
Horn River Basin Moose Inventory January/February 2010

FISH & WILDLIFE SECTION

TABLE OF CONTENTS

Executive Summary	
List of Figures	5
List of Tables	6
List of Appendices	6
1 Introduction	7
1.1 Background	7
1.2 Objectives	
2 Methods	9
2.1 Study Area	9
2.2 Survey units and Distance sampling	
3 Results	
3.1 Moose	
3.2 Incidental Observations	
4 Discussion	
5 Recommendations	
6 Acknowledgements	25
7 References	25
8 Appendices	27

Executive Summary

Moose are the most prevalent ungulate in the north east corner of British Columbia and are important culturally and as a food source for local First Nations and licensed hunters. This survey was initiated to gather baseline population data for moose in light of increasing industrial activity associated with the Horn River Basin shale gas field.

The survey was conducted from January 13 to February 23 in the north east corner of British Columbia entirely within the boreal black and white spruce biogeoclimatic zone. The area was divided into eight survey units (Parker, Paradise, Kiwigana, Tsea, Fortune West, Fortune East, Calender, and Capot Blanc) that roughly corresponded to boreal caribou core areas. The survey units were surveyed individually, but were grouped in a variety of ways (units that represented wildlife management unit 7-55, the Horn River Basin planning area, and the entire study area) that allowed comparisons with previous surveys and addressed the concerns of the impact of industrial activity on the moose in the Horn River Basin.

Distance sampling was chosen as the survey method rather than the standard stratified random block count as it allowed for a larger area to be surveyed for less cost, density estimates for a series of survey units, and provided locations for distribution mapping of moose across the study area. This methodology has not previously been used for moose in British Columbia and holds promise as an efficient and cost effective method for the future. Distance sampling involves flying predetermined transects (for this study UTM eastings spaced at 3 or 6 km intervals) and recording the perpendicular distances to all moose sighted from the transect line to the maximum distance a moose could be seen. For each moose or group of moose sighted a UTM location was recorded and the animals classified as male, female or calf. The location data was used to calculate the distance the moose group was from the transect line. The computer program Distance was used to estimate density and population size for each of the survey units. Incidental species were recorded during the flights.

For the entire survey area the density estimate for moose was 0.116 moose/km² (range 0.096 – 0.140 at 95% confidence interval). Density (moose/km²) in each of the survey units with 95% confidence interval range in brackets was: Parker = 0.246 (0.201 – 0.302), Tsea = 0.172 (0.106 – 0.278), Kiwigana = 0.159 (0.112 – 0.225), Paradise = 0.124 (0.083 – 0.186), Capot Blanc = 0.076 (0.047 – 0.123), Fortune West = 0.049 (0.028 – 0.087), Fortune East = 0.043 (0.026 – 0.071), Calender = 0.018 (0.008 – 0.040). For survey units that represented the Horn River Basin planning unit density was 0.151 moose/km² (range 0.125 – 0.183). The ratio of calves : 100 cows ranged from 22 in the Capot Blanc unit to 42 in the Fortune West unit. There was a negative relationship between the number of bull moose : 100 cows and the density of moose in a survey unit. The ratio of bulls : 100 cows ranged from 57 in the Capot Blanc unit to 157 in the Calender unit. There were 154 boreal caribou counted incidentally across the study area.

This was the first survey using distance sampling for moose in north east British Columbia and proved to be an effective and efficient method for collecting density and demographic data. There was a wide range of precision in the estimates that is attributable to the size of the survey units and the level of effort (kilometres of transect flown) applied in each unit. The most precise estimates were derived when multiple survey units were pooled for analysis. A means to estimate the length of transects necessary for a survey unit are described based on the relationship between the density of moose in a survey unit and the number of moose seen per kilometer of transect.

Funding for this survey was provided by the BC Oil & Gas Commission Science Community and Environmental Knowledge (SCEK) fund, the Horn River Basin Producers Group, and BC Ministry of Environment.

List of Figures

Figure 1 Survey area (labelled gray shaded polygons) for January/February 2010 moose survey in relation to Ministry of Environment wildlife management units (black
polygons) and the Horn River Basin planning area (red polygon) in north eastern British Columbia
Figure 2 Moose winter habitat capability within the Horn River Basin planning area from
BC Ministry of Environment broad ecosystem inventory mapping
Figure 4 Moose survey units (red polygons) overlaid on boreal caribou core areas (green polygons) and the Horn River Basin planning area (black polygon) for the 2010 moose survey
Figure 5 Schematic of distance sampling methodology used in January/February 2010 Horn River Basin moose survey. The solid line represents the transect flight line and the dashed line represents the flight path off transect to collect classification data and the moose distance from transect
Figure 6 Daily minimum temperatures (°C) and snow on ground (cm) at Environment Canada's Fort Nelson weather station for the survey period in January/February 2010
(source http://climate.weatheroffice.gc.ca/climate_normals/index_e.html)
combined from the 2010 Horn River Basin moose survey (n = 339 moose groups) 16
Figure 8 Map of moose densities (moose/km ²) in each of the eight units surveyed during the 2010 Horn River Basin moose survey. Darker shading indicates higher density and
lighter shading indicates lower density
the 2010 Horn River Basin moose inventory. Darker shading indicates more moose and lighter shading indicates fewer moose
Figure 10 Map of moose calves : 100 cows in each of the eight units surveyed during the 2010 Horn River Basin moose survey. Darker shading indicates higher calf:cow ratio and
lighter shading indicates lower calf:cow ratio
2010 Horn River Basin moose survey. Darker shading indicates higher bull:cow ratio and lighter shading indicates lower bull:cow ratio
Figure 12 Relationship between moose density and bull:cow ratios in the eight units surveyed during the 2010 Horn River Basin moose survey
Figure 13 Relationship between moose density and calf:cow ratios in the eight units surveyed during the 2010 Horn River Basin moose inventory
Figure 14 Relationship between the sample size of moose groups sighted in eight survey units and precision of the density estimate (measured as the percent coefficient of
variation(CV)) for the 2010 Horn River Basin moose survey. The solid line represents the linear regression and the dashed line represents the desired level of precision in estimates (CV = 20% at 95% confidence interval)

List of Tables

List of Appendices

Appendix 1 Data sheet used for January/February 2010 moose survey in the Horn River
Basin planning area
Appendix 2 Classifications from RISC Standards (Resource Inventory Committee 1998).
Level 3 and 4 followed for this survey 28
Appendix 3 Survey area maps with transects labelled (note that not all transects were
flown for all survey units). Green polygons are boreal caribou core areas. Tables
associated with maps list UTM locations for start and ends of each transect

1 Introduction

1.1 Background

Moose (*Alces alces*) are year-round residents in north eastern British Columbia, and an important traditional food species for local First Nations and other northern communities. Moose hunting is a popular recreational activity pursued by both residents of British Columbia and non-resident hunters. The importance of moose hunting, coupled with increased industrial activity in northern moose ranges, specifically the Horn River Basin (HRB), required an inventory to quantify baseline moose population densities and parameters. Moose population assessment is essential for proper land use and moose population management.

The Horn River Basin is a geological formation in north east British Columbia which holds substantial amounts of shale gas. Shale gas is natural gas trapped between mineral particles in small pores that exist within the fine grained rock. This gas was inaccessible using traditional technologies, however new technology is allowing these reserves to be accessed and extracted. Extraction of shale gas requires substantially more wells and water withdrawls than traditional gas extraction and the impacts of this intense industrial activity on moose is unknown. This survey was planned to determine baseline moose densities within the HRB and surrounding areas to allow comparison with future surveys to determine changes in moose densities.

The extreme north east corner of British Columbia has traditionally had few access routes and is far from major population centers resulting in low hunting pressure from licensed hunters and therefore a reduced need for intensive population monitoring. However, population data exists from previous surveys in Wildlife Management Units 7-55 and 7-56. In February 1988 a systematic aerial survey with random subsampling for moose was conducted by Ministry of Environment in the Fort Nelson area in portions of Management Unit (MU) 7-49, 7-54, 7-55, and 7-56 (Elliot 1988). Elliot estimated a density of moose in the survey area of 0.09 moose/km² over the 21,177 km² study area. The systematic nature of Elliot's survey showed moose densities to vary across the survey area, suggesting that applying an average density of moose across the area would not reflect the variation in moose densities on the landscape. A combined moose and boreal caribou (Rangifer tarandus) inventory was conducted by Ministry of Environment in February of 2004 (Backmeyer 2004). Backmeyer surveyed the entirety of MU 7-55 and 7-56 using a simple random block design to which a post hoc stratification for moose was applied. The survey results were a population estimate of 2998 (+/- 25% at 90% confidence interval) and a density of 0.087 moose/km² over the entire survey area. In MU 7-55 there were 32 calves : 100 cows and in MU 7-56 there were 42 calves : 100 cows. In March 2008 a stratified random block count was conducted within a 5475 km² area of high industrial interest within the Horn River Basin planning area (Churchill 2008). Churchill found a density of 0.14 moose/km² within the surveyed area.

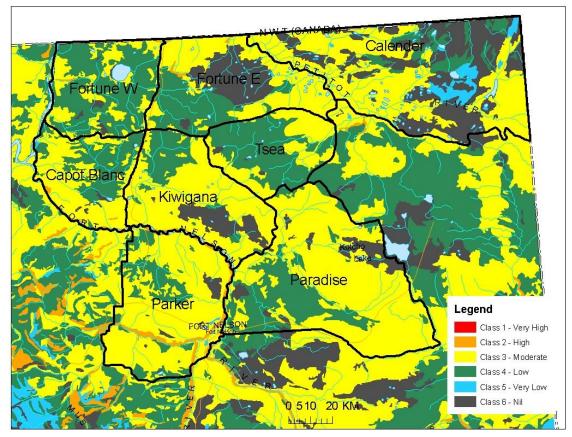
Within the Peace Region, moose surveys designed to estimate abundance and/or density have primarily been conducted using stratified random block counts (Gasaway et al. 1986). These surveys require dividing the study area into a series of blocks based on a systematic grid or habitat polygons. The entire survey area is then flown in a fixed wing aircraft to stratify the blocks into low, medium or high moose densities. Once stratification is complete a more intensive search by helicopter is conducted in a randomly selected number of blocks from each stratum. This method also requires a sightability correction to be applied and is determined by flying a proportion of the randomly selected blocks even more intensively to determine the number of moose missed during the survey, or to forego the sightability correction trials and assume a fixed sightability factor. The Gasaway method is a standard method for surveying moose in BC (Resources Inventory Committee 2002), however other methods, such as distance sampling, exist that may prove to be more efficient and provide a similar level of precision depending on the density of the population and habitat being surveyed (Buckland et al. 2001). Distance sampling requires surveying transect lines along which the decreasing detection probability of moose with increasing distance from the transect line is fitted to the data (Buckland et al. 2001). To estimate densities of moose distance sampling has been used successfully in Alaska (Nielson et al. 2006) and Alberta (Peters and Hebblewhite 2009). Given the openness of the habitat in the Fort Nelson area and the Horn River Basin we decided to use distance sampling rather than the Gasaway method for this survey. The benefits of distance sampling versus a stratified random block count are larger area surveyed for less cost, no pre-stratification is required, densities can be calculated for a variety of survey areas (i.e. individual survey units, HRB, entire study area), distribution mapping of moose across survey areas is possible, and no additional sightability correction factor is necessary.

1.2 Objectives

The objectives of the survey were to obtain:

- Density and population estimates of moose in eight survey units, the HRB planning area, and the entire survey area with high precision (coefficient of variation for estimates <20% at 95% confidence interval)
- 2) Age/gender structure of moose population in eight survey units, the HRB planning area, and the entire survey area
- 3) Count of incidental species, primarily boreal caribou.

2 Methods


2.1 Study Area

The study area was chosen to fully encompass the HRB planning area and land surrounding that was of interest to First Nations and could act as a control to monitor changes in the moose population through time. The study area was divided into eight survey units (Parker, Paradise, Capot Blanc, Fortune West, Fortune East, Calender, Kiwigana, and Tsea) that roughly corresponded to boreal caribou cores (Culling et al. 2004) and the boundary of the HRB (Figure 1).

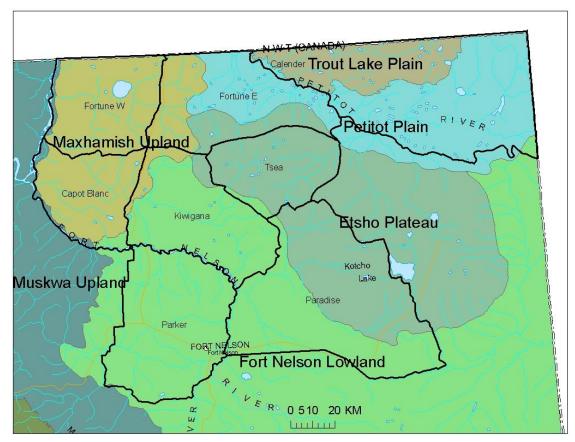


Figure 1 Survey area (labelled gray shaded polygons) for January/February 2010 moose survey in relation to Ministry of Environment wildlife management units (black polygons) and the Horn River Basin planning area (red polygon) in north eastern British Columbia.

The north east corner of the province has low moose densities relative to the majority of the Peace Region (Rowe 2008) and the study area is primarily rated as moderate or low winter habitat capability (Figure 2). The area is composed of five ecosections (Maxhamish Upland, Fort Nelson Lowland, Etsho Plateau, Petitot Plain, and Trout Lake Plain) (Figure 3) within the Boreal Black and White Spruce biogeoclimatic zone. This area is characterized by warm summer months with frequent wildfires and long, cold winters and is composed of a combination of upland forests and low lying peatlands (DeLong et al. 1990).

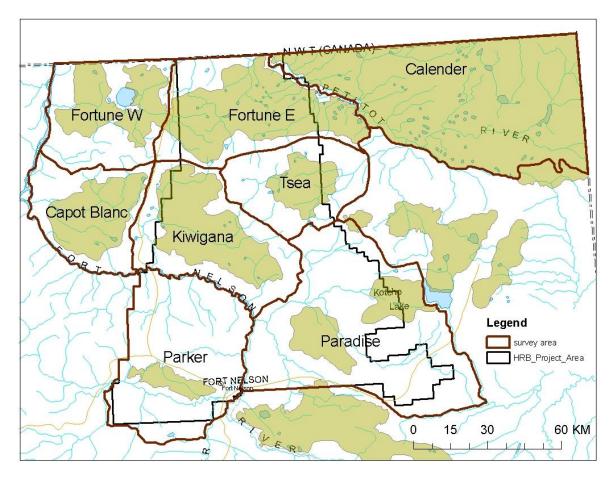

Figure 2 Moose winter habitat capability within the Horn River Basin planning area from BC Ministry of Environment broad ecosystem inventory mapping.

Figure 3 Ecosections in the study area for the 2010 moose survey in the Horn River Basin planning area.

2.2 Survey units and Distance sampling

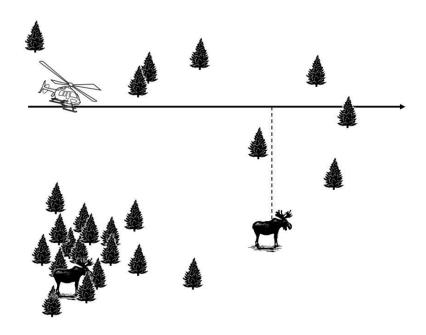
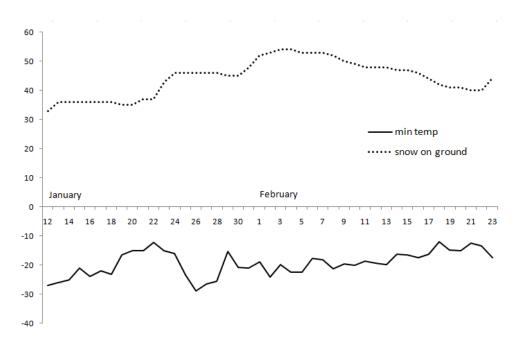

The study area for this survey is 23,203 km², and contains considerable variation in habitat types, levels of anthropogenic disturbance, and moose densities. The most recent moose surveys for this area produced single density estimates for the entire area surveyed which does not provide insight into the variation of moose density. For this survey we divided the study area into eight survey units. Survey units generally describe one or more boreal caribou core areas (Culling et al. 2004) and the exact boundaries were delineated using a combination of topographic features (e.g. heights of land, rivers and creeks), MU boundaries, Horn River Basin planning area boundary, and roads (Figure 5).

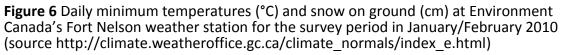
Figure 4 Moose survey units (red polygons) overlaid on boreal caribou core areas (green polygons) and the Horn River Basin planning area (black polygon) for the 2010 moose survey.

Distance sampling requires flying pre-determined transects at consistent altitude and speed across habitat types. It is assumed that all moose directly on the transect line were observed, and moose have decreasing probability of detection with increasing distance from the line. The distance data recorded allowed a detection probability to be calculated and from that a density estimate was derived (Buckland et al. 2001).

Transect lines were spaced every 3 or 6 kilometers running north/south following Universal Transverse Mercator (UTM) zone 10 eastings. A laptop running OziExplorer (Newman; version 3.95.4s) was used to navigate in the helicopter along the transect lines. When moose were spotted their locations were obtained by flying off the transect to mark the UTM coordinate of the moose from the helicopter (Marques et al. 2008) (Figure 5). When more than one moose was observed in a group the UTM location was taken at the midpoint between the moose. Moose > 100 meters apart were considered separate groups. Transects were flown at 80 – 140 km/h depending upon the density of the vegetation and at 120 meters above ground. Height above ground was modulated based on visual reference to the ground and by monitoring the difference between altitude and topographic contours from the GPS map.

Figure 5 Schematic of distance sampling methodology used in January/February 2010 Horn River Basin moose survey. The solid line represents the transect flight line and the dashed line represents the flight path off transect to collect classification data and the moose distance from transect.

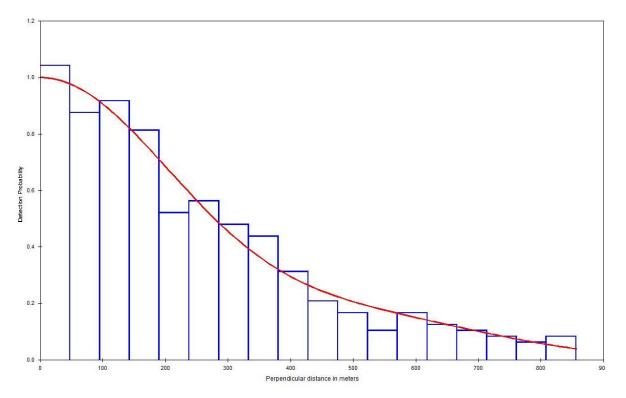

Moose were classified by age and gender according to RISC Level II or III standards (Resource Inventory Committee 1998), dependent upon the presence or absence of antlers. When antlers were not present gender was determined using the presence of the white vulval patch for females and the absence of the vulval patch and/or presence of antler scars for males. When antlers were present males were classified based on their antler architecture (Appendix 1). Moose densities and population estimates were calculated using program Distance (Thomas et al. 2009). A half-normal cosine detection function model was fit to the observations and truncated the largest 5% of distances as suggested by Buckland et al. (2001). No left truncation of data was applied, as it was assumed that visibility directly below the helicopter was sufficient. Separate density and population estimates were calculated for each survey unit and those survey units were pooled and density estimates were calculated for the HRB (Fortune East, Tsea, Kiwigana, Parker and Paradise units), MU 7-55 (Fortune West, Fortune East, Calender, Capot Blanc, Kiwigana, and Tsea units), MU 7-49 (Parker unit), MU 7-56 (Paradise unit), and the entire study area (all survey units). All estimates were calculated at 95% confidence intervals.


Incidental observations of other wildlife species were recorded. Boreal caribou were classified as male (absence of black vulval patch), female (presence of black vulval patch), and calf. Sharp-tailed grouse sightings and tracks were also recorded.

3 Results

3.1 Moose

The survey was conducted between January 12 and February 23 2010. Temperatures during the survey were slightly warmer than the normals reported for January (normal daily minimum = -25.6°C) and February (normal daily minimum = - 21.7°C) by Environment Canada (Figure 6).



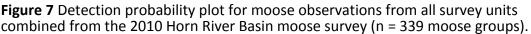
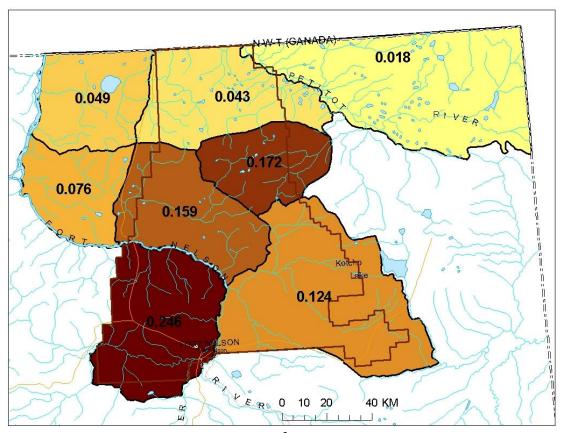
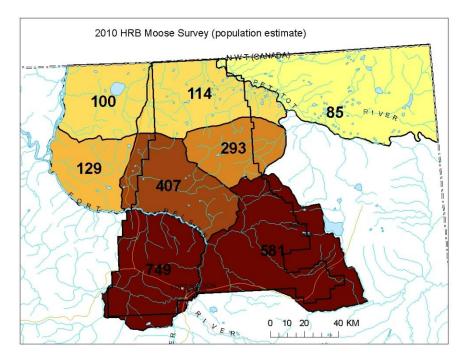

During the entire survey 6408.9 km's of transect were flown with a range of 558.2 km (Capot Blanc unit) to 1039.6 km (Parker unit) in each individual unit (Table 1). For most units, transects were spaced 3 km apart (Capot Blanc, Tsea, Fortune East, Fortune West, Parker, Kiwigana), however for the largest survey units wider spacing was used (Calender = 6 km, Paradise = primarily 6 km with additional random transects added to increase sample size). The relative sampling effort for each survey unit is better described by the km's of transect flown per km² of area within the survey unit (Table 1).

Table 1 Area of each survey unit, sampling effort in each unit (km's of transect flown), km's of transect flown per km² of survey area, and the number of moose groups sighted per km of transect flown for the January/February 2010 moose survey in the Horn River Basin planning area.

Survey area	Survey unit area (km²)	Sampling effort (km)	km of transect/km ²	Moose/km of transect
Capot Blanc	1693.1	558.2	0.330	0.047
Tsea	1702.4	570.8	0.335	0.075
Fortune West	2033.0	670.7	0.330	0.027
Kiwigana	2559.8	851.6	0.333	0.078
Fortune East	2640.5	880.6	0.333	0.026
Parker	3040.1	1021	0.336	0.087
Paradise	4675.7	1039.6	0.222	0.058
Calender	4858.7	816.4	0.168	0.018
MU 7-55 units	15487.5	4348.3	0.281	0.044
HRB survey units	14681.5	4363.6	0.297	0.064
All combined	23203.3	6408.9	0.276	0.053


For the entire survey area we estimated a density of 0.116 moose/km² (0.096-0.140 at 95% confidence interval(CI)) which produced a population estimate of 2685 moose (2224-3243 at 95% CI). The coefficient of variation for both estimates was 9.6% indicating the observed data was well represented by the modelled detection probability (Figure 7). The maximum distance moose groups were spotted (after truncation of the farthest 5% of sightings) was 856 meters. For all male moose observed throughout the survey 74% (n = 153) had lost their antlers and 26% (n = 53) retained their antlers which allowed us to classify only ¼ of the male moose by antler architecture during the survey. For moose surveyed in January 29% (n = 51) retained their antlers and 71% (n = 128) were antlerless males. In February only 7% of males still had antlers (n = 2) and 93% were antlerless males (n = 25).



For each of the survey units a density and population estimate were calculated. Densities ranged from 0.018 moose/km² in the Calender unit to 0.246 moose/km² in the Parker unit (Table 2 and Figure 8). An estimate of the number of moose in each survey unit was calculated from the density estimate and ranged from a high of 749 moose (611 – 918 at 95% Cl) in the Parker unit to a low of 85 moose (37 – 195 at 95% Cl) in the Calender unit (Table 2 and Figure 9). For each estimate program Distance (Thomas et al. 2009) calculated an estimate of variance described by the percent coefficient of variation. The percent coefficient of variation ranged from 42.6% in the Calender range to 9.6% for the whole survey area estimate (average = 24.9% for the eight individual survey units). **Table 2** Density and population size estimates of moose from the eight survey units, MU 7-55, Horn River Basin (HRB) planning area, and total study area of the January/February 2010 moose survey. Survey units are listed in order from lowest to highest density and pooled survey units are listed last and bolded.

	Density		Population	Population	% Coefficient
Survey area	estimate	Density 95% Cl	estimate	95% CI	of Variation
Calender	0.018	0.008 - 0.040	85	37 - 195	42.6
Fortune East	0.043	0.026 - 0.071	114	69 - 188	25.6
Fortune West	0.049	0.028 - 0.087	100	57 - 177	28.6
Capot Blanc	0.076	0.047 - 0.123	129	80 - 209	24.2
Paradise (MU 7-56)	0.124	0.0831 - 0.1855	581	389 - 867	20.2
Kiwigana	0.159	0.112 - 0.225	407	287 - 577	21.22
Tsea	0.172	0.106 - 0.278	293	181 - 474	24.4
Parker (MU 7-49)	0.246	0.201 - 0.302	749	611 - 918	12.3
MU 7-55 units	0.082	0.063 - 0.107	1272	972 - 1664	13.73
HRB survey units	0.151	0.125 - 0.183	2210	1823 - 2679	9.8
All combined	0.116	0.096 - 0.140	2685	2224 - 3243	9.6

Figure 8 Map of moose densities (moose/km²) in each of the eight units surveyed during the 2010 Horn River Basin moose survey. Darker shading indicates higher density and lighter shading indicates lower density.

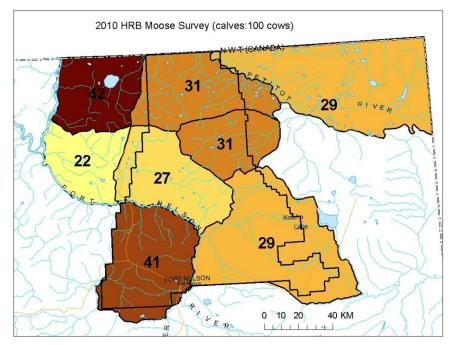
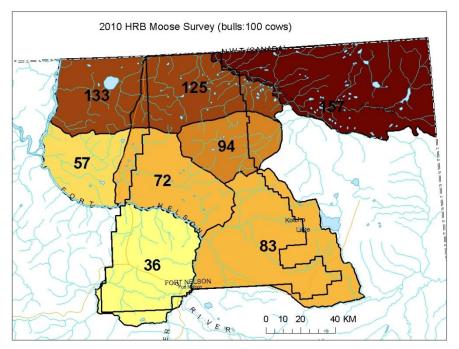


Figure 9 Map of estimated moose numbers in each of the eight units surveyed during the 2010 Horn River Basin moose inventory. Darker shading indicates more moose and lighter shading indicates fewer moose.


Classification data was used to calculate calf:cow and bull:cow ratios in each of the survey units. The number of calves:100 cows ranged from 22 in the Capot Blanc unit to nearly twice as much (42 calves:100 cows) in the Fortune West unit (Table 3 and Figure 10). For all the units combined there were 32 calves:100 cows. The number of bulls:100 cows ranged from 36 in the Parker unit to 157 in the Calender unit and was 72 across the entire study area (Table 3 and Figure 11).

Survey area	Calves:100 cows	% calves	Bulls:100 cows	Sample size
Capot Blanc	22	14	57	41
Kiwigana	27	16	72	127
Calender	29	11	157	20
Paradise	29	16	83	102
Tsea	31	16	94	72
Fortune East	31	14	125	41
Parker	41	30	36	147
Fortune West	42	18	133	33
All combined	32	19	72	583

Table 3 Calves:100 cow moose, percent calves in population, and bulls:100 cow moosefrom the 2010 Horn River Basin moose survey. Survey units are ordered from lowestcalf:cow ratio to highest.

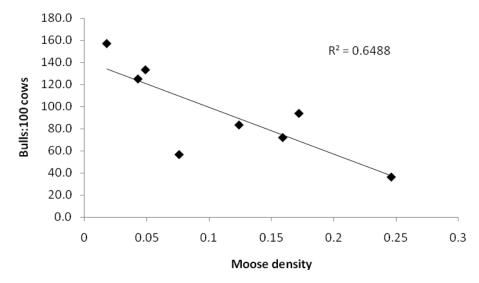
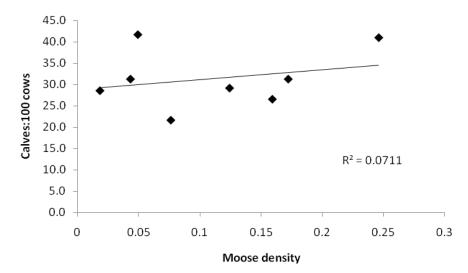


Figure 10 Map of moose calves : 100 cows in each of the eight units surveyed during the 2010 Horn River Basin moose survey. Darker shading indicates higher calf:cow ratio and lighter shading indicates lower calf:cow ratio.


Figure 11 Map of bull moose : 100 cows in each of the eight units surveyed during the 2010 Horn River Basin moose survey. Darker shading indicates higher bull:cow ratio and lighter shading indicates lower bull:cow ratio.

When the number of bulls:100 cows was regressed against the moose density for each survey unit a negative relationship was evident (Figure 12). As density increased the ratio of bulls to cows decreased.

Figure 12 Relationship between moose density and bull:cow ratios in the eight units surveyed during the 2010 Horn River Basin moose survey.

The density of moose in a survey unit did not appear related to the number of calves:100 cows in late winter (Figure 13).

Figure 13 Relationship between moose density and calf:cow ratios in the eight units surveyed during the 2010 Horn River Basin moose inventory.

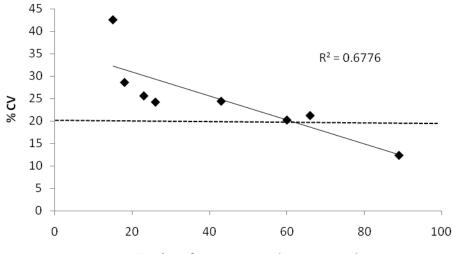
3.2 Incidental Observations

During the survey a variety of incidental species were sighted and recorded (Table 4). Of primary interest were boreal caribou and large predators. Boreal caribou occurred at densities too low to analyse using distance sampling, however we were able to calculate some demographic parameters from the observations. When all caribou sightings were pooled there were 17 calves:100 cows and 31 bulls:100 cows. The one wolf sighted was on a moose kill. No other wolves were seen associated with the kill, but based on the number of tracks seen it is assumed the other members of the pack were not visible. The elk and white-tailed deer were seen in close proximity to the town of Fort Nelson and the agricultural land surrounding it. Two male wood bison from the Nahanni herd were sighted on an island in the Liard River approximately 7 km downstream of the confluence with the Fort Nelson River (54.64096°/123.9591°). Both wolverine sighted were digging into beaver lodges and two other incidents that appeared to be evidence of wolverines attempting to access beaver lodges were seen. In addition to the lynx we observed areas where snowshoe hare densities appeared to be high, but these areas were not common. Sharp-tailed grouse were counted consistently throughout the survey, and tracks of grouse were recorded. Sign of sharp-tails was evident in all of the survey units.

Survey Area	Boreal caribou	Elk	White- tailed deer	Bison	Wolf	Wolverine	Lynx	Sharp- tailed grouse
Calender	31						1	38
CapotBlanc	3			2				2
Fortune East	21						2	
Fortune West							1	20
Kiwigana	31					1	4	4
Paradise	10					1	1	31
Parker Lake	35	52	6		1		4	5
Tsea	23							
Total	154	52	6	2	1	2	13	100

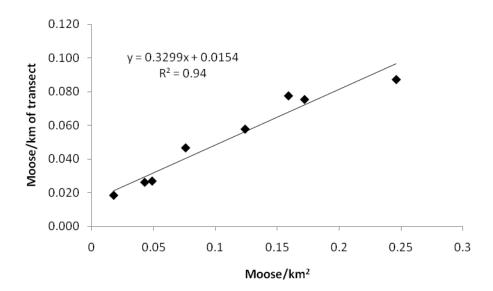
Table 4 Incidental species sighted during the 2010 Horn River Basin moose survey.

4 Discussion


This survey was the first to use distance sampling for moose in north east British Columbia and proved to be an effective and efficient means of collecting density and demographic data. Distance sampling assumes detection probability directly on the transect is 100% (Buckland et al. 2001), however this assumption is rarely met due to visibility bias (Anderson and Lindzey 1996, Nielson et al. 2006). During this survey no attempt to quantify the variations from this assumption was made, however steps were taken to reduce the possibility of moose on the transect line going unseen (front left observer spent majority of effort watching the line and a short distance from the line and speed along transect was reduced when vegetation density increased). Testing this assumption would be costly requiring radio collaring and sightability trials (Peters and Hebblewhite 2009). Not seeing all the moose on the transect would produce a density estimate that is biased low (Buckland et al. 2001, Buckland et al. 2004), but the relative densities between the survey units would remain comparable.

There was a wide range of precision (42.6% to 12.3% coefficient of variation) in the density and population estimates from the eight survey units that can be partially attributed to the sample size observed in each survey unit. Buckland et al. (2001) suggest a minimum sample size of 60 - 80 groups in order to achieve a reasonable precision in the estimates. The most precise estimate was calculated for the Parker unit (n = 89 moose groups) and the least precise occurred in the Calender range where only 15 groups of moose were sighted. When the sample size of moose groups was regressed against the precision of the estimates (measured as percent coefficient of variation) there was a relationship between sample size and percent CV that supported Buckland et al.'s (2001) suggestion of a sample size of 60 - 80. When fewer than 60 groups of moose were sighted in a survey unit the CV was greater than 20%, and when more than 60 moose groups were sighted precision was better than 20% CV (Figure 14). To determine the length of transect required to obtain a sufficiently precise estimate of density for future surveys it is necessary to know the number of moose groups expected to be sighted per kilometer of transect for different densities of moose. For areas where little information exists for the population a pilot survey can be used to estimate the length of transect necessary (Buckland et al. 2001). For north east British Columbia there was a strong linear relationship between the density of moose found in a survey unit and the number of moose sighted per kilometer of transect (Figure 15). From the relationship in Figure 15 the length of transects necessary for achieving a minimum sample size at a given level of precision for moose distance sampling in north east British Columbia can be estimated where the density of moose can be estimated from past surveys:

 $L = n/(0.3299*d_e + 0.0154)$


Where L = transect length, n = number of moose groups necessary to achieve a desired level of precision, and d_e = estimated density of moose in the area. If a subsequent moose inventory using distance sampling were to occur within the survey units from the 2010 Horn River Basin survey area the above calculation could be used to plan the survey to achieve more precise estimates than those from the 2010 survey. However, in some instances the value of a precise estimate may be overshadowed by the cost in achieving that level of precision. For example, in the Calender unit 861 kilometers of

transect were flown in 2010, but to achieve a 20% CV it would be necessary to fly over 2800 km's of transect which would be very costly and likely not provide additional information that would be of real management value. Knowing with great precision that there is very few moose may not be any more useful that knowing there are very few moose with low precision.

Number of moose groups in a survey unit

Figure 14 Relationship between the sample size of moose groups sighted in eight survey units and precision of the density estimate (measured as the percent coefficient of variation(CV)) for the 2010 Horn River Basin moose survey. The solid line represents the linear regression and the dashed line represents the desired level of precision in estimates (CV = 20% at 95% confidence interval).

Figure 15 Relationship between the estimated density of moose per km² and the number of moose groups observed per kilometer of linear transect in each of the eight survey units during the 2010 Horn River Basin moose survey.

Backmeyer's 2004 survey estimated moose density in MU 7-55 and 7-56 combined at 0.087 moose/km^2 , which is very similar to the estimate produced in this survey of 0.082 (range: 0.063 - 0.107 at 95% confidence interval) for the majority of MU 7-55. However the estimate from the 2010 survey was higher for the northwest 1/3 of MU 7-56 (0.124 moose/km2) than Backmeyer's, but it is important to note that in 2010 the entire management unit was not surveyed and it's possible the unsurveyed portion of MU 7-56 could be lower density which would reduce the estimate for that management unit. Elliot's 1998 survey estimated 0.09 moose/km² for an area that corresponds with the Fortune West, Capot Blanc, Parker, Kiwigana units from this survey. Churchill (2008) estimated 0.143 moose/km² from a stratified random block count in the center of the HRB planning area which is similar to the estimate we produced for the HRB survey units (0.151 moose/km², range: 0.125 – 0.183 at 95% confidence interval).

Overall, the survey provided precise data on moose densities and demographics that can be used to examine trends in the population through time.

5 Recommendations

- The study area should be resurveyed a minimum of every five years to monitor trends in moose density in relation to increased access and industrial activity. To minimize annual cost it would be possible to choose a subsample of the survey units to survey annually such that the entire area was surveyed every five years.
- The relationship between moose density and boreal caribou populations should be examined.
- In extremely low density moose areas achieving a 20% CV may be cost prohibitive and unnecessary depending on the objectives of the survey and management relevance.
- This method will be effective for estimating moose densities in other areas of British Columbia, especially areas with relatively open canopy cover.
- There is value in experimenting with distance sampling for other species and habitat types in British Columbia.

6 Acknowledgements

Funding for this project came from the BC Oil and Gas Commission Science Community Environmental Knowledge (SCEK) Fund, the Horn River Basin Producers Group, and the BC Ministry of Environment.

The survey occurred over two months and many people assisted with the survey. Observers listed in order of time spent flying: Craig DeMars (Ph.D. candidate, University of Alberta); Gerald Kuzyk (Ungulate specialist, Ministry of Environment), Al Hansen (Parks and Protected Areas, Ft Nelson), Chris Pasztor (Ministry of Environment, Victoria), Ken Thiessen, Leslie Oliver (Ft St John), Terry Sawchuck (Environmental Protection, Ministry of Environment), Nathan Smienk (Conservation Officer, Ft Nelson), Michelle (Ministry of Forests and Range, Ft Nelson), Al Hobler (Parks and Protected Areas, Ft St John), Julie Kline (Ministry of Environment), Maurice Lirette (Ministry of Environment), Mark Skage (North East BC Wildlife Fund), Rob Woods (Ministry of Environment), Chris Schippman, Zack Crawshaw .

Helicopter charter was provided under contract by Qwest Helicopters Inc. of Ft Nelson. Pilots Cory Hoover, Kevin Veldhuis, and Andrew Kerr provided safe and skilled operation of the machines during the survey as well as keen eyes for spotting moose.

Thanks to Nick Baccante, Gerry Kuzyk, Wibke Peters, and Rob Woods for comments on the draft version of the report.

7 References

Anderson, C.R., Lindzey, F.G. 1996. Moose sightability model developed from helicopter surveys. Wildlife Society Bulletin 24: 247-259.

Backmeyer, R. 2004. Moose and boreal caribou inventory: Management units 7-55 and 7-56. BC Ministry of Environment, Fort St. John, BC. 8 pp.

Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L., Thomas, L. 2001. Introduction to Distance Sampling, Estimating Abundance of Biological Populations. Oxford University Press, New York. 432 pp.

Buckland, S.T., Anderson, C.R., Burnham, K.P., Laake, J.L., Borchers, D.L., Thomas, D.C. 2004. Advanced distance sampling, estimating abundance of biological populations. Oxford University Press. Oxford. 416 pp.

Churchill, B. 2008. Gulo (moose) inventory: Horn River Basin Tenure Area, March 2008. Fort St. John, BC. 13 pp.

Culling, D., Culling, B., Backmeyer, R., Antoniuk, T. 2004. Interim oil and gas industry guidelines for boreal caribou ranges in northeastern British Columbia. Oil and Gas Commission, Fort St. John, BC. 36 pp.

DeLong, C., MacKinnon, A., Jang, L. 1990. A Field Guide for the Identification and Interpretation of Ecosystems of the Northeast Portion of the Prince George Forest Region. BC Ministry of Forests, Victoria, BC. 57 pp.

Elliot, J. 1988. Fort Nelson area moose survey: February 1988. BC Ministry of Environment, Fort St. John, BC. 21 pp.

Gasaway, W.C., S.D. Dubois, D.J. Reed, and S.J. Harbo. 1986. Estimating moose population parameters from aerial surveys. Biological Papers of the University of Alaska; No.22. 108pp.

Thomas, L., Laake, J.L., Rexstad, E., Strindberg, S., Marques, F.F.C., Buckland, S.T., Borchers, D.L., Anderson, D.R., Burnham, K.P., Burt, M.L., Hedley, S.L., Pollard, J.H., Bishop, J.R.B. and Marques, T.A. 2009. Distance 6.0. Release 2. Research Unit for Wildlife Population Assessment, University of St. Andrews, UK. http://www.ruwpa.stand.ac.uk/distance/

Marques, T., Andersen, M., Christensen-Dalsgaard, S., Belikov, S., Boltunov, A., Wiig, Ø., Buckland, S.T., Aars, J. 2006. The use of global positioning systems to record distances in a helicopter line-transect survey. Wildlife Society Bulletin 34: 759-763.

Nielson, R.M., McDonald, L.L., Kovach, S.D. 2006. Aerial line transect survey protocols and data analysis methods to monitor moose (*Alces alces*) abundance as applied on the Innoko National Wildlife Refuge, Alaska. Technical report prepared for the US Fish and Wildlife Service, McGrath, Alaska. 109 pp.

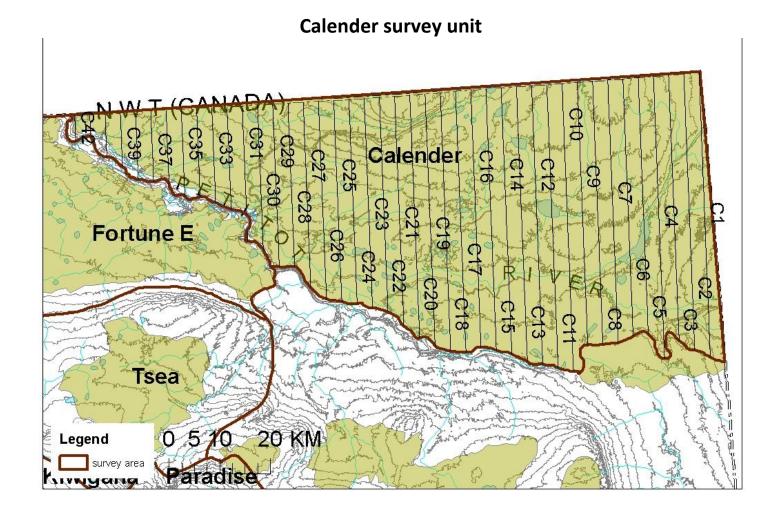
Peters, W., Hebblewhite, M. 2009. Aerial surveys to estimate moose densities in westcentral Alberta: 2008/2009 Progress report and Proposal 2009/2010. Progress Report, University of Montana, Missoula, MT. 13 pp.

Resources Inventory Committee. 1998. Aerial inventory dataforms for selected ungulates: Bison, mountain goat, mountain sheep, moose, elk, deer, and caribou. BC Ministry of Environment, Lands and Parks, Victoria, BC. 37 pp.

Resources Inventory Committee. 2002. Aerial-based inventory methods for selected ungulates: Bison, mountain goat, mountain sheep, moose, elk, deer and caribou. BC Ministry of Sustainable Resource Management, Victoria, BC. 105 pp.

Rowe, M. 2008. Moose management in the Peace Region. BC Ministry of Environment, Fort St. John, BC. 43 pp.

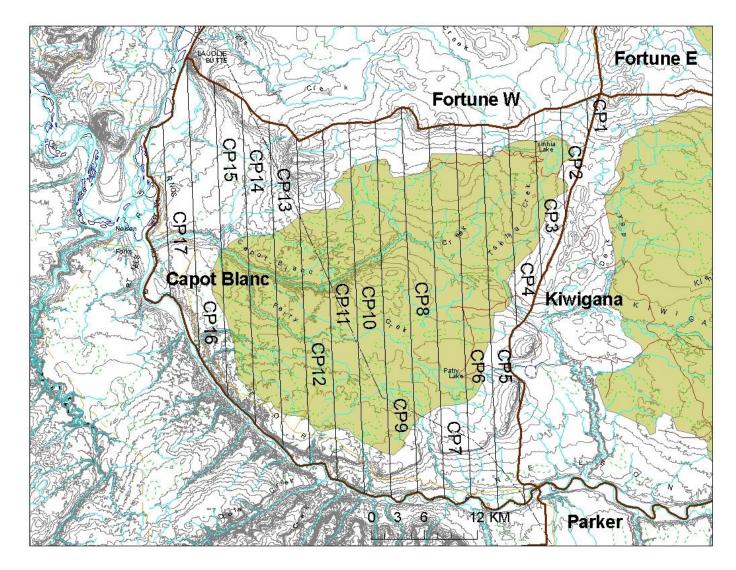
8 Appendices


Appendix 1 Data sheet used for January/February 2010 moose survey in the Horn River Basin planning area.

Horn Ri	iver Bas	in Moos	e Surv	ey		Pilot:					
Date:		/2010				FL:					
Survey A	rea:	_/2010				RR:					
Cloud Co Days sine Commen	over (/10): ce snow:										
					1			Bulls		. 1	
Transect	SPP	WPT	Total	COW	CALF	YM	I	Ш	III	drop	Comments
	Ri				18		×			57 - 12 P	
-											
<u> </u>	<u></u>							<u> </u>			
2 <u>.</u>					6		<u> </u>	<u>.</u>			
<u>20 - 02</u>	<u>.</u>				- 62	×	<u>6. j</u>	i		<u>.</u>	2
8	8	·									5
3	<u></u>	2			5:	62		<u></u>		<u>a - a</u>	
86	Q				8		ss	;X		3	
3)63	3	5 3			6)	13	S			2)	
3) (3)	2						8	5 X		2) 2)	5.
	92				1	25					

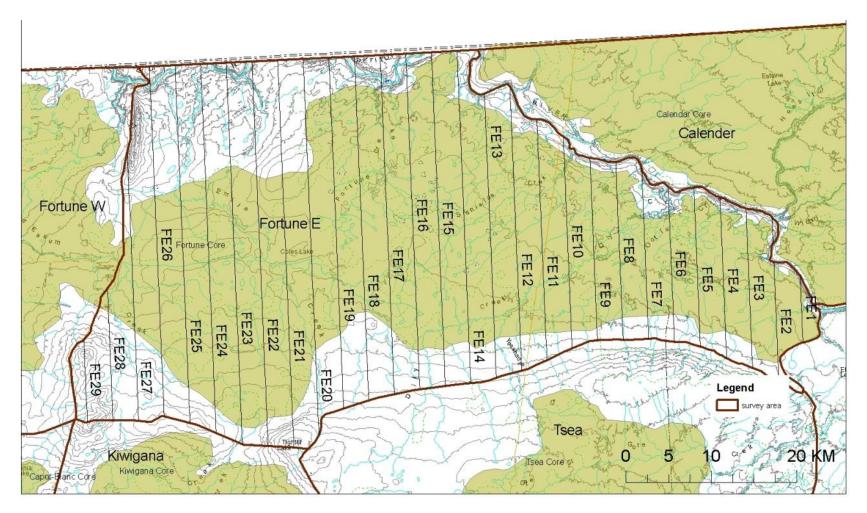
Appendix 2 Classifications from RISC Standards (Resource Inventory Committee 1998). Level 3 and 4 followed for this survey.

Class	Criteria	Code	Level 1	Level 2	Level 3	Level 4
Adult	 ≥ 1 year of age 	а	Х			
Calf	 < 1 year of age small body size without antlers 	j	X	Х	Х	X
Adult Bull	 antlers or antler scars absence of white vulval patch 	m		Х		
Adult Cow	 no antlers and short bell, medium size distinguished by white vulval patch usually has light brown face colour sometimes accompanied by calf 	f		X	X	X
Mature Bull	 bull with palmated antlers 	mm			Х	
Yearling Bull	 antler, if palmated, does not extend beyond eartip antler pole-type usually a spike or fork 	уm			X	X
Class I Bull	 antlers palmated, extends beyond tip of ear; brow tine a spike or fork 	I				x
Class II Bull	 antler palmated, extends beyond tip of ears brow tine palmated with usually more than 2 points inner most points of brow palm close over face 	II				X
Class III Bull	 antlers palmated, but smaller than Class II brown tine usually a spike or fork, like Class I 	III				X

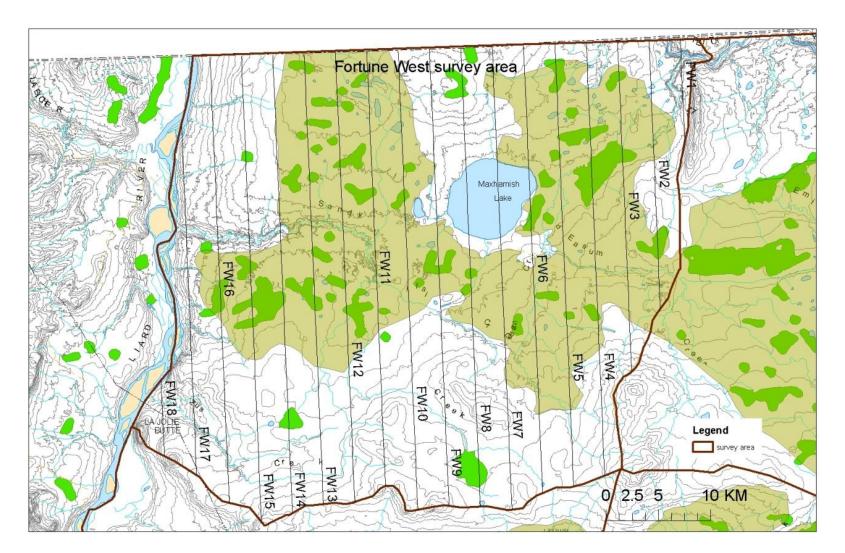

Appendix 3 Survey area maps with transects labelled (note that not all transects were flown for all survey units). Green polygons are boreal caribou core areas. Tables associated with maps list UTM locations for start and ends of each transect.

Calender survey unit transect start and end UTMs. (e.g. C1S is Calender transect 1 south end)

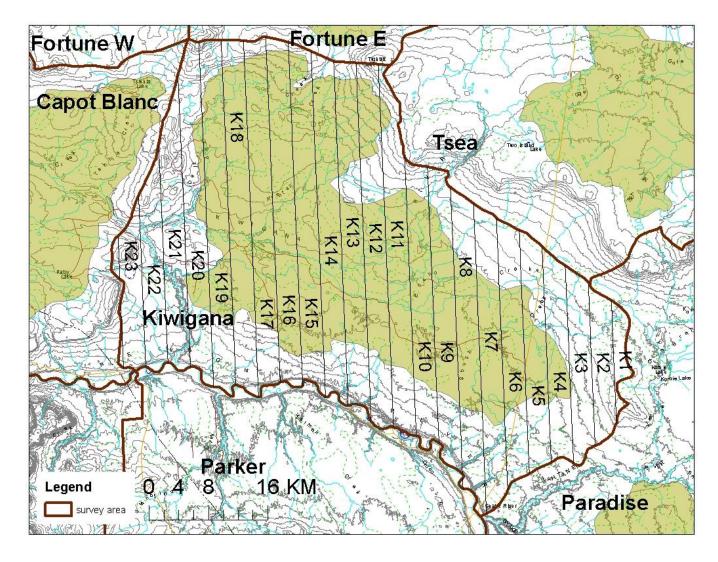
citaj		
End	Easting	Northing
C1S	667000	6598840
21N	666999	6655192
C2S	664000	6600301
C2N	664000	6655058
C3S	660999	6602345
C3N	661000	6654925
C4S	658000	6598877
C4N	657999	6654796
C5S	655000	6603905
C5N	654999	6654668
C6S	652000	6603640
C6N	652000	6654543
C7S	649000	6602429
C7N	648999	6654421
C8S	646000	6602265
C8N	645999	6654301
C9S	643000	6602228
C9N	642999	6654183
C10S	640000	6597165
C10N	640000	6654068
C11S	637000	6597977
C11N	637000	6653956
C12S	633999	6598764
C12N	633999	6653844
C13S	631000	6599416
C13N	631000	6653738
C14S	627999	6601022
C14N	627999	6653632
C15S	625000	6601901
C15N	625000	6653530
C16S	622000	6602631
C16N	621999	6653429
C17S	618999	6601756
C17N	619000	6653331
C18S	616000	6602108
C18N	615999	6653235
C19S	613000	6603269
C190	613000	6653142
CTON	013000	0055142


Capot Blanc survey unit

Capot Blanc survey unit transect start and end UTMs.


End	Easting	Northing
CB1N	492999	6609863
CB1S	492999	6605763
CB2N	489999	6608968
CB2S	489999	6596462
CB3N	486999	6608452
CB3S	487000	6589701
CB4N	484000	6606968
CB4S	483999	6564362
CB5N	480999	6607420
CB5S	480999	6563883
CB6N	478000	6607605
CB6S	478000	6565376
CB7N	474999	6607370
CB7S	475000	6565440
CB8N	471999	6609792
CB8S	471999	6566118
CB9N	469000	6608346
CB9S	468999	6565693
CB10N	465999	6608295
CB10S	465999	6566251
CB11N	462999	6607567
CB11S	462999	6567951
CB12N	460000	6606839
CB12S	460000	6569780
CB13N	456999	6608798
CB13S	457000	6571840
CB14N	454000	6611597
CB14S	454000	6574657
CB15N	450999	6613532
CB15S	450999	6577950
CB16N	447999	6616460
CB16S	447999	6582785
CB17N	444999	6609157
CB17S	444999	6589602

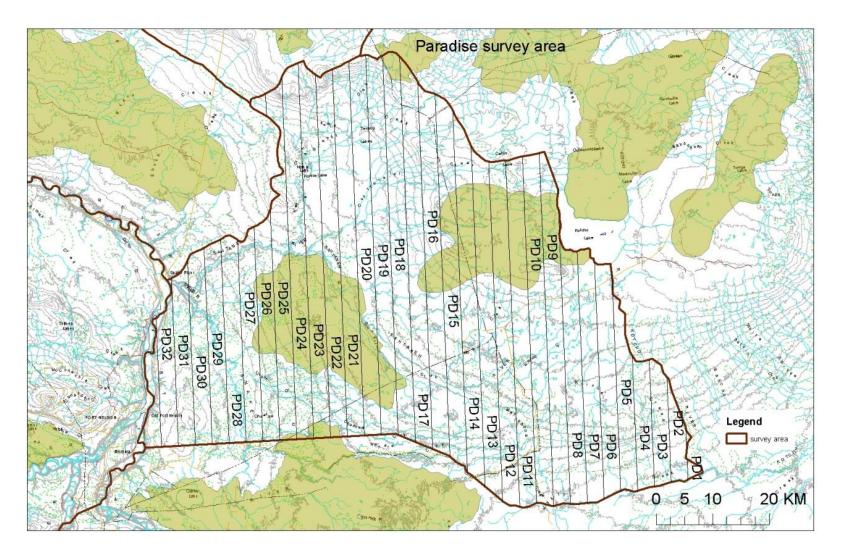
End	Easting	Northing	-	End	Easting	Northing
FE1S	579999	6615859		FE21S	520000	6606014
FE1N	580000	6623691		FE21N	520000	6651437
FE3S	573999	6613084		FE22S	517000	6606316
FE3N	573999	6631818		FE22N	517000	6651413
FE4S	571000	6614380		FE23S	514000	6606644
FE4N	571000	6633240		FE23N	513999	6651390
FE5S	568000	6615830		FE24S	510999	6608100
FE5N	567999	6634513		FE24N	511000	6651366
FE6S	565000	6616528		FE25S	507999	6609417
FE6N	565000	6634696		FE25N	508000	6651343
FE7S	562000	6617018		FE26S	504999	6610315
FE7N	562000	6637116		FE26N	505000	6651320
FE8S	558999	6616999		FE27S	502000	6609934
FE8N	558999	6637892		FE27N	502000	6641431
FE9S	556000	6617090		FE28S	499000	6610102
FE9N	555999	6638442		FE28N	498999	6625606
FE10S	553000	6616243		FE29S	496000	6610024
FE10N	553000	6641084		FE29N	496000	6619707
FE11S	549999	6615005		FE2S	577000	6611387
FE11N	549999	6643256		FE2N	576999	6630583
FE12S	547000	6613905				
FE12N	546999	6647218				
FE13S	543999	6613157				
FE13N	543999	6646522				
FE14S	540999	6612701				
FE14N	540999	6651639				
FE15S	537999	6612499				
FE15N	538000	6651607				
FE16S	534999	6612202				
FE16N	534999	6651578				
FE17S	532000	6611758				
FE17N	531999	6651537				
FE18S	528999	6611200				
FE18N	528999	6651509				
FE19S	526000	6610361				
FE19N	526000	6651485				
FE20S	523000	6607416				
FE20N	522999	6651461				


Fortune East survey unit transect start and end UTMs.

Fortune West survey unit

Fortune West survey unit transect start and end UTMs.

End	Easting	Northing
FW1S	502000	6641431
FW1N	501999	6651383
FW2S	498999	6625606
FW2N	499000	6651412
FW3S	496000	6619707
FW3N	496000	6651414
FW4S	492999	6609863
FW4N	493000	6651418
FW5S	489999	6608968
FW5N	489999	6651425
FW6S	486999	6608452
FW6N	486999	6651435
FW7S	483999	6607001
FW7N	484000	6651445
FW8S	480999	6607420
FW8N	481000	6651460
FW9S	478000	6607605
FW9N	477999	6651476
FW10S	474999	6607370
FW10N	475000	6651496
FW11S	471999	6609792
FW11N	471999	6651517
FW12S	469000	6608346
FW12N	468999	6651542
FW13S	465999	6608295
FW13N	465999	6651568
FW14S	462999	6607567
FW14N	462999	6651597
FW15S	460000	6606839
FW15N	460000	6651628
FW16S	456999	6608798
FW16N	456999	6651662
FW17S	454000	6611597
FW17N	453999	6645256
FW18S	450999	6613532
FW18N	451000	6620845



Kiwigana survey unit

K1N 549999 6572873 K2S 547000 6553374 K2N 546999 6575435 K3S 543999 6551180 K3N 544000 6577815 K4S 541000 6551379 K4N 540999 658045 K4S 541000 6551379 K4N 540999 6580545 K5N 537999 655001 K5N 537999 6584619 K6N 534999 6584619 K7N 531999 6591897 K10S 522000 655732 K10N 522999 6593463 K11N 520000 6557326 K11N 520000 6557326 K11N 520000 6560132 K11N 520000 6560132 K11N 51099 6561329 K12N 517099 6563129 K13N 514000 660644 K14S 510099 6563129 K15N 507999 6563129 K15N <	End	Easting	Northing	_	End	Easting	Northing
K2S 547000 6553374 K2N 546999 6575435 K3S 543999 6551180 K3N 544000 6577815 K4S 541000 6551379 K4N 540999 6580545 K4N 540999 6580545 K5S 537999 6550001 K5N 537999 6584619 K7N 531999 6584619 K7N 531999 6584630 K9N 5229000 655732 K10N 522999 6591897 K10S 523000 655732 K10N 522999 6593463 K11S 520000 6506142 K11N 520000 6506132 K11N 520000 6506132 K11N 510009 650132 K13N 514000 660644 K14N 510999 650132 K13N 514000 6563129 K15N 507999 6563129 K15N 507999 6563129 K15N	K1S	550000	6556253		K21S	490000	6566960
K2N 546999 6575435 K3S 543999 6551180 K3N 544000 6577815 K4S 541000 6551379 K4N 540999 6580545 K4N 540999 6580545 K5S 537999 6550001 K5N 537999 6584619 K7N 531999 6544861 K7N 531999 6544861 K7N 531999 6544861 K7N 531999 6591897 K10S 523000 655732 K10N 522999 6593463 K11N 520000 6506132 K11N 520000 6506132 K11N 520000 6506132 K11N 520000 6506132 K11N 510999 650132 K13N 514000 660644 K12S 507999 6563129 K15N 507999 6563129 K15N 507999 65613129 K15N 507999 65613129 K15N	K1N	549999	6572873	_	K21N	489999	6596462
K3S5439996551180K3N5440006577815K4S5410006551379K4N5409996580545K4N5409996580545K5S5379996550001K5N5379996582834K6S5349996547889K6N5349996586653K7S5319996586653K8N5259006554630K7N5319996591897K10S523000655732K10N5229996593463K11S5200006606014K12S5169996557946K12N5170006606316K13S513999656132K13N51400065661417K14N5109996503129K15N5079996563129K15N5079996563129K15N5079996563129K17N5020006563674K16N5049996510315K17N5020006609934K17N5020006609934K18S4990006563552K18N4990006610102K18S4990006563448	K2S	547000	6553374		K22S	487000	6566520
K3N5440006577815K4S5410006551379K4N5409996580545K5S5379996550001K5N5379996550001K5N5379996582834K6S5349996547889K6N5349996546619K7S5319996586653K9S5260006554630K1N5229996591897K10S523000655732K11S5200006557050K11N5200006560132K12S5169996557946K12N5170006606316K13S5139996561329K13N5140006561417K14N5109996561329K15N5079996563129K15N5079996563129K15N507999656374K16N5049996610315K17N5020006563572K18S499000656352K18N499000656352K18N499000656352K18N499000656352K18N499000656348	K2N	546999	6575435		K22N	487000	6589701
K4S 541000 6551379 K4N 540999 6580545 K5S 537999 6550001 K5N 537999 6582834 K6S 534999 6547889 K6N 534999 6584619 K7S 531999 6586653 K9S 526000 6554630 K10S 523000 655732 K10N 522999 6593463 K11S 520000 655732 K11N 520000 6560132 K11N 520000 6560132 K11N 510009 6560132 K13S 513999 6560132 K13N 514000 660614 K12S 507999 6561329 K13N 514000 6606316 K13S 513999 6560132 K14N 510999 6563129 K15N 507999 6609417 K16S 505000 6563674 K16N 504999 6610315 K17N 502000 6563552 K18N	<3S	543999	6551180		K23N	483999	6584333
K4N 540999 6580545 KSS 537999 6550001 KSN 537999 6582834 K6S 534999 6547889 K6N 534999 6584619 K7S 531999 6584653 K9S 526000 6554630 K9N 525999 6591897 K10S 523000 6555732 K10N 522999 6593463 K11S 520000 6560142 K12S 516999 6557946 K12N 517000 6606316 K13S 513099 6560132 K13N 514000 6560142 K14N 510999 6563129 K15N 507999 6563129 K15N 507999 6608100 K15N 507999 6609417 K16S 505000 6563674 K16N 504999 6610315 K17N 502000 6563522 K18N 499000 6510102 K18N 499000 6563448	K3N	544000	6577815	_	K23S	484000	6566605
KSS5379996550001KSN5379996582834KGS5349996547889KGN5349996584619K7S5319996586653K9S5260006554630K9N5259996591897K10S523000655732K10N5229996593463K11S5200006557946K12S5169996560132K13N514000660644K14S5110006561417K14N5109996503129K15N5079996563129K15N5079996563129K15N5079996563129K15N5079996563129K15N5079996608100K15N5079996609417K16S5050006563674K16N5049996610315K17N502000660934K18S4990006563552K18N4990006563448	<4S	541000	6551379		K8S	529000	6548263
KSN5379996582834K6S5349996547889K6N5349996584619K7S5319996544861K7N5319996586653K9N5259996591897K10S5230006555732K10N5229996593463K11S5200006557050K11N5200006606014K12S5169996557946K13N5140006606316K13S5139996560132K14N510996608100K15S5079996609417K16S5050006563674K17N502000660934K17N502000660934K18S4990006563552K18N4990006610102K19S4960006563448	K4N	540999	6580545		K8N	529000	6588922
K6S5349996547889K6N5349996584619K7S5319996544861K7N5319996586653K9S5260006554630K9N5259996591897K10S5230006555732K10N5229996593463K11S5200006606014K12S5169996557946K12N5170006606316K13S5139996560132K14N510006563129K15N5079996609417K16S5050006563674K17N502000660934K18S4990006563552K18N4990006563448	K5S	537999	6550001				
K6N5349996584619K7S5319996544861K7N5319996586653K9S5260006554630K9N5259996591897K10S5230006555732K10N5229996593463K11S5200006557050K11N5200006606014K12S5169996557946K12N5170006606316K13S5139996560132K14N510006561417K14N5109996608100K15S5079996563129K15N5079996609417K16S5050006563674K17N502000660934K18S4990006563552K18N4990006563448	K5N	537999	6582834				
K7S5319996544861K7N5319996586653K9S5260006554630K9N5259996591897K10S5230006555732K10N5229996593463K11S5200006557050K11N5200006606014K12S5169996557946K13N5140006606316K13S5139996560132K14N5109096608100K15S5079996608100K15S5079996609417K16S5050006563674K16N5049996610315K17N5020006609934K18S4990006563552K18N4990006563448	K6S	534999	6547889				
K7N5319996586653K9S5260006554630K9N5259996591897K10S5230006555732K10N5229996593463K11S5200006557050K11N5200006606014K12S5169996557946K12N5170006606316K13S5139996560132K14N510006561417K14N5109996608100K15S5079996563129K15N5079996609417K16S5050006563674K16N5049996610315K17N5020006609934K18S4990006563552K18N4990006563448	K6N	534999	6584619				
K9S5260006554630K9N5259996591897K10S5230006555732K10N5229996593463K11S5200006606014K12S5169996557946K12N5170006606316K13S5139996560132K13N5140006606644K14S5110006561417K14N5109996608100K15S5079996563129K15N5079996563129K16S5050006563674K16N5049996610315K17S5019996561849K17N5020006609934K18S4990006563552K18N4990006563448	K7S	531999	6544861				
K9N5259996591897K10S5230006555732K10N5229996593463K11S5200006657050K11N5200006606014K12S5169996557946K12N5170006606316K13S5139996560132K13N5140006606644K14S5110006561417K14N5109996608100K15S5079996563129K15N5079996563129K16S5050006563674K16N5049996610315K17N5020006609934K18S4990006563552K18N4990006563448	K7N	531999	6586653				
K10S5230006555732K10N5229996593463K11S5200006557050K11N5200006606014K12S5169996557946K12N5170006606316K13S5139996560132K13N5140006606644K14S5110006561417K14N5109996608100K15S5079996563129K15N5079996609417K16S5050006563674K17N5020006609934K18S4990006563552K18N4990006563448	K9S	526000	6554630				
K10N5229996593463K11S5200006557050K11N5200006606014K12S5169996557946K12N5170006606316K13S5139996560132K13N5140006606644K14S5110006561417K14N5109996608100K15S5079996563129K15N5079996609417K16S5050006563674K17S5019996610315K17N5020006609934K18S4990006563552K18N4990006563448	K9N	525999	6591897				
K11S5200006557050K11N5200006606014K12S5169996557946K12N5170006606316K13S5139996560132K13N5140006606644K14S5110006561417K14N5109996608100K15S5079996563129K15N5079996563129K16S5050006563674K16N5049996610315K17N5020006609934K18S4990006563552K18N4990006563448	K10S	523000	6555732				
K11N5200006606014K12S5169996557946K12N5170006606316K13S5139996560132K13N5140006606644K14S5110006561417K14N5109996608100K15S5079996563129K15N5079996609417K16S5050006563674K16N5049996610315K17N5020006609934K18S4990006563552K18N4990006563448	K10N	522999	6593463				
K12S5169996557946K12N5170006606316K13S5139996560132K13N5140006606644K14S5110006561417K14N5109996608100K15S5079996563129K15N5079996563674K16S5050006563674K17S5019996610315K17N5020006609934K18S4990006563552K18N4960006563448	K11S	520000	6557050				
K12N5170006606316K13S5139996560132K13N5140006606644K14S5110006561417K14N5109996608100K15S5079996563129K15N5079996609417K16S5050006563674K16N5049996610315K17N5020006609934K18S4990006563552K18N4990006563448	K11N	520000	6606014				
K13S5139996560132K13N5140006606644K14S5110006561417K14N5109996608100K15S5079996563129K15N5079996609417K16S5050006563674K16N5049996610315K17N5020006609934K18S4990006563552K18N4960006563448	K12S	516999	6557946				
K13N5140006606644K14S5110006561417K14N5109996608100K15S5079996563129K15N5079996609417K16S5050006563674K16N5049996610315K17S5019996561849K17N5020006609934K18S4990006563552K18N4960006563448	K12N	517000	6606316				
K14S5110006561417K14N5109996608100K15S5079996563129K15N5079996609417K16S5050006563674K16N5049996610315K17S5019996561849K17N5020006609934K18S4990006563552K18N4960006563448	K13S	513999	6560132				
K14N5109996608100K15S5079996563129K15N5079996609417K16S5050006563674K16N5049996610315K17S5019996561849K17N5020006609934K18S4990006563552K18N4960006563448	K13N	514000	6606644				
K15S5079996563129K15N5079996609417K16S5050006563674K16N5049996610315K17S5019996561849K17N5020006609934K18S4990006563552K18N4960006563448	K14S	511000	6561417				
K15N5079996609417K16S5050006563674K16N5049996610315K17S5019996561849K17N5020006609934K18S4990006563552K18N4990006563448K19S4960006563448	K14N	510999	6608100				
K16S5050006563674K16N5049996610315K17S5019996561849K17N5020006609934K18S4990006563552K18N4990006610102K19S4960006563448	K15S	507999	6563129				
K16N5049996610315K17S5019996561849K17N5020006609934K18S4990006563552K18N4990006610102K19S4960006563448	K15N	507999	6609417				
K17S5019996561849K17N5020006609934K18S4990006563552K18N4990006610102K19S4960006563448	K16S	505000	6563674				
K17N5020006609934K18S4990006563552K18N4990006610102K19S4960006563448	K16N	504999	6610315				
K18S4990006563552K18N4990006610102K19S4960006563448	K17S	501999	6561849				
K18N4990006610102K19S4960006563448	K17N	502000	6609934				
K19S 496000 6563448	K18S	499000	6563552				
	K18N	499000	6610102				
K19N 496000 6610024	K19S	496000	6563448				
	K19N	496000	6610024				
K20S 493000 6566283	K20S	493000	6566283				
K20N 492999 6605763	K20N	492999	6605763				

Kiwigana survey unit transect start and end UTMs	Kiwigana	survey unit	t transect	start and	end UTMs.
--	----------	-------------	------------	-----------	-----------

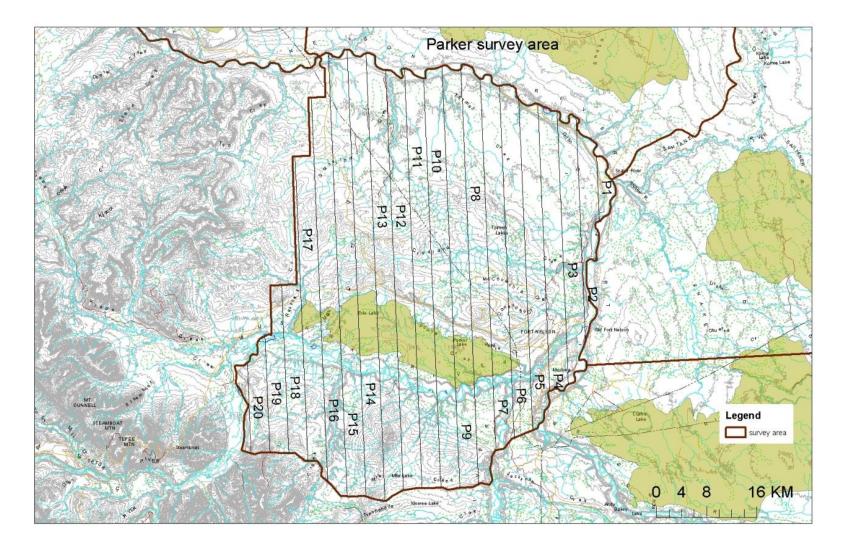
Paradise survey unit

End	Easting	Northing	• •	End	Easting	Northing
PD1N	622000	6514633		PD20S	564999	6515544
PD1S	621999	6505580		PD20N	565000	6581994
PD2S	618999	6505071		PD21S	562000	651550
PD2N	619000	6523659		PD21N	562000	658066
PD3S	616000	6504457		PD22S	559000	651546
PD3N	616000	6526902		PD22N	558999	657985
PD4S	612999	6503806		PD23S	555999	651543
PD4N	613000	6527786		PD23N	556000	658205
PD5S	609999	6503770		PD24S	553000	651539
PD5N	610000	6542446		PD24N	553000	657964
PD6S	606999	6502589		PD25AS	549999	657287
PD6N	607000	6544645		PD25AN	549999	657694
PD7S	603999	6502027		PD25BS	549999	651525
PD7N	603999	6546600		PD25BN	550000	655625
PD8S	601000	6502242		PD26S	546999	651531
PD8N	600999	6557996	_	PD26N	547000	655337
PD9S	597999	6501651		PD27S	543999	651527
PD9N	598000	6564345		PD27N	543999	655118
PD10S	594999	6502314		PD28S	540999	651524
PD10N	594999	6563893		PD28N	541000	655137
PD11S	591999	6501786		PD29S	537999	651520
PD11N	591999	6563176		PD29N	537999	655000
PD12S	589000	6502958		PD30S	534999	651516
PD12N	589000	6563183		PD30N	534999	654788
PD13S	585999	6505677		PD31S	531999	651513
PD13N	586000	6566144		PD31N	531999	654486
PD14S	583000	6508232		PD32S	529000	651509
PD14N	582999	6572524		PD32N	528999	653790
PD15S	580000	6511195		PD33S	525999	651559
PD15N	580000	6575545		PD33N	525999	651888
PD16S	576999	6512633				
PD16N	577000	6577860				
PD17S	573999	6514010				
PD17N	573999	6582455				
PD18S	571000	6515387				
PD18N	570999	6582783				

PD19S

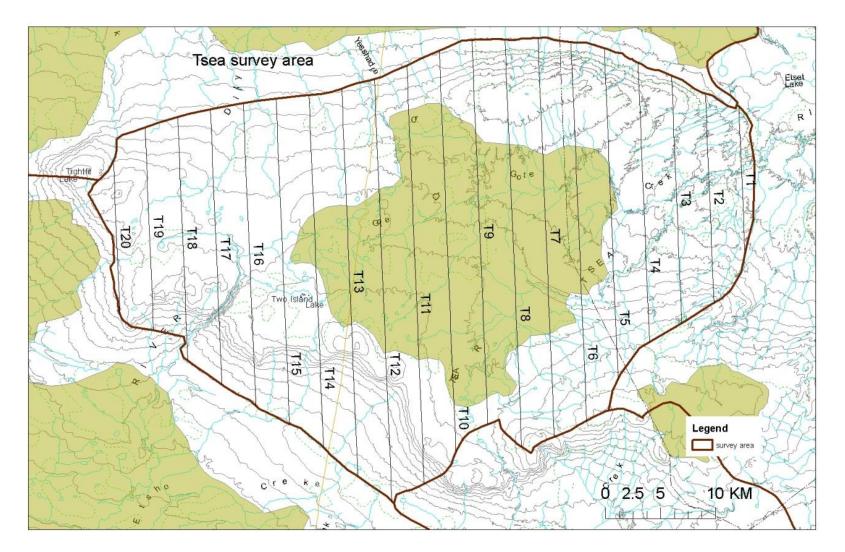
PD19N

567999


567999

6515583

6582935


Paradise survey unit transect start and end UTMs.

Parker survey unit

End	Easting	Northing
P1S	529000	6538023
P1N	529000	6548480
P2S	525999	6518886
P2N	526000	6554822
P3S	523000	6512159
P3N	523000	6555732
P4S	520000	6511232
P4N	520000	6557050
P5S	516999	6505127
P5N	516999	6557946
P6S	513999	6504007
P6N	513999	6560132
P7S	510999	6502161
P7N	511000	6561417
P8S	508000	6496880
P8N	507999	6563129
P9S	504999	6496391
P9N	505000	6563674
P10S	502000	6496572
P10N	501999	6561849
P11S	499000	6496574
P11N	499000	6563552
P12S	495999	6496380
P12N	496000	6563448
P13S	492999	6494841
P13N	493000	6566283
P14S	490000	6495637
P14N	490000	6566960
P15S	487000	6495842
P15N	487000	6566520
P16S	484000	6498322
P16N	484000	6559550
P17S	481000	6501738
P17N	481000	6550288
P17N	478000	6503112
P185 P18N	478000	6529907
P18N P19S	478000	6503315
P19N	475000	6521930

Parker survey unit transect start and end UTMs.

Tsea survey unit

	,	
End	Easting	Northing
T1S	580000	6596553
T1N	580000	6610054
T2S	577000	6592260
T2N	576999	6611331
T3S	573999	6590504
T3N	573999	6613084
T4S	571000	6588914
T4N	571000	6614380
T5S	567999	6585641
T5N	568000	6615830
T6S	565000	6581994
T6N	565000	6616528
T7S	562000	6580660
T7N	562000	6617018
T8S	558999	6579853
T8N	558999	6616999
T9S	556000	6582056
T9N	556000	6617090
T10S	553000	6579644
T10N	553000	6616243
T11S	549999	6576865
T11N	549999	6615005
T12S	546999	6575435
T12N	547000	6613905
T13S	544000	6577815
T13N	543999	6613157
T14S	540999	6580545
T14N	540999	6612701
T15S	537999	6582834
T15N	537999	6612499
T16S	534999	6584619
T16N	534999	6612202
T17S	531999	6586653
T17N	532000	6611758
T18S	529000	6588984
T18N	528999	6611200
T195	525999	6591897
T19N	526000	6610361
- • •		

Tsea survey unit transect start and end UTMs.