 1 2 3 3 2 0 0 0 0 2 3 3	1.8
2       3         3       4         5       6         7       8         9       10         8       1         2       3         4       2         3       4         2       3         4       5         6       7         8       9         10       7         8       9         10       7         8       9         10       7         8       9         10       7         8       9         100       7         2       3         3       4         5       6         7       8         9       10         0.93       1         10       2         3       3         4       2         3       3         4       2         3       3         4       2         3       3         4       5         3       3	20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         <	24         23         23         24         21         25         22         21         22         21         22         23         24         23         24         23         23         23         23         21         20         24         21         22         23         21         22         23         24         21         22         23         24         21         22         23         24         25         26         27         28         29         20         20         22         23         20         22         23         23          23	4 3 3 4 1 2 5 2 2 1 2 3 3 3 1 1 0 4 4 1 2 3 2 3 3 1 1 0 4 4 1 2 3 3 2 3 3 1 1 0 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3	1.8
3       4         5       6         7       8         9       10         8       9         10       8         2       3         4       5         6       7         8       1         2       3         4       5         6       7         8       9         100       7         8       9         100       7         2       3         9       100         C       1         2       3         4       5         6       7         3       4         5       6         7       8         9       10         0.93       A         1       2         3       4         10       2         3       4         5       6         7       3         8       9         100       2         3       4         5       6      <	20	23         23         24         21         25         22         21         22         21         22         23         24         23         23         23         24         21         23         21         21         20         24         21         22         23         21         22         23         24         21         22         23         24         21         22         23         22         23         20         20         20         20         20         22         23         23         23	3 3 4 1 2 5 2 2 1 2 3 3 3 1 1 0 4 4 1 2 3 2 3 3 1 1 0 4 4 1 2 3 3 2 3 3 1 1 0 4 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3	
4         5         6         7         8         9         10         8         2         3         4         5         6         7         8         10         8         10         8         7         8         9         10         7         8         9         100         C         10         C         10         C         10         C         10         C         110         0.93         110         0.93         4         5         6         77         8         9         100         0.93         4         5         6         7         8         9         10         8	20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         <	23         23         24         21         25         22         21         22         21         22         23         24         23         23         23         24         21         20         24         21         22         23         21         20         24         21         22         23         24         21         22         23         24         21         22         23         22         23         20         20         20         20         20         22         23         23          23	3 3 4 1 2 5 2 2 1 2 3 3 3 3 3 1 1 0 4 4 1 2 3 3 2 0 0 0 0 2 3 3	
5         6         7         8         9         10         8         2         3         4         5         6         7         8         7         8         7         8         9         10         7         8         9         100         C         10         C         10         C         10         C         3         4         5         6         7         8         9         100         0.93         A         1         2         3         4         5         6         7         8         9         10         0.93         4         5         6         7	20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20 <td>23         24         21         22         21         22         21         22         23         23         23         23         23         21         23         21         20         24         21         22         23         21         20         24         21         22         23         22         23         24         25         20         22         23         22         23         24         25         20         20         20         20         20         22         23         23          23    </td> <td>3 4 1 2 5 2 2 1 2 3 3 3 3 3 1 1 2 3 3 1 1 1 0 4 4 4 1 2 3 3 2 0 0 0 0 2 3 3</td> <td></td>	23         24         21         22         21         22         21         22         23         23         23         23         23         21         23         21         20         24         21         22         23         21         20         24         21         22         23         22         23         24         25         20         22         23         22         23         24         25         20         20         20         20         20         22         23         23          23	3 4 1 2 5 2 2 1 2 3 3 3 3 3 1 1 2 3 3 1 1 1 0 4 4 4 1 2 3 3 2 0 0 0 0 2 3 3	
6         7         8         9         10         8         2         3         4         5         6         7         8         9         10         8         7         8         9         10         7         8         9         100         C         10         C         10         C         10         C         3         4         5         6         7         8         9         100         0.93         4         5         6         7         8         9         100         0.93         4         5         6         7         8         9         10         8	20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20	24         21         22         21         22         21         22         23         23         21         23         21         23         21         21         21         21         22         23         21         22         23         24         21         22         23         22         23         22         23         24         25         26         27         28         29         20         22         23         20         20         20         20         22         23         23           23	4 1 2 5 2 1 2 3 3 3 1 1 0 4 4 1 2 3 2 0 0 0 2 3 3 1 1 1 0 4 4 1 2 3 3 3 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3	
7       8         9       10         8       1         2       3         3       4         5       6         7       8         9       10         7       8         9       10         C       1         2       3         0       2         3       9         100       2         2       3         4       5         6       7         3       4         5       6         7       8         9       10         0.93       A         1       2         3       4         5       6         7       3         4       5         6       7         3       4         5       6         7       8         8       9         10       5         6       7         8       9         10       8         9       10	20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20	21         22         25         22         21         22         23         23         23         21         23         24         21         22         23         21         22         23         24         21         22         23         22         23         22         23         20         22         23         24         21         22         23         22         23         20         22         23         20         20         20         20         21         22         23         23           23	1 2 5 2 1 2 3 2 3 3 1 1 0 4 4 1 2 3 2 0 0 0 2 3 3 1 1 1 0 4 4 1 2 3 3 3 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3	
8       9         10       8         10       8         2       3         3       4         5       6         7       8         9       10         7       8         9       10         C       1         2       3         4       2         3       9         10       2         3       4         5       6         7       8         9       10         0       7         8       9         10       2         3       4         5       6         7       8         9       10         0.93       A         4       5         6       7         3       4         2       3         4       5         6       7         8       9         10       7         8       9         9       10         8       9 <tr< td=""><td>20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20</td><td>22         25         22         21         22         23         23         23         21         20         24         21         22         23         24         21         22         23         24         21         22         23         22         23         22         23         22         23         20         22         23         24         23         22         23         20         21         22         23         20         22         23          23    </td><td>2 5 2 1 2 3 3 3 3 1 1 0 4 4 4 1 2 3 2 0 0 0 2 3</td><td></td></tr<>	20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20	22         25         22         21         22         23         23         23         21         20         24         21         22         23         24         21         22         23         24         21         22         23         22         23         22         23         22         23         20         22         23         24         23         22         23         20         21         22         23         20         22         23          23	2 5 2 1 2 3 3 3 3 1 1 0 4 4 4 1 2 3 2 0 0 0 2 3	
8       9         10       8         10       8         2       3         3       4         5       6         7       8         9       10         7       8         9       10         C       1         2       3         4       2         3       9         10       2         3       4         5       6         7       8         9       10         0       7         8       9         10       2         3       9         10       0.93         10       2         3       4         2       3         4       5         6       7         3       4         2       3         4       5         6       7         3       4         5       6         7       8         9       9         10       9 <tr< td=""><td>20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20</td><td>22         25         22         21         22         23         23         23         21         20         24         21         22         23         24         21         22         23         24         21         22         23         22         23         22         23         22         23         20         22         23         24         23         22         23         20         21         22         23         20         22         23          23    </td><td>2 5 2 1 2 3 3 3 3 1 1 0 4 4 4 1 2 3 2 0 0 0 2 3</td><td></td></tr<>	20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20	22         25         22         21         22         23         23         23         21         20         24         21         22         23         24         21         22         23         24         21         22         23         22         23         22         23         22         23         20         22         23         24         23         22         23         20         21         22         23         20         22         23          23	2 5 2 1 2 3 3 3 3 1 1 0 4 4 4 1 2 3 2 0 0 0 2 3	
9           10           B           2           3           4           5           6           7           8           9           10           7           8           9           10           C           10           C           33           4           5           6           7           8           9           100           C           33           4           5           6           7           8           9           100           0.93           1           2           3           4           5           6           7           8           9           10           0.93           4           5           6           7           8	20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20	25         22         21         22         23         23         23         21         21         20         24         21         22         23         24         21         22         23         24         21         22         23         22         23         22         20         20         22         23         24         25         20         20         20         20         20         20         21         22         23          24          25          26          27          28          29          20          22          23	5 2 2 3 3 3 3 1 1 0 4 4 4 1 2 3 2 0 0 0 2 3	
10         B         2         3         4         5         6         7         8         9         10         C         3         4         5         6         7         8         9         10         C         3         4         5         6         7         3         4         5         6         7         8         9         100         0.93         A         1         2         3         4         5         6         7         8         9         10         0.93         4         5         6         7         8         9         10         8         9      <	20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20	22 22 21 22 23 23 23 23 21 21 21 20 24 24 24 24 21 22 23 22 20 20 20 22 23	2 2 1 2 3 3 3 1 1 1 0 4 4 4 1 2 3 2 0 0 0 2 3	
B         1           2         3           3         4           5         6           7         8           9         10           C         1           2         3           4         5           66         7           2         3           4         5           66         7           3         4           55         6           7         8           9         10           0.93         A           10         2           3         4           5         6           7         3           4         5           6         7           8         9           100         0.93           4         5           6         7           8         9           10         8           9         10           8         9           10         8           9         10           8         9           100	20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20	22 21 22 23 23 23 21 21 21 20 24 24 24 21 22 23 22 20 20 20 22 23	2 1 2 3 3 1 1 0 4 4 1 2 3 2 0 0 0 2 3	
2         3         4         5         6         7         8         9         10         C         2         33         4         5         6         7         8         9         10         C         33         4         5         6         7         8         9         100         0.93         A         10         0.93         4         5         6         7         8         9         100         0.93         4         5         6         7         8         9         10         8         9         10         8         9         10         8         9         100     <	20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20	21         22         23         23         21         21         20         24         21         22         23         24         21         22         23         24         21         22         23         22         23         22         23         22         20         20         20         20         20         20         20         20         20         22         23	1 2 3 3 1 1 0 4 4 1 2 3 2 0 0 0 2 3	
3         4         5         6         7         8         9         10         C         2         3         4         5         6         7         2         3         4         5         6         7         8         9         10         0.93         A         10         0.93         4         5         6         7         8         9         10         0.93         4         5         6         7         8         9         10         8         9         10         8         9         10         8         9         10         8         9         10 <tr td=""> <tr td=""></tr></tr>	20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20	22 23 22 23 21 21 20 24 24 24 24 21 22 23 22 20 20 20 22 23	2 3 2 3 1 1 0 4 4 1 2 3 2 0 0 0 2 3	2.1
4         5         6         7         8         9         10         C         2         3         4         5         6         7         8         9         10         2         3         4         5         6         7         8         9         10         0.93         A         2         3         4         5         6         7         8         9         10         0.93         4         5         6         7         8         9         10         8         9         10         8         9         10         8         9         10         8         10	20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20	23         22         23         21         20         24         21         22         23         24         21         22         23         22         23         22         23         22         23         20         20         20         20         20         20         23	3 2 3 1 1 0 4 4 1 2 3 2 0 0 0 2 3	2.1
5         6         7         8         9         10         C         2         3         4         5         6         7         8         9         10         0         2         3         4         5         6         7         8         9         100         0.93         A         2         3         4         5         6         7         8         9         10         0.93         4         5         6         7         8         9         10         8         9         10         8         9         10         8         10         8         10         8	20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20	22 23 21 21 20 24 24 24 21 22 23 22 20 20 20 22 23	2 3 1 1 0 4 4 1 2 3 2 0 0 0 2 3	2.1
6         7         8         9         10         C         2         3         4         5         6         7         8         9         10         2         3         4         5         6         7         8         9         100         0.93         A         2         3         4         5         6         7         8         9         10         9         10         8         9         10         8         9         10         8         10         8         10         8         10         8         10         8         10	20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20           20	23 23 21 21 20 24 24 24 24 21 22 23 22 20 20 20 22 23	3 3 1 0 4 1 2 3 2 0 0 0 2 3	2.1
7         8         9         10         C         2         3         4         5         6         7         8         9         10         0         2         3         4         5         6         7         8         9         10         0.93         A         2         3         4         5         6         7         8         9         10         0.93         4         5         6         7         8         9         10         8         9         10         8         9         10         8         10         8         10         8         10         8	20	23 21 20 24 24 24 21 22 23 22 20 20 20 22 23	3 1 1 4 4 1 2 3 2 0 0 0 2 3	2.1
7         8         9         10         C         2         3         4         5         6         7         8         9         10         0         2         3         4         5         6         7         8         9         10         0.93         A         2         3         4         5         6         7         8         9         10         0.93         4         5         6         7         8         9         10         8         9         10         8         9         10         8         10         8         10         8         10         8	20	23 21 20 24 24 24 21 22 23 22 20 20 20 22 23	3 1 1 4 4 1 2 3 2 0 0 0 2 3	2.1
8       9       10       C       2       3       4       5       6       7       8       9       10       0.93       A       10       0.93       4       5       6       7       8       9       10       0.93       A       2       3       4       5       6       7       8       9       10       8       9       10       8       9       10       8       9	20	21 21 20 24 24 21 22 23 22 20 20 20 22 23	1 1 0 4 1 2 3 2 0 0 0 2 3	2.1
9       10       C     1       2     3       4     5       6     7       8     9       10     0.93       A     1       2     3       10     0.93       4     5       5     6       7     8       9     10       0.93     A       1     2       3     4       5     6       7     8       9     10       8     9       10     8	20	21 20 24 24 21 22 23 22 20 20 20 20 22 23	1 0 4 1 2 3 2 0 0 0 2 3	2.1
10           C         1           2         3           4         5           6         7           8         9           10         0           0.93         A           2         3           4         5           6         7           8         9           10         0           0.93         A           2         3           4         5           6         7           8         9           10         8           9         10           8         9           10         8           9         10           8         9           10         8	20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20	20 24 24 21 22 23 22 20 20 20 20 22 23	0 4 1 2 3 2 0 0 0 2 3	2.1
C       1         2       3         4       5         6       7         8       9         10       0         0.93       A       1         2       3         4       5         6       7         8       9         10       2         33       4         5       6         7       8         9       10         8       9         10       8         9       10         8       1	20	24 24 21 22 23 22 20 20 20 22 23	4 1 2 3 2 0 0 0 2 3	2.1
2       3       4       5       6       7       8       9       10       0.93       A       2       3       4       5       6       7       8       9       10       0.93       A       2       3       4       5       6       7       8       9       10       8       9       10       8       10	20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20           20         20	24 21 22 23 22 20 20 20 20 22 22 23	4 1 2 3 2 0 0 0 2 3	2.1
3       4       5       6       7       8       9       10       0.93       A       2       3       4       5       6       7       8       9       10       0.93       A       2       3       4       5       6       7       8       9       10       8       9       10       8       10	20 20 20 20 20 20 20 20 20 20	21 22 23 22 20 20 20 22 22 23	1 2 3 2 0 0 2 3	
4       5       6       7       8       9       10       0.93       A       2       3       4       5       6       7       8       9       10       0.93       A       2       3       4       5       6       7       8       9       10       8       10       8       10	20	22 23 22 20 20 20 22 22 23	2 3 2 0 0 2 3	
5       6       7       8       9       10       0.93       A       2       3       4       5       6       7       8       9       10       0.93       A       1       2       3       4       5       6       7       8       9       10       8       10       8	20     20       20     20       20     20       20     20       20     20       20     20       20     20       20     20       20     20	23 22 20 20 20 22 23	3 2 0 0 2 3	
6       7       8       9       10       0.93       A       2       3       4       5       6       7       8       9       10	20 20 20 20 20 20 20 20 20 20 20	22 20 20 22 23	2 0 0 2 3	
7       8       9       10       0.93       A       2       3       4       5       6       7       8       9       10	20 20 20 20 20 20 20 20 20	20 20 22 23	0 0 2 3	
7       8       9       10       0.93       A       2       3       4       5       6       7       8       9       10	20 20 20 20 20 20 20 20 20	20 22 23	0 0 2 3	
8       9       10       0.93     A       2       3       4       5       6       7       8       9       10       8       10	20 20 20 20 20 20 20	20 22 23	0 2 3	
9         9           10         10           0.93         A         1           2         3         3           4         5         6           7         6         7           8         9         10           10         8         1           10         10         10	20 20 20 20 20 20	22 23	2 3	
10           0.93         A         1           2         3           3         4           5         6           7         8           9         10           B         1	20 20 20 20	23	3	
0.93         A         1           2         3           3         4           5         6           7         8           9         10           B         1	20 20 20			
2 3 4 5 6 7 8 9 10 8 1	20 20	22		
3 4 5 6 7 8 9 10 8 1	20		2	1.7
4 5 6 7 8 9 10 8 1		22	2	
5 6 7 8 9 10 8 1	20	20	0	
6 7 8 9 10 B 1		22	2	
6 7 8 9 10 B 1	20	21	1	
7 8 9 10 B 1	20	22	2	
8 9 10 B 1	20	22	2	
9 10 B 1	20	23	3	
10 B 1		23	1	
B 1				
B 1	20	22	2	
	20	22	2	1.9
		23	3	
		22	2	
4		20	0	
5		23	3	
		25	5	
		22	2	
		20	0	
		21	1	
10	20	21	1	
		21	1	1.6
		21	1	
		21	1	
		24	4	
		22	· 2	
		20	0	
			3	
	20			
	20 20	23	1 1	
9	20 20 20		1	

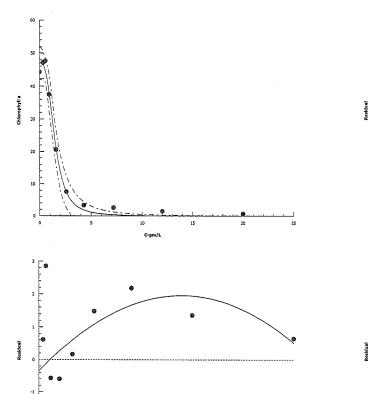
Ger-STA

			11411			
Co	D	Dia wa 44	Initial	Laurath	Counth	Mean
Concentrations	Rep	Plant #	Length	Length	Growth	growth
(g/L NaCl)		1	(mm)	(mm)	(mm)	(mm)
1.6	A	1	20	21	1	0.8
		2	20	21	1	
. <del>.</del>		3	20	20	0	
		4	20	21	1	
		5	20	20	0	
****		6	20	21	1	
		7	20	21	1	
		8	20	20	0	
		9	20	20	0	
		10	20	23	3	
	B	1	20	22	2	1.2
		2	20	22	2	
		3	20	21	1	
4 <del>4</del>	L	4	20	22	2	·····
	ļ	5	20	21	1	
		6	20	22	2	
		7	20	21	1	
	<u> </u>	8	20	20	0	
		9	20	21	1	
		10	20	20	. 0	
	С	1	20	22	2	1.2
		2	20	20	0	
		3	20	23	3	
		4	20	23	3	
		5	20	21	1	
		6	20	20	0	
		7	20	21	1	
	1	8	20	20	0	
		9	20	22	2	
		10	20	20	0	
2.6	A	1	20	20	0	0.3
		2	20	21	1	
·····		3	20	20	0	
		4	20	21	1	
		5	20	21	1	
		6	20	19	-1	
		7	20	20	0	
	<u> </u>	8	20	20	0	
	<u> </u>	9	20	20	0	
		10	20	20	1	
	В	10	20	20	0	0
		2	20	18	-2	
	†	3	20	21	1	
		4	20	21	2	
		5	20	22	0	
		6	20	18	-2	
	<u>├</u>	7				
		8	20	21 20	1	1
		<u> </u>	20		0	
			20	20	0	
		10	20	20	0	
	С	1	20	20	0	0.4
		2	20	21	1	
			20	20	0	
		3			-	
		4	20	21	1	
		4 5	20 20	20	0	
		4 5 6	20 20 20	20 20	0	
		4 5 6 7	20 20 20 20	20 20 20	0 0 0	
		4 5 6 7 8	20 20 20 20 20 20	20 20 20 21	0 0 0 1	
		4 5 6 7	20 20 20 20	20 20 20	0 0 0	

			Initial			Mean
Concentrations	Rep	Plant #	Length	Length	Growth	growth
(g/L NaCl)			(mm)	(mm)	(mm)	(mm)
4.3	A	1	20	21	1	0.6
		2	20	22	2	
		3	20	21	1	
		4	20	20	0	
		5	20	20	0	
·		6	20	20	0	
		7	20	20	0	
		8	20	22	2	
· · ·		9	20	20	0	
		10	20	20	0	
	В	1	20	20	0	0
		2	20	20	0	
		3	20	22	2	
		4	20	17	-3	
		5	20	21	1	
		6	20	21	0	
		7	20	20	0	
		8	20	20	0	
	ļ	9	20	20	0	
	<u> </u>	10	20	20	0	
	C	1	20	22	2	0.5
		2	20	21		
	-	3	20	20	0	
		4	20	20	0	
		5	20	20	0	
		6	20	20	0	
		7	20	20	0	
		8	20	20	0	
		9	20	22	2	
		10	20	20	0	
7.2	A	1	20	20	0	-0.8
		2	20	20	0	
		3	20	17	-3	
		4	20	20	0	
		5	20	20	0	
	ļ	6	20	20	0	
	ļ	7	20	20	0	
		8	20	20	0	
		9	20	20	0	
		10	20	15	-5	L
	В	1	20	22	2	0.7
	<u> </u>	2	20	20	0	ļ
	L	3	20	23	3	
		4	20	20	0	L
		5	20	20	0	
		6	20	20	0	
		7	20	21	1	
		8	20	20	0	
		9	20	20	0	
		10	20	21	1	-
	С	1	20	21	1	0
		2	20	20	0	
		3	20	22	2	
		4	20	17	-3	
		5	20	20	0	<u> </u>
		6	20	20	0	
	<u> </u>	7	20	20	0	
		8	20	20	0	
		9	20	20	0	
		10	20	20	0	
	L					L

			Initial	-	_	Mean
Concentrations	Rep	Plant #	Length	Length	Growth	growth
(g/L NaCl)			(mm)	(mm)	(mm)	(mm)
12	A	1	20	20	0	0
		2	20	21	1	
		3	20	17	-3	
		4	20	21	1	
···· ·		5	20	20	0	
		6	20	20	0	
		7	20	20 20	0	
		8 9	20 20	20	0	
		9 10	20	20	1	
	В	10	20	21	1	0.4
		2	20	21	1	0.4
		3	20	21	1	
·····		4	20	20	0	
····		5	20	20	1	
		6	20	20	0	
		7	20	20	0	
		8	20	20	0	
		9	20	20	0	
<u></u>	<u> </u>	10	20	20	0	
	С	10	20	20	0	0
	Ť	2	20	20	0	Ť
		3	20	20	0	
		4	20	20	0	
		5	20	20	0	
		6	20	22	2	
	<u> </u>	7	20	17	-3	
	1	8	20	21	1	
		9	20	20	0	
		10	20	20	0	
20	A	1	20	20	0	0.1
		2	20	21	1	
		3	20	20	0	
		4	20	20	0	
		5	20	21	1	
		6	20	19	-1	
		7	20	20	0	
		8	20	20	0	
		9	20	20	0	
		10	20	20	0	
	В	1	20	18	-2	0
		2	20	20	0	
		3	20	20	0	
		4	20	20	0	
		5	20	20	0	
		6	20	21	1	
		7	20	20	0	
		8	20	21	1	
		9	20	20	0	
		10	20	20	0	
	С	1	20	20	0	0.2
		2.	20	20	0	
		3	20	21	1	
		4	20	20	0	
		5	20	20	0	
		6	20	20	0	
		7	20	20	0	
		8	20	20	0	
		9	20	20	0	
		10	20	21	1	1

Dec :SIA


EC Al			al Repo							Test	Code:	1705	21a   20-7341-9798
	ga Grow	th Int	nibition Te	st 🤉	1-d Mos	s TOI	kiaity test	î			, ,	Nautil	us Environmental
Analys Analyz			486-5950 Dec-17 17:0	7	Endpoin Analysis		orophyll a nlinear Regro	ession			IS Version al Result:	-	
Batch	ID:	00-9	889-1901		Test Typ	e: - <del>Cel</del>	+Growth ℑ៷	)		Anal	yst: Je	slin Wijaya	
Start I	Date:	29 J	un-17		Protocol		vies (2007)			Dilu	-	chlorinated Tap	Water
Endin	g Date:	20 J	ul-17		Species:	For	ntinalis antip	yretica		Brin	e:		
Durati	ion:	21d	0h		Source:	Uni	versity of BC	>		Age:			
Samp	le ID:	14-3	310-0097		Code:	556	B5F41			Clie	nt: He	mmera	
•	le Date:	29 J	un-17		Material:	Soc	dium chloride	Э		Proj	ect:		
Receiv	ve Date:	29 J	un-17		Source:	Her	mmera						
Samp	le Age:	NA			Station:	Soc	dium Chlorid	e					
Non-L	inear Re	gres	sion Optio	ns									
	Functio							X Trans	sform Y Tra	ansform V			PTBS Function
3P Log	g-Logistic	: EV [	[Y=A/(1+(X/	′D)^C	)]			None	None	e N	lormal [W=	:1]	Off [Y*=Y]
Regre	ssion Su	umma	ary										-
Iters	Log L	L.	AICc	BIC	Adj	R2	Optimize	F Stat	Critical	P-Value	Decisio	n(α:5%)	
9	-9.73		29.46	26.3	-	914	Yes					Fit Not Tested	
Point	Estimate	es											
Level	gm/L		95% LCL	95%	UCL								
1C5	0.568		0.3032	0.70								······	
IC10	0.727	1	0.5695	0.84									
IC15	0.846	8	0.7051	0.96	55								
IC20	0.949	8	0.8156	1.07	,								
IC25	1.044		0.9157	1.16	5								
IC40	1.312		1.194	1.43	4								
IC50	1.5		1.38	1.63	5								
	1.5 ssion Pa	arame		1.63	<b>.</b>		-						
Regre Param	ssion Pa	aramo	eters Estimate	Std	Error 95		95% UCL	t Stat	P-Value	Decision			
Regre Param A	ssion Pa	aramo	eters Estimate 47	<b>Std</b>	Error 95% 44.	43	49.57	35.88	<0.0001	Significan	t Paramete		
Regre Param A C	ssion Pa	arame	eters Estimate 47 3.035	<b>Std</b> 1.31 0.38	Error 959 44. 34 2.2	43 84	49.57 3.787	35.88 7.916	<0.0001 <0.0001	Significan Significan	it Paramete It Paramete	er	
Regre Param A C D	ssion Pa neter	arame	eters Estimate 47	<b>Std</b>	Error 959 44. 34 2.2	43 84	49.57	35.88	<0.0001	Significan Significan	t Paramete	er	
Regre Param A C D ANOV	ssion Pa neter A Table	arame	eters Estimate 47 3.035 1.5	<b>Std</b> 1.31 0.38 0.07	Error 959 44. 34 2.2 485 1.3	43 84 53	49.57 3.787 1.646	35.88 7.916 20.04	<0.0001 <0.0001 <0.0001	Significan Significan Significan	it Paramete It Paramete It Paramete	er	
Regre Param A C D ANOV Sourc	ssion Pa neter A Table e	arame	eters Estimate 47 3.035 1.5 Sum Squa	<b>Std</b> 1.31 0.38 0.07	Error 959 44. 34 2.2 485 1.3 Mean Sq	43 84 53 <b>uare</b>	49.57 3.787 1.646 DF	35.88 7.916 20.04 F Stat	<0.0001 <0.0001 <0.0001 <b>P-Value</b>	Significan Significan Significan <b>Decision</b>	tt Paramete tt Paramete tt Paramete (α:5%)	er	
Regre Param A C D ANOV	ssion Pa neter A Table e	arame	eters Estimate 47 3.035 1.5	<b>Std</b> 1.31 0.38 0.07	Error 959 44. 34 2.2 485 1.3	43 84 53 uare	49.57 3.787 1.646	35.88 7.916 20.04	<0.0001 <0.0001 <0.0001	Significan Significan Significan	tt Paramete tt Paramete tt Paramete (α:5%)	er	
Regre Param A C D ANOV Sourc Model Residu Residu	assion Pa neter A Table e Jal ual Analy		eters Estimate 47 3.035 1.5 Sum Squa 3803.936 25.75362	<b>Std</b> 1.31 0.38 0.07	Error 959 44. 34 2.2 485 1.3 Mean Sq 3803.936	43 84 53 uare	49.57 3.787 1.646 <b>DF</b> 1	35.88 7.916 20.04 F Stat	<0.0001 <0.0001 <0.0001 <b>P-Value</b>	Significan Significan Significan <b>Decision</b>	tt Paramete tt Paramete tt Paramete (α:5%)	er	
Regre Param A C D ANOV Sourc Model Residu Residu Attribu	ssion Pa neter A Table e Jal ual Analy		eters Estimate 47 3.035 1.5 Sum Squa 3803.936 25.75362 Method	Std 1.31 0.38 0.07	Error 959 44. 34 2.2 485 1.3 Mean Sq 3803.936 3.679089	43 84 53 uare	49.57 3.787 1.646 DF 1 7 Test Stat	35.88 7.916 20.04 F Stat 1034 Critical	<0.0001 <0.0001 <0.0001 <b>P-Value</b> <0.0001 <b>P-Value</b>	Significan Significan Significan Decision Significan Decision	t Paramete t Paramete t Paramete (α:5%) t (α:5%)	er	
Regre Param A C D ANOV Sourc Model Residu Residu Attribu	ssion Pa neter A Table e Jal ual Analy		eters Estimate 47 3.035 1.5 Sum Squa 3803.936 25.75362 Method Shapiro-W	Std 1.31 0.38 0.07 ares	Error 959 44. 34 2.2 485 1.3 Mean Sq 3803.936 3.679089 Normality	43 84 53 <b>uare</b>	49.57 3.787 1.646 <b>DF</b> 1 7 <b>Test Stat</b> 0.9645	35.88 7.916 20.04 <b>F Stat</b> 1034 <b>Critical</b> 0.7607	<0.0001 <0.0001 <0.0001 <b>P-Value</b> <0.0001 <b>P-Value</b> 0.8353	Significan Significan Significan Decision Significan Decision Normal D	t Paramete t Paramete t Paramete (α:5%) t (α:5%) istribution	er	
Regre Param A C D ANOV Sourc Model Residu Residu Attribu	A Table e ual ual Analy ute ution	ysis	eters Estimate 47 3.035 1.5 Sum Squa 3803.936 25.75362 Method Shapiro-W Anderson-	Std 1.31 0.38 0.07 ares	Error 959 44. 34 2.2 485 1.3 Mean Sq 3803.936 3.679089 Normality	43 84 53 <b>uare</b>	49.57 3.787 1.646 DF 1 7 Test Stat	35.88 7.916 20.04 <b>F Stat</b> 1034 <b>Critical</b> 0.7607 2.492	<0.0001 <0.0001 <0.0001 <b>P-Value</b> <0.0001 <b>P-Value</b> 0.8353 0.8003	Significan Significan Significan Significan Significan Normal D Normal D	t Paramete t Paramete t Paramete (α:5%) t (α:5%) istribution	er	
Regre Param A C D ANOV Sourc Model Residu Residu Attribu Distrib	A Table A Table al ual Analy ute ution	ysis	eters Estimate 47 3.035 1.5 Sum Squa 3803.936 25.75362 Method Shapiro-W Anderson-	Std 1.31 0.38 0.07 ares	Error 959 44. 34 2.2 485 1.3 Mean Sq 3803.936 3.679089 Normality g A2 Norm	43 84 53 <b>uare</b> ality	49.57 3.787 1.646 <b>DF</b> 1 7 <b>Test Stat</b> 0.9645	35.88 7.916 20.04 <b>F Stat</b> 1034 <b>Critical</b> 0.7607 2.492	<0.0001 <0.0001 <0.0001 <b>P-Value</b> <0.0001 <b>P-Value</b> 0.8353 0.8003 <b>Ilculated Va</b>	Significan Significan Significan Decision Significan Normal D Normal D Normal D	t Paramete t Paramete t Paramete (α:5%) t (α:5%) istribution istribution	er er	
Regre Param A C D ANOV Sourc Model Residu Residu Attribu Distrib Chlore C-gm/	A Table A Table Jal Jal Jal Jal Jal Jal Jal Jal Jal Jal	ysis Sumi	eters Estimate 47 3.035 1.5 Sum Squa 3803.936 25.75362 Method Shapiro-W Anderson- mary of Type	Std 1.31 0.38 0.07 ares	Error 959 44. 334 2.2 485 1.3 Mean Sq 3803.936 3.679089 Normality g A2 Norm	43 84 53 uare ality an	49.57 3.787 1.646 <b>DF</b> 1 7 <b>Test Stat</b> 0.9645 0.2412	35.88 7.916 20.04 <b>F Stat</b> 1034 <b>Critical</b> 0.7607 2.492 <b>Ca</b>	<0.0001 <0.0001 <0.0001 <b>P-Value</b> <0.0001 <b>P-Value</b> 0.8353 0.8003	Significan Significan Significan Significan Significan Normal D Normal D	t Paramete t Paramete t Paramete (α:5%) t (α:5%) istribution	er	
Regre Param A C D ANOV Sourc Model Residu Residu Attribu Distrib Chlore C-gm/ 0 0.34	A Table A Table Jal Jal Jal Jal Jal Jal Jal Jal Jal Jal	ysis Sumi	eters Estimate 47 3.035 1.5 Sum Squa 3803.936 25.75362 Method Shapiro-W Anderson- mary of Type	Std 1.31 0.38 0.07 ares 'ilk W Darlin Darlin	Error 95% 44. 334 2.2 485 1.3 Mean Sq 3803.936 3.679089 Normality ng A2 Norm	43 84 53 uare ality an 3	49.57 3.787 1.646 <b>DF</b> 1 7 <b>Test Stat</b> 0.9645 0.2412 <b>Min</b>	35.88 7.916 20.04 <b>F Stat</b> 1034 <b>Critical</b> 0.7607 2.492 <b>Ca</b> Max	<0.0001 <0.0001 <0.0001 <b>P-Value</b> <0.0001 <b>P-Value</b> 0.8353 0.8003 ilculated Va Std Err	Significan Significan Significan Decision Significan Normal D Normal D Normal D riate Std Dev	t Paramete t Paramete t Paramete (α:5%) t (α:5%) istribution istribution CV%	er er %Effect	
Regre Param A C D ANOV Sourc Model Residu Residu Attribu Distrib Chlord C-gm/ 0 0.34 0.56	A Table A Table Jal Jal Jal Jal Jal Jal Jal Jal Jal Jal	ysis Sumi	eters Estimate 47 3.035 1.5 Sum Squa 3803.936 25.75362 Method Shapiro-W Anderson- mary of Type	Std 1.31 0.38 0.07 ares 'ilk W Darlin Darlin	Error 959 44. 234 2.2 485 1.3 Mean Sq 3803.936 3.679089 Normality Ing A2 Norm Int Me 44.	43 84 53 uare ality an 3 1	49.57 3.787 1.646 <b>DF</b> 1 7 <b>Test Stat</b> 0.9645 0.2412 <b>Min</b> 44.3	35.88 7.916 20.04 <b>F Stat</b> 1034 <b>Critical</b> 0.7607 2.492 <b>Ca</b> <b>Max</b> 44.3	<0.0001 <0.0001 <0.0001 P-Value <0.0001 P-Value 0.8353 0.8003 alculated Va Std Err 0	Significan Significan Significan Significan Significan Normal D Normal D riate Std Dev 0	t Paramete t Paramete t Paramete (a:5%) t (a:5%) istribution istribution <u>CV%</u> 0.0%	er er 	
Regre Param A C D ANOV Sourc Model Residu Residu Attribu Distrib Chlord C-gm/ 0 0.34 0.56 0.93	A Table A Table Jal Jal Jal Jal Jal Jal Jal Jal Jal Jal	ysis Sumi	eters Estimate 47 3.035 1.5 Sum Squa 3803.936 25.75362 Method Shapiro-W Anderson- mary of Type	Std           1.31           0.38           0.07   ares filk W Darlin Darlin Cou 1 1 1	Error 959 44. 34 2.2 485 1.3 Mean Sq 3803.936 3.679089 Normality g A2 Norm nt Me 44. 47. 47. 37.	43 84 53 <b>uare</b> ality an 3 1 5	49.57 3.787 1.646 <b>DF</b> 1 7 <b>Test Stat</b> 0.9645 0.2412 <b>Min</b> 44.3 47.1 47.6 37.5	35.88 7.916 20.04 <b>F Stat</b> 1034 <b>Critical</b> 0.7607 2.492 <b>Ca</b> <b>Max</b> 44.3 47.1 47.6 37.5	<0.0001 <0.0001 <0.0001 <b>P-Value</b> <0.0001 <b>P-Value</b> 0.8353 0.8003 <b>Ilculated Va</b> <b>Std Err</b> 0 0	Significan Significan Significan Significan Significan Normal D Normal D riate Std Dev 0 0	tt Paramete tt Paramete tt Paramete (a:5%) t (a:5%) istribution istribution CV% 0.0% 0.0% 0.0% 0.0% 0.0%	er er %Effect 0.0% -6.32%	
Regre Param A C D ANOV Sourc Model Residu Residu Attribu Distrib Chlord C-gm/ 0 0.34 0.56 0.93 1.6	A Table A Table Jal Jal Jal Jal Jal Jal Jal Jal Jal Jal	ysis Sumi	eters Estimate 47 3.035 1.5 Sum Squa 3803.936 25.75362 Method Shapiro-W Anderson- mary of Type	Std         1.31           0.38         0.07           ares	Error 959 44. 34 2.2 485 1.3 Mean Sq 3803.936 3.679089 Normality g A2 Norm nt Me 44. 47. 47. 37. 20.	43 84 53 <b>uare</b> ality an 3 1 5 5 5	49.57 3.787 1.646 <b>DF</b> 1 7 <b>Test Stat</b> 0.9645 0.2412 <b>Min</b> 44.3 47.1 47.6 37.5 20.6	35.88 7.916 20.04 <b>F Stat</b> 1034 <b>Critical</b> 0.7607 2.492 <b>Ca</b> <b>Max</b> 44.3 47.1 47.6 37.5 20.6	<0.0001 <0.0001 <0.0001 <b>P-Value</b> <0.0001 <b>P-Value</b> 0.8353 0.8003 <b>Ilculated Va</b> <b>Std Err</b> 0 0 0 0 0	Significan Significan Significan Significan Significan Normal D Normal D Normal D Normal D <b>riate</b> Std Dev 0 0 0 0 0	tt Paramete tt Paramete tt Paramete (a:5%) tt (a:5%) istribution istribution CV% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	er er %Effect 0.0% -6.32% -7.45% 15.35% 53.5%	
Regre Param A C D ANOV Sourc Model Residu Residu Attribu Distrib Chlord C-gm/ 0 0.34 0.56 0.93 1.6 2.6	A Table A Table Jal Jal Jal Jal Jal Jal Jal Jal Jal Jal	ysis Sumi	eters Estimate 47 3.035 1.5 Sum Squa 3803.936 25.75362 Method Shapiro-W Anderson- mary of Type	Std         1.31           0.38         0.07           ares	Error 959 44. 34 2.2 485 1.3 Mean Sq 3803.936 3.679089 Normality g A2 Norm nt Me 44. 47. 47. 37. 20. 7.6	43 84 53 <b>uare</b> ality an 3 1 5 5 5 1	49.57 3.787 1.646 <b>DF</b> 1 7 <b>Test Stat</b> 0.9645 0.2412 <b>Min</b> 44.3 47.1 47.6 37.5 20.6 7.61	35.88 7.916 20.04 <b>F Stat</b> 1034 <b>Critical</b> 0.7607 2.492 <b>Ca</b> <b>Max</b> 44.3 47.1 47.6 37.5 20.6 7.61	<0.0001 <0.0001 <0.0001 P-Value <0.0001 P-Value 0.8353 0.8003 Ilculated Va Std Err 0 0 0 0 0 0 0	Significan Significan Significan Significan Significan Normal D Normal D Normal D Normal D Normal D Normal D 0 0 0 0 0 0 0 0	tt Paramete tt Paramete tt Paramete (a:5%) tt (a:5%) istribution istribution CV% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	er er %Effect 0.0% -6.32% -7.45% 15.35% 53.5% 82.82%	
Regre Param A C D ANOV Sourc Model Residu Residu Attribu Distrib Chlord C-gm/ 0 0.34 0.56 0.93 1.6 2.6 4.3	A Table A Table Jal Jal Jal Jal Jal Jal Jal Jal Jal Jal	ysis Sumi	eters Estimate 47 3.035 1.5 Sum Squa 3803.936 25.75362 Method Shapiro-W Anderson- mary of Type	Std 1.31 0.38 0.07 ares filk W Darlin 1 1 1 1 1 1 1 1 1	Error 959 44. 34 2.2 485 1.3 Mean Sq 3803.936 3.679089 Normality g A2 Norm nt Me 44. 47. 47. 37. 20. 7.6 3.3	43 84 53 <b>uare</b> ality an 3 1 5 5 5 1 3	49.57 3.787 1.646 <b>DF</b> 1 7 <b>Test Stat</b> 0.9645 0.2412 <b>Min</b> 44.3 47.1 47.6 37.5 20.6 7.61 3.33	35.88 7.916 20.04 <b>F Stat</b> 1034 <b>Critical</b> 0.7607 2.492 <b>Ca</b> <b>Max</b> 44.3 47.1 47.6 37.5 20.6 7.61 3.33	<0.0001 <0.0001 <0.0001 P-Value <0.0001 0.8353 0.8003 Ilculated Va Std Err 0 0 0 0 0 0 0 0 0 0	Significan Significan Significan Significan Significan Normal D Normal D Normal D <b>riate</b> Std Dev 0 0 0 0 0 0 0	tt Paramete tt Paramete tt Paramete (a:5%) tt (a:5%) istribution istribution CV% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	er er <b>%Effect</b> 0.0% -6.32% -7.45% 15.35% 53.5% 82.82% 92.48%	
Regre Param A C D ANOV Sourc Model Residu Residu Attribu Distrib Chlord C-gm/ 0 0.34 0.56 0.93 1.6 2.6 4.3 7.2	A Table A Table Jal Jal Jal Jal Jal Jal Jal Jal Jal Jal	ysis Sumi	eters Estimate 47 3.035 1.5 Sum Squa 3803.936 25.75362 Method Shapiro-W Anderson- mary of Type	Std         1.31           0.38         0.07           ares         I           filk W         Darlin           Darlin         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1	Error 95% 44. 34 2.2 485 1.3 Mean Sq 3803.936 3.679089 Normality g A2 Norm nt Me 44. 47. 47. 37. 20. 7.6 3.3 2.5	43 84 53 <b>uare</b> ality an 3 1 5 5 5 3 8	49.57 3.787 1.646 <b>DF</b> 1 7 <b>Test Stat</b> 0.9645 0.2412 <b>Min</b> 44.3 47.1 47.6 37.5 20.6 7.61 3.33 2.58	35.88 7.916 20.04 <b>F Stat</b> 1034 <b>Critical</b> 0.7607 2.492 <b>Ca</b> <b>Max</b> 44.3 47.1 47.6 37.5 20.6 7.61 3.33 2.58	<0.0001 <0.0001 <0.0001 P-Value <0.0001 0.8353 0.8003 Ilculated Va Std Err 0 0 0 0 0 0 0 0 0 0 0 0	Significan Significan Significan Significan Significan Normal D Normal D Normal D <b>riate</b> Std Dev 0 0 0 0 0 0 0 0 0	t Paramete t Paramete t Paramete (α:5%) t (α:5%) istribution istribution istribution 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0	er er <b>%Effect</b> 0.0% -6.32% -7.45% 15.35% 53.5% 82.82% 92.48% 94.18%	
Regre Param A C D ANOV Sourc Model Residu Residu Attribu Distrib Chlord C-gm/ 0 0.34 0.56 0.93 1.6 2.6 4.3 7.2 12	A Table A Table Jal Jal Jal Jal Jal Jal Jal Jal Jal Jal	ysis Sumi	eters Estimate 47 3.035 1.5 Sum Squa 3803.936 25.75362 Method Shapiro-W Anderson- mary of Type	Std 1.31 0.38 0.07 ares filk W Darlin 1 1 1 1 1 1 1 1 1 1 1 1 1	Error 95% 44. 334 2.2 485 1.3 Mean Sq 3803.936 3.679089 Normality g A2 Norm nt Me 44. 47. 47. 37. 20. 7.6 3.3 2.5 1.4	43 84 53 <b>uare</b> ality an 3 1 5 5 6 1 3 8 5 5	49.57 3.787 1.646 <b>DF</b> 1 7 <b>Test Stat</b> 0.9645 0.2412 <b>Min</b> 44.3 47.1 47.6 37.5 20.6 7.61 3.33 2.58 1.45	35.88 7.916 20.04 <b>F Stat</b> 1034 <b>Critical</b> 0.7607 2.492 <b>Ca</b> <b>Max</b> 44.3 47.1 47.6 37.5 20.6 7.61 3.33 2.58 1.45	<0.0001 <0.0001 <0.0001 P-Value <0.0001 P-Value 0.8353 0.8003 Ilculated Va Std Err 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Significan Significan Significan Significan Significan Normal D Normal D Normal D <b>riate</b> Std Dev 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tt Paramete tt Paramete tt Paramete (a:5%) tt (a:5%) istribution istribution CV% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	er er %Effect 0.0% -6.32% -7.45% 15.35% 53.5% 82.82% 92.48% 94.18% 96.73%	
Regre Param A C D ANOV Sourc Model Residu Residu Attribu Distrib Chlord C-gm/ 0 0.34 0.56 0.93 1.6 2.6 4.3 7.2	A Table A Table Jal Jal Jal Jal Jal Jal Jal Jal Jal Jal	ysis Sumi	eters Estimate 47 3.035 1.5 Sum Squa 3803.936 25.75362 Method Shapiro-W Anderson- mary of Type	Std         1.31           0.38         0.07           ares         I           filk W         Darlin           Darlin         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1	Error 95% 44. 34 2.2 485 1.3 Mean Sq 3803.936 3.679089 Normality g A2 Norm nt Me 44. 47. 47. 37. 20. 7.6 3.3 2.5	43 84 53 <b>uare</b> ality an 3 1 5 5 6 1 3 8 5 5	49.57 3.787 1.646 <b>DF</b> 1 7 <b>Test Stat</b> 0.9645 0.2412 <b>Min</b> 44.3 47.1 47.6 37.5 20.6 7.61 3.33 2.58	35.88 7.916 20.04 <b>F Stat</b> 1034 <b>Critical</b> 0.7607 2.492 <b>Ca</b> <b>Max</b> 44.3 47.1 47.6 37.5 20.6 7.61 3.33 2.58	<0.0001 <0.0001 <0.0001 P-Value <0.0001 0.8353 0.8003 Ilculated Va Std Err 0 0 0 0 0 0 0 0 0 0 0 0	Significan Significan Significan Significan Significan Normal D Normal D Normal D <b>riate</b> Std Dev 0 0 0 0 0 0 0 0 0	t Paramete t Paramete t Paramete (α:5%) t (α:5%) istribution istribution istribution 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0	er er <b>%Effect</b> 0.0% -6.32% -7.45% 15.35% 53.5% 82.82% 92.48% 94.18%	
Regre Param A C D ANOV Sourc Model Residu Residu Attribu Distrib Chlord C-gm/ 0 0.34 0.56 0.93 1.6 2.6 4.3 7.2 12	A Table A Table Jal Jal Jal Jal Jal Jal Jal Jal Jal Jal	ysis Sumi	eters Estimate 47 3.035 1.5 Sum Squa 3803.936 25.75362 Method Shapiro-W Anderson- mary of Type	Std 1.31 0.38 0.07 ares filk W Darlin 1 1 1 1 1 1 1 1 1 1 1 1 1	Error 95% 44. 334 2.2 485 1.3 Mean Sq 3803.936 3.679089 Normality g A2 Norm nt Me 44. 47. 47. 37. 20. 7.6 3.3 2.5 1.4	43 84 53 <b>uare</b> ality an 3 1 5 5 6 1 3 8 5 5	49.57 3.787 1.646 <b>DF</b> 1 7 <b>Test Stat</b> 0.9645 0.2412 <b>Min</b> 44.3 47.1 47.6 37.5 20.6 7.61 3.33 2.58 1.45	35.88 7.916 20.04 <b>F Stat</b> 1034 <b>Critical</b> 0.7607 2.492 <b>Ca</b> <b>Max</b> 44.3 47.1 47.6 37.5 20.6 7.61 3.33 2.58 1.45	<0.0001 <0.0001 <0.0001 P-Value <0.0001 P-Value 0.8353 0.8003 Ilculated Va Std Err 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Significan Significan Significan Significan Significan Normal D Normal D Normal D <b>riate</b> Std Dev 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tt Paramete tt Paramete tt Paramete (a:5%) tt (a:5%) istribution istribution CV% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	er er %Effect 0.0% -6.32% -7.45% 15.35% 53.5% 82.82% 92.48% 94.18% 96.73%	QA:

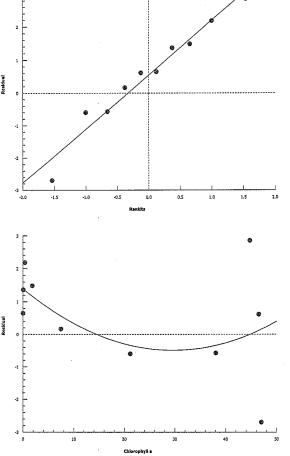
CETIS An	alytical Repo	ort	Report Date: Test Code:	04 Dec-17 17:07 (p 2 of 2) 170521a   20-7341-9798
IW EC Alga Gro	owth Inhibition Te	st- 21-d Moss toxicity test		Nautilus Environmental
Analysis ID: Analyzed:	09-0486-5950 04 Dec-17 17:0	Endpoint: Chlorophyll a 07 Analysis: Nonlinear Regression	CETIS Version: Official Results:	CETISv1.8.7 Yes
Chlorophyll	a Detail			
C-gm/L	Control Type	Rep 1		
0	Negative Control	44.3		
0.34		47.1		
0.56		47.6		
0.93		37.5		
1.6		20.6		
2.6		7.61		
4.3		3.33		
7.2		2.58		

12

20

3P Log-Logistic EV [Y=A/(1+(X/D)^C)]




10

C-gm/L

15

1.45

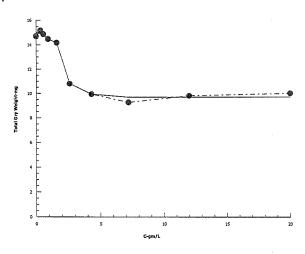
0.669





Analyst:_ つい

CETIS	S Anal	lytical Repo	rt w				•	ort Date: t Code:		7 17:14 (p 1 of 2) c   21-2194-8059
Lemna	Growth	-Inhibition Test	21-d Moss	toxicity Th	584				Nautilus	Environmental
Analysi	s ID:	18-9577-7625	Endpoint	: Total Dry W	eight-mg		CET	IS Version	: CETISv1.8.7	
Analyze	ed:	04 Dec-17 17:13	Analysis:	Linear Interp	olation (ICPI	N)	Offi	cial Result	s: Yes	
Batch II	D:	06-4112-0551	Test Type	: Lemna Grov	vth		Ana		slin Wijaya	
Start Da	ate:	29 Jun-17	Protocol:	Davies (200	7)		Dilu	ent: De	chlorinated Tap Wa	ater
Ending	Date:	20 Jul-17	Species:	Fontinalis a	ntipyretica		Brir	ie:		
Duratio	on:	21d Oh	Source:	University o	fBC		Age	:		
Sample	e ID:	05-8389-5437	Code:	22CD898D			Clie	nt: He	emmera	
Sample	Date:	29 Jun-17	Material:	Sodium chlo	oride		Pro	ject:		
Receive	e Date:	29 Jun-17	Source:	Hemmera						
Sample	e Age:	NA	Station:	Sodium Chl	oride					
Linear	Interpo	lation Options								
X Trans	sform	Y Transform	Seed	Resamples			ethod			
Log(X+	1)	Linear	181791	200	Yes	·T	wo-Point Inter	polation		
Point E	Estimate	es								
Level	gm/L	95% LCL	95% UCL							
IC5	1.586		1.948							
IC10	1.793	0.5532	2.079							
IC15	2.001		2.231							
1C20	2.225	5 1.33	2.404							
IC25	2.466	5 2.042	2.594							
IC40	>20	N/A	N/A							
IC50	>20	N/A	N/A							
Total D	Dry Wei	ght-mg Summar	у		C	alculated	Variate			
C-gm/L	LC	Control Type	Count Me	an Min	Max	Std Ei	r Std Dev	CV%	%Effect	
0	N	legative Control	3 14.	69 14.17	15.4	0.3667	0.6352	4.32%	0.0%	
0.34			3 15.	16 14.95	15.44	0.1465	0.2538	1.68%	-3.15%	


•	noguine control	•	11.00						
0.34		3	15.16	14.95	15.44	0.1465	0.2538	1.68%	-3.15%
0.56		3	14.87	14	15.37	0.4352	0.7538	5.07%	-1.18%
0.93		3	14.47	13.91	14.77	0.2802	0.4853	3.35%	1.52%
1.6		3	14.17	12.31	15.55	0.9664	1.674	11.81%	3.54%
2.6		3	10.8	10.7	10.89	0.05505	0.09535	0.88%	26.5%
4.3		3	9.933	9.47	10.19	0.2321	0.402	4.05%	32.4%
7.2		3	9.263	8.47	9.79	0.4037	0.6992	7.55%	36.96%
12		3	9.8	9.58	10.03	0.13	0.2251	2.3%	33.3%
20		3	9.993	9.73	10.27	0.156	0.2703	2.71%	31.99%

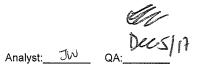
#### Total Dry Weight-mg Detail

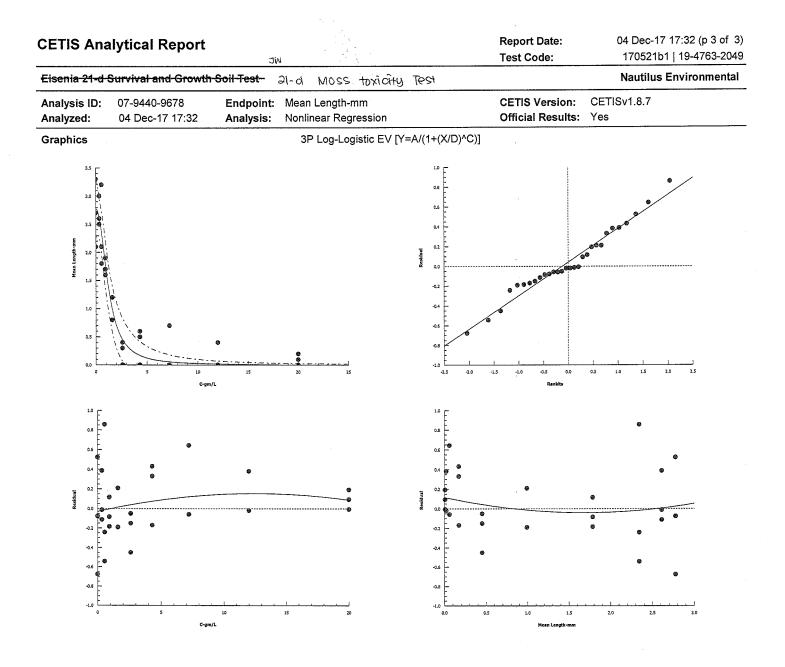
C-gm/L	Control Type	Rep 1	Rep 2	Rep 3
0	Negative Control	14.17	14.51	15.4
0.34		15.44	15.08	14.95
0.56		15.37	15.23	14
0.93		13.91	14.73	14.77
1.6		12.31	15.55	14.66
2.6		10.89	10.81	10.7
4.3		10.14	9.47	10.19
7.2		8.47	9.79	9.53
12		9.58	9.79	10.03
20		9.98	9.73	10.27

Analyst: <u>JN</u>

CETIS Ana	alytical Report	t		Report Date: Test Code:	04 Dec-17 17:14 (p 2 of 2) 170521c   21-2194-8059
Lemna Growt	th Inhibition Test	21-d Moss	Toxicity Test		Nautilus Environmental
Analysis ID: Analyzed:	18-9577-7625 04 Dec-17 17:13	•	Total Dry Weight-mg Linear Interpolation (ICPIN)	CETIS Version: Official Results:	




Analyst:____[N


	Ana	ytical R	eport		JN				-		17 17:32 (p 1 of 3) 1b1   19-4763-2049
Eisenia	-21-d-S	urvival-and	-Growth-	Soil-Te		I MOSS T	bxicity t	iest			ıs Environmental
Analysi Analyze		07-9440-96 04 Dec-17		End Anal		an Length-m nlinear Regr				S Version: CETISv1.8.7 ial Results: Yes	
Batch I Start D Ending Duratio	ate: Date:	05-6322-39 29 Jun-17 20 Jul-17 21d Oh	023		ocol: Dav cies: For	vival-Growth vies (2007) ntinalis antip versity of BC	yretica		Anal Dilue Brine Age:	ent: Dechlorinated Tap V e:	Vater
•	e Date: e Date:	05-8389-54 29 Jun-17 29 Jun-17 NA	137	Code Mate Sour Stati	erial: Soo rce: Hei	CD898D dium chloride mmera dium Chlorid			Clier Proje		
Non-Li	near Re	gression O	ptions								
	Functio							form Y Tra		leighting Function	PTBS Function
3P Log	-Logistic	: EV [Y=A/(1	I+(X/D)^C	;)]		<u> </u>	None	None	e N	ormal [W=1]	Off [Y*=Y]
Regres	sion Su	ımmary									
Iters	Log L	L AICc	BIC	;	Adj R2	Optimize	F Stat	Critical	P-Value	Decision(a:5%)	
8	17.98	-29.03	3 -25	.75	0.9007	Yes	0.4846	2.514	0.8345	Non-Significant Lack of F	t .
Point E	stimate	s									
Level	gm/L	95% L	.CL 95%	6 UCL							
IC5	0.313		0.5								
IC10	0.442			089							
IC15	0.547			127							
IC20 IC25	0.643 0.734	0.453									
IC25 IC40	1.011	2 0.548 0.824									
IC50	1.219	1.018									
		arameters									
Parame		Estim	ata Sta	Error	95% LCL	95% UCL	t Stat	D Volue	Decision	(~	
A		2.777	0.1		2.442	3.113	16.23	P-Value <0.0001	Decision	t Parameter	
c		2.167		297	1.325	3.01	5.044	<0.0001	-	t Parameter	
D		1.219		458	0.9331	1.505	8.359	<0.0001	÷	t Parameter	
ANOVA	Table					·····					
Source	•	Sum	Squares	Mea	n Square	DF	F Stat	P-Value	Decision	(α:5%)	
Model		32.70	017	32.7	0017	1	265.2	<0.0001	Significan	·	
Lack of	Fit	0.482	8253	0.06	89751	7	0.4846	0.8345	Non-Signi		
Pure Er	ror	2.846	667	0.14	23333	20					
Residua	al	3.329	492	0.12	33145	27					
Residu											
Attribu		Metho				Test Stat		P-Value	Decision	· · · · · · · · · · · · · · · · · · ·	
Varianc	es		tt Equality			10.55	16.92	0.3079	Equal Var		
Dietelle	41a-				of Variance	0.8819	3.02	0.5701	Equal Var		
Distribu	nion		ro-Wilk W		•	0.9723	0.9303	0.6024	Normal D		
		Ander	son-Darli	ng A2 N	vormality	0.5106	2.492	0.2003	Normal Di	Istribution	

Analyst: JN QA: Dec-5/17

CETIS A	Analytical Repo	ort	WC				•	ort Date: Code:	04 Dec-17 17:32 (p 2 of 3 170521b1   19-4763-204
Eisenia 21	1-d Survival and Gro	wth Soil 7	Fest 21-0	d Moss	Toxicity	Test			Nautilus Environmenta
Analysis I Analyzed:			•	ean Length- onlinear Reg				IS Version: ial Results:	CETISv1.8.7 Yes
Mean Len	gth-mm Summary				C	Calculated Va	riate		
C-gm/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Negative Control	3	2.7	2.1	3.3	0.3464	0.6	22.22%	0.0%
0.34		3	2.7	2.5	3	0.1528	0.2646	9.8%	0.0%
0.56		3	2.367	1.8	3.2	0.4256	0.7371	31.15%	12.35%
0.93		3	1.733	1.6	1.9	0.08819	0.1528	8.81%	35.8%
1.6		3	1.067	0.8	1.2	0.1333	0.2309	21.65%	60.49%
2.6		3	0.2333	0	0.4	0.1202	0.2082	89.21%	91.36%
4.3		3	0.3667	0	0.6	0.1856	0.3215	87.67%	86.42%
7.2		3	0.2333	0	0.7	0.2333	0.4041	173.2%	91.36%
12		3	0.1333	0	0.4	0.1333	0.2309	173.2%	95.06%
20		3	0.1	0	0.2	0.05774	0.1	100.0%	96.3%
Mean Len	gth-mm Detail								
C-gm/L	Control Type	Rep 1	Rep 2	Rep 3					
0	Negative Control	2.1	2.7	3.3			,		
0.34		26	3	25					

U	Negative Control	2.1	2.1	5.5
0.34		2.6	3	2.5
0.56		3.2	1.8	2.1
0.93		1.7	1.9	1.6
1.6		0.8	1.2	1.2
2.6		0.3	0	0.4
4.3		0.6	0	0.5
7.2		0	0.7	0
12		0	0.4	0
20		0.1	0	0.2





Dee-SIA QA:

Analyst:______