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1. Introduction 

A key recommendation in the independent report, Scientific Review of Hydraulic Fracturing in British 

Columbia (Allen et al., 2019), was the need to develop a susceptibility map of induced seismicity 

potential for northeastern British Columbia (NEBC). In response, Amini et al. (2021) in collaboration with 

Geoscience BC developed a machine learning (ML) framework for generating induced seismicity 

susceptibility maps, with focus placed on the Montney region of NEBC. These maps were produced 

relying on a combination of public domain and proprietary data, including the use of geoLOGIC systems 

ltd.’s geoSCOUT database.   

Building on this, focus for the present study was placed on a well pad-scale case study using data 

provided for a seismogenic well pad in the Kiskatinaw Seismic Monitoring and Mitigation Area (KSMMA) 

of NEBC. The key objective of this research is to find the correlation between the geological and 

operational features (i.e., the input parameters for ML) and the occurrence of relatively large induced 

seismicity events (i.e., ≥MW1). The goal in doing so is to identify the important unfavorable features that 

are contributing to the occurrence of these large seismic events. Furthermore, these results can be 

compared with the findings of earlier regional studies (e.g., Wozniakowska and Eaton, 2020; Amini et al., 

2021).   

1.1. Background 

The advancement of multivariate statistics and machine learning techniques in analyzing large datasets 

is useful in dealing with the problem of induced seismicity hazards. However, there is limited experience 

in this area, particularly with considering the influence of both geological and operational factors. It is 

important to distinguish between these factors, as geological factors relate to the conditions that cannot 

be controlled or manipulated, while most operational factors can be manipulated to potentially mitigate 

induced seismicity hazards. 

Several studies have recognized that the large and complex datasets generated by hydraulic fracturing 

(HF) activities require sophisticated analysis methods due to the inefficiency and ineffectiveness of 

traditional empirical and statistical analyses. These have turned to ML techniques, which provide useful 

tools that can detect correlations that are otherwise hidden. Pawley et al. (2018) used logistic regression 

to develop an induced seismicity potential map in the Duvernay play in Alberta, finding that factors such 

as proximity to basement, formation overpressure, minimum horizontal stress, proximity to reef 

margins, lithium concentrations, and natural seismicity rate are the most significant factors in inducing 

seismicity. Similarly, Wozniakowska and Eaton (2020) developed a Seismic Activation Potential (SAP) 

map in the Montney Formation using logistic regression, with the distance to the Cordilleran 

deformation front and injection depth being the most important features. Fox et al. (2020) used 

multivariate statistical analyses, testing four different machine learning models, to investigate the 

correlation between operational parameters and a limited set of geological parameters with induced 

seismicity events in the KSMMA and the North Peace Ground Motion Monitoring Area (NPGMMA) of 

the Montney region. The analysis also looked at both likelihood (classification of seismogenic wells) and 

severity (maximum magnitude regression) of induced seismicity events. The study found that the 

simplest model placed a relatively high negative importance on minimum horizontal stress and high 

positive importance on geothermal gradient, distance between wells and mean proppant per stage. 
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However, the more complex models placed relatively high importance on Paleozoic structure and 

distance to faults. In terms of magnitude regression analysis (i.e., predicting the magnitude of the 

induced event), most models showed a relatively high importance for the top of the Montney structure 

and distance to faults. Amini and Eberhardt (2021) investigated different machine-learning algorithms 

and found that geological features, such as pore-pressure gradient, distance to basement, distance to 

known faults, and azimuth of maximum horizontal stress, generally ranked higher than operational 

features in inducing seismicity. The completion length was the operational feature that consistently 

ranked as being important. Mehrabifard and Eberhardt (2021) investigated the effect of geological 

features on the magnitude distribution of induced seismicity events using different machine-learning 

algorithms and showed that the seismogenic response was most strongly influenced by the pre-injection 

reservoir pore pressure. 

Amini et al. (2021) presented the most comprehensive ML study to date on induced seismicity, 

generating susceptibility maps for the Montney region. Eight different ML algorithms were tested across 

analyses that included both likelihood classification and severity regression. The results found the 

Random Forest ML model to be amongst the top performing models, and that geological features 

generally ranked higher in importance than operational features. Specific to susceptibility, the depth to 

the top of the basement was identified as the most important predictor of a well, being seismogenic. 

This was shown to have a negative correlation, meaning that shallower depths to the basement 

increases the likelihood of a well, being seismogenic. Numerical modelling was used to investigate 

mechanistic explanations for the results and showed that the injection depth influences the extent to 

which the fluid pressure invaded zone is transmitted outwards from the injection point and HF. For 

models simulating a deeper basement depth, the higher stresses resulted in a significantly restricted 

invaded zone. As the modelled distance to the top of the basement becomes shallower (i.e., lower 

stresses), fluid injection results in a larger volume of elevated pore pressures. Amini et al. (2021) 

suggested that this results in an increased likelihood of elevated pore pressures interacting with a 

critically stressed fault in the basement to trigger an induced seismicity event. Overall, the locations of 

susceptible areas in the ML models agreed with the historical location of induced seismicity events. The 

top predictors for event severity were identified by the ML analyses as being: b-value of events within 

100 km of the well (negative correlation), standard deviation of pore pressure gradient (positive 

correlation), and distance of well from the Cordilleran thrust belt (negative correlation). A positive 

correlation between the standard deviation of the pore pressure gradient and event severity concurs 

with the known influence of pore pressure compartmentalization. A negative correlation between the 

distance of the well from the Cordilleran thrust belt and event severity corresponds with the expected 

increase in fault density towards the thrust belt and therefore the increasing likelihood of a HF 

operation encountering a critically stressed fault. 

It their conclusions, Amini et al. (2021) cautioned that ML results are subject to data errors, biases, 

censoring and overfitting, and therefore are not a perfect predictor. They recommended that a next step 

in the use of ML-generated susceptibility (and severity) maps would be to consider the site-specific 

geology, especially where these deviate from general regional trends.  
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1.2. Study Area 

Data was originally received from three operators (anonymized as Operator 1, 2, and 3) from within the 

KSMMA boundary, shown in Figure 1. The KSMMA is situated between Fort St. John in the northwest 

and Dawson Creek in the southeast. Operator 1 (OP1) had a full dataset that could be used for a detailed 

ML study. The OP1 data was selected for the case study and is reviewed in the next section. 

 

 

Figure 1: Map of the Kiskatinaw Seismic Monitoring and Mitigation Area (KSMMA). Source: British Columbia Energy Regulator. 

 

2. Data 

2.1. Operator 1 Data Set Summary 

The data set for Operator 1 (OP1) is derived from the treatment of six east-west orientated wells, all 

completed in the Upper Montney using a plug and perf completion. A total of 4,434 induced seismic 

events were recorded by an operator-owned shallow buried array, with moment magnitudes between       
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-0.922 and 2.246 being observed. Induced events have been associated with the active stages from the 

wells using a simple temporal filter. These are shown in Figure 2.  

The spatial distribution of events reveals strongly aligned patterns of seismic lineaments with multiple 

trends being present, with the main trends being 055, 025, and 115 degrees. Figure 3 provides further 

details for the orientation patterns of interpreted seismic lineaments found. 

 

 

Figure 2: Plan view and sectional view of induced seismic events with size scaled by magnitude (max magnitude 2.2) and 
coloured by the wells they are associated with. All wells are within the Upper Montney with the Upper bench wells being E, G & I 
and the Lower Bench wells being D, F & H. Source: WSP 2023 

D

E

F

G

H

I

UPPER 
Montney

MIDDLE

BELLOY

Plan

Section

LOWER 
Montney



UBC Report on induced seismic susceptibility mapping – Rev 1 – 18th July 2023 
 

8 
 

 

Figure 3: a) Array of induced seismic events coloured by magnitude. b) Interpreted seismic structures. c) Interpreted structures 
by dominant trend. Source: WSP 2023 

 

Geomechanics data was available for this pad and stress and pore pressure gradients have been derived. 

An image log was available that provided the orientation of borehole breakouts and tensile drilling 

induced fractures, yielding an average direction of SHmax of 044 deg (Figure 4). 

a) Induced Seismic Events

b) Interpreted Seismic Structures

c) Interpreted Seismic Structures by Dominant Trend
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Figure 4: Top: Orientation of image log derived breakout orientation and drilling induced fracture orientations. Bottom: 
Summary of stress and pore pressure gradients. Source: WSP Golder 2022 

 

2.2. Exploratory Data Analysis (EDA) 

With the in-situ stress data, and the logging information available, we have performed feature 

engineering and assigned each induced seismic event with corresponding data. To this end, each 

induced event is associated with a hydraulic fracturing (HF) stage via a temporal filter (WSP 2023). All of 

these features are reviewed in  

Table 1.  
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Table 1. Description of the machine learning input data, differentiating between geological (G) and operational (O) features. 

Feature Description  Type 

AverageDipDir Average dip direction of the interpreted lineaments. Note that these 
are averaged because the structures are curved and not planar (see 
Figure 3c). 

G 

TraceLength_(m) Length of each lineament measured along the longest edge. G 

number_labels Number of interpreted lineaments connected to each HF stage. Based 
on the number of lineaments on which events were recorded. 

G 

rake_degree Rake angle, 𝜆, which measures the angle that the hanging wall moves 
during rupture relative to the fault’s strike. Using Aki and Richards 
(2002) convention, a λ of −90° indicates normal fault slip, a λ of 0° or 
180° indicates strike-slip (left- and right lateral, respectively), a λ of 
90° indicates a thrust fault slip, and angles in between indicate 
variants of oblique slip. 

G 

normal_stress_MPa Effective normal stress, 𝜎𝑛
′ , acting on each lineament, calculated 

based on the orientation of each lineament, the magnitude and 
orientation of the principal in-situ stresses and the pore pressure, and 
assuming a Biot’s coefficient of 1.  

G 

Shear_stress_MPa Shear stress, 𝜏, calculated based on the orientation of each 
lineament, the magnitude and orientation of the principal in-situ 
stresses and the pore pressure, and assuming a Biot’s coefficient of 1. 

G 

Slip_tendency Ratio of shear stress to normal stress, 𝜏 𝜎𝑛′⁄ . G 

Formation_ord_enc Ordinal encoding for formations where the events occurred, from 
shallowest to deepest: 0 - Doig, 1 - Upper Montney, 2 - Middle 
Montney, 3 - Lower Montney, 4 - Belloy. 

G 

DTSM [hrs/m] Acoustic slowness of shear waves in hours per meter (hrs/m) 
measured from dipole shear sonic imager during well log operations. 
Inverse of shear wave (S-wave) velocity, 𝑉𝑆. 

G 

DTCO [hrs/m] Acoustic slowness of compressional waves in hours per meter (hrs/m) 
measured from delta-T compressional logging. Inverse of 
compressional wave (P-wave) velocity, 𝑉𝑃. 

G 

RHOB [kg/m3] Bulk density, 𝜌, from bulk density log in kilograms per cubic meter 
(kg/m3).  

G 

Prdyn Dynamic Poisson’s ratio, 𝜈, calculated from the sonic compressional 

and shear wave velocities using 𝜈 =
𝑉𝑃

2− 2𝑉𝑆
2

2(𝑉𝑃
2− 𝑉𝑆

2)
, as shown by Mavko et 

al. (2009). 

G 

Ymdyn [MPa] Dynamic Young’s modulus, 𝐸, calculated from the sonic 
compressional and shear wave velocities and density logs using 𝐸 =

𝜌𝑉𝑆
2(

3𝑉𝑃
2−4𝑉𝑆

2

𝑉𝑆
2−𝑉𝑃

2 ), as shown by Mavko et al. (2009). 

G 

Bulk_Modulus [MPa] Dynamic bulk modulus, 𝐾, calculated from the sonic compressional 

and shear wave velocities using 𝐾 = 𝜌(𝑉𝑃
2 −

4

3
𝑉𝑆

2), as shown by 

Mavko et al. (2009). 

G 

Compressibility [1/kPa] Inverse of bulk modulus.  G 
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Shear_Modulus [MPa] Dynamic shear modulus, 𝐺, calculated from the sonic shear wave 

velocity and density logs using 𝐺 = 𝜌𝑉𝑆
2, as shown by Mavko et al. 

(2009). 

G 

Breakdown_Press_(MPa) Formation breakdown pressure recorded during each HF stage. This 
represents the fracture propagation away from a wellbore (Zoback, 
2007) and can be used as a proxy for formation strength. This 
pressure is correlated to the corresponding induced event.  

G 

Frac_Gradient_(kPa/m) Fracturing gradient pressure recorded during each HF stage and 
correlated to the corresponding induced event. 

G 

ISIP_(MPa) Instantaneous shut-in pressure (ISIP), measured after abruptly 
stopping flow into the well and taken as a measure of the least 
principal stress (Zoback, 2007).  

G 

Diff_m2s-1 Hydraulic diffusivity, 𝐷, calculated based on the spatio-temporal 
distribution of fluid-injection induced seismicity for each event (WSP 
2023). 

G 

perm_m2 Permeability (𝑘) calculated using 𝐷 =
𝑘

𝜇𝜙𝐶𝑡
, where 𝜇, 𝐶𝑡 and 𝜙 are the 

viscosity of the fluid saturating the medium, the overall bulk 
compressibility of the saturated medium (i.e., the pore-fluid and the 
rock matrix and fractures), and the porosity of the medium, 
respectively (WSP 2023). 

G 

time_diff_hr Time difference between the HF stage initiation and the 
corresponding events occurrence time in hours. 

O-G 

Avg._Rate_(m3/min) Average injection rate in 𝑚3/𝑚𝑖𝑛 for each stage. O 

Max._Press_(MPa) Maximum injection pressure in MPa for each stage. O 

Avg._Press_(MPa) Average injection pressure in MPa during each HF stage. O 

Total_Injected_(m3) Total injected volume per HF stage. Each event is assigned to a stage 
via temporal filtering.  

O 

 

 

The value distributions of the data for each feature are shown in Figure 5. For the well logging data, 

since these were measured in a vertical well, we used the hypocentral depth of each event to assign the 

logging data value to each event. With this, we assume that the well log properties only vary in depth 

direction and not horizontally (i.e., the reservoir consists of transversely isotropic formation rocks).  

The lineaments are assigned if the induced seismicity were used to interpret the structure. If the event 

has not occurred on an interpreted structure, it is assigned a negative label. This will then be ignored as 

a useful input data when the features are scaled.  

Finally, the target class consists of two subsets: events with magnitude 1 or greater (positive class) and 

events with magnitude smaller than 1 (negative class). 
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Figure 5: Distribution of values for each feature described in  

Table 1.  

 

A correlation plot is used to visualize the linear relationship between the different features and the 

label. In these plots, the yellow colour indicates a strong positive correlation, and the dark blue indicates 

a strong negative correlation. A weak (near zero) correlation lies in the middle in green. The correlation 

plot for the input parameters used in this study as well as the target class is shown in Figure 6. This 

shows that none of the features have a high correlation with the targets, either the labels for the 
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classification analysis or the maximum magnitudes for the regression analysis. This again shows the 

complex relationship between the feature parameters and induced seismicity, and the need to use more 

advanced ML analyses. 

 

 

Figure 6. Correlation matrix for features used in the ML analyses, including the target value class. 
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3. Methodology 

3.1. Machine Learning Overview 

The two primary classes of ML algorithms are supervised and unsupervised techniques (Goodfellow et 

al., 2016). These are illustrated in Figure 77.  

 

 

Figure 7. Types of machine learning algorithms classified as either unsupervised or supervised learning (from Amini et al., 2021). 

 

In supervised learning, the ML algorithm “learns” or get “trained” to recognize a pattern or make 

general predictions using known examples. Supervised learning algorithms create a map, or model f, 

which relates a given set of data (or feature) in the form of a vector, x, to a corresponding label or target 

vector y: y = f(x). The labeled training data (data for which both the input and corresponding label (x, y) 

are known and given to the algorithm) are then used to optimize the model. For example, a well-trained 

model on different features of houses in Vancouver should be able to learn that the location of the 

house and its closeness to the beach matter and that these correlate positively with more expensive 

houses, while larger lot area may not always have a positive correlation with higher prices, for example 

if very large lot areas are associated with properties in more rural areas where houses may be cheaper.  

Unsupervised learning methods, on the other hand, learn patterns or structure in the datasets without 

requiring any specific input features or labeling. In fact, these algorithms create their own features from 

the given data, and by detecting such features they can distinguish between different input data. A well-
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known example is the feature-detection algorithm developed by Google that learned to recognize cats 

after being exposed to 10 million different unlabeled images (i.e., those not telling the ML if it is a cat or 

a tree) randomly sampled from YouTube videos (Le, 2013). Unsupervised learning is often used for 

exploratory data analysis or visualization in datasets for which no or few labels are available. These tend 

to be powerful models in some practical applications, for example self-driving cars. Although 

interpretability may not always be necessary in a highly accurate image recognition system, for example 

in the case of self-driving cars we want to make sure the algorithm distinguishes between a tree and a 

pedestrian but we may not care how it figured this out, it is critical when the goal is to gain physical 

insight into the system, which is the case for induced seismicity susceptibility (Amini et al., 2021; Bergen 

et al., 2019). 

For this study, the objectives align with supervised learning and classification. 

3.2. Machine Learning Steps 

There are a number of key steps in performing a supervised classification ML data analysis. In this 

section, we present a general overview of these steps. The terminology used follows that commonly 

associated with ML analyses, including: “features” or input data (x-values); and “target values” or the 

outcome (y-value) that is going to be predicted by the model. 

1) Divide data into training, validation and test splits. 

2) Perform exploratory data analysis: 

- to detect outliers. 

- to evaluate missing data. 

3) Pre-process data: 

- to clean the data. 

- to deal with missing data (e.g., by replacing them with average values). 

- to transform data into a ML-friendly database format. 

- to select and engineer features.  

4) Cross-validate and tune hyperparameters. Each model has a combination of parameters that 

controls the learning process or how to map the input to the target value, and this step is 

performed to optimize such parameter configurations for the selected model features and 

target values through cross-validation. 

5) Validate the performance of the best combination of hyperparameters using the validation 

dataset. If the performance is not satisfactory, the last step should be repeated until a 

satisfactory result is reached. 

6) Using the most optimized hyperparameters, train the model on all training and validation 

datasets.  

7) Finally, using the trained model from the previous step, investigate the model performance and 

feature importance ranking. The feature importance ranking shows the correlation between 
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each feature and its impact on the classification probability (i.e., likelihood of the outcome 

occurring). Note that such correlations can be either positive or negative. 

It should be noted that during the data pre-processing step, we scaled all numerical inputs using a 

robust standard scaler (via a module in the scikit-learn Python ML tools). This not only removed the 

disproportionate impact of outliers (e.g., the negative values of the lineament features including 

TraceLength_(m)), but also ensured that the unit and the scale of the input data does not impact the 

performance of sensitive ML algorithms such as Logistic Regression. 

Since our dataset is severely imbalanced (there are only 42 out of 4434 induced events with ≥Mw1), we 

have to use a number of metrics to evaluate the performance of the models. For likelihood 

classification, one of the more complete means of evaluating and visualizing model performance is the 

“confusion matrix”. The confusion matrix breaks down the number of correct and incorrect predictions 

by the model, both with respect to the yes and no (positive or negative) of the binary classification 

problem. This is illustrated in Figure 8. In this case, the binary problem is whether a HF stage coincides 

with a large induced seismicity event of ≥Mw1 (i.e., seismogenic/positive for ≥Mw1 and non-

seismogenic/negative for <Mw1). The model predictions of seismogenic and non-seismogenic are then 

compared to the actual field-based classification of seismogenic and non-seismogenic. 

 

 

Figure 8. Illustration of a confusion matrix used to evaluate machine learning performance, and several advanced 
performance metrics calculated from the confusion matrix (from Amini et al., 2021).  

 

The confusion matrix can then be used to calculate more advanced classification metrics, including 

(Figure 8):  

Accuracy: Represents the number of correct predictions (both true positive and true negative) over 

the total number of predictions. This metric is best used for balanced datasets (both positive and 

negative classes have significantly different number of data occurrences). 
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Precision: Represents the ratio of true positive predictions to the total number of true and false 

positive predictions. If there are no incorrect false positive predictions, then the model has 100% 

precision.  This metric is well suited for unbalanced datasets. 

Recall:  Represents the sensitivity of the model, by comparing the number of true positive 

predictions to the total number of true positive and false negative predictions. Thus, the recall rate 

is penalized whenever an incorrect false negative is predicted. This metric is also suitable for 

unbalanced datasets. 

Precision is often used in cases where classification of true positives is a priority; i.e., it evaluates the 

model’s success rate in correctly predicting seismogenic wells. Recall is often used in cases where 

classification of false negatives is a priority. In this case study, since the dataset is severely imbalanced 

and we are interested in finding correlations between the input features and positive class, we choose 

to optimize and analyze the performance of the ML models using the recall metric: out of the 42 

seismogenic events how many does the model predict correctly.   

3.3. Machine Learning Models Tested 

Several ML algorithms were tested for this study. These are listed and described in Table 2. Note that 

the dummy classifier model is only used to create a baseline for the other models.  

Table 2. Summary descriptions of the different machine learning models used for the classification and regression 
analyses. 

Model Name Abbreviation Description 

Dummy Classifier 
(Pedregosa et al., 2011) 

Dummy 
Classifier 

A classifier that makes predictions using simple 
rules. It does not use features when predicting 
and is useful as a simple baseline to compare 
with other classifiers. 

Logistic Regression 
(Walker and Duncan, 1967) 

LR A linear model classifier. It works by fitting a 
logistic function to the data, which maps the 
input features to a probability value between 0 
and 1. It predicts the class with the highest 
probability. 

Decision Tree 
(Breiman, 1984) 

DT This classifier works by recursively partitioning 
the input space into smaller regions, based on 
the values of the input features. At each level of 
the tree, a decision is made based on the value of 
a single feature, with the goal of maximizing the 
information gain or minimizing the impurity of 
the resulting subsets. 

Random Forest 
(Breiman, 2001) 

RF This ensemble classifier works by building 
multiple decision trees and aggregating their 
results to make a final prediction. Each decision 
tree is built on a random subset of the training 
data and a random subset of features. This helps 
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to reduce overfitting and increase the 
generalization of the model. 

Support Vector Classifier 
(Cortes and Vapnik, 1995) 

SVC This classifier works by finding a hyperplane in a 
high-dimensional space that maximally separates 
the different classes. The algorithm tries to 
maximize the margin between the classes and 
can handle non-linearly separable data by 
transforming the input space to a higher 
dimensional feature space. 

XGBoost 
(Chen and Guestrin, 2016) 

GXB "Extreme Gradient Boosting" is another decision 
tree-based algorithm. It works by iteratively 
adding weak learners (decision trees) to the 
model and optimizing a loss function to minimize 
errors. 

Light GBM 
(Ke et al., 2017) 

LGBM “Light Gradient Boosting Machine” is a lighter 
version of XGBoost classifier. It works by using a 
novel histogram-based approach to bin 
continuous features into discrete values for the 
decision trees.  

 

4. Likelihood and Susceptibility Classification Analyses  

4.1. Feature Importance (Geological and Operational Data)  

The classification analyses focused on identifying the most important features and their correlation with 

respect to the likelihood of a HF stage being seismogenic or not. We performed two sets of classification 

modeling:  

1)  A feature importance analysis targeting likelihood that a HF stage produces an induced seismicity 

event with ≥Mw1. This makes use of a combined dataset of all geological and operational features 

at each HF stage. 

2)  A feature importance analysis targeting susceptibility of a well pad location being seismogenic and 

capable of producing events with ≥Mw1. This makes use of a restricted dataset limited to 

geological features and those operational features that apply to susceptibility. 

A key distinction is made here between likelihood and susceptibility. Likelihood refers to the probability 

of a hazard occurring, whereas susceptibility is more specific and refers to the spatial probability of the 

hazard occurring (i.e., the susceptibility of a new well at a given location being seismogenic). 

Accordingly, the likelihood analysis makes use of all feature data, both geological and operational, 

whereas the susceptibility analysis excludes most operational features, as these do not apply to the pre-

existing conditions that would relate to the susceptibility of a new well location to induced seismicity. 

Exceptions include operational features that serve as a proxy for the physical properties of the targeted 

formation, for example breakdown pressure and instantaneous shut-in pressure (ISIP).  



UBC Report on induced seismic susceptibility mapping – Rev 1 – 18th July 2023 
 

19 
 

Distinguishing between geological and operational features is also of interest as the geological factors 

relate to the conditions that are in place and cannot be controlled or manipulated (outside of 

avoidance), i.e., susceptibility. These differ from most operational factors (i.e., those related to HF and 

well completions), which can be manipulated, offering a means to potentially mitigate induced 

seismicity hazards for a susceptible formation.  

4.1.1.  Model Training and Testing Results 
To begin, since the OP1 dataset involves a timeseries, the combined geological and operational features 

data were first sorted based on the time of event occurrences. It was then split into a training set (70%) 

and test set (30%). The Dummy Classifier was used as the baseline with a 99% accuracy score, which 

clearly indicates a severely imbalanced dataset. Thus, as explained earlier, to properly optimize the 

performance of the models, the calculated recall score was considered. Comparing the seven ML 

algorithms tested, the top performing models selected for interpretation were those with a recall of 

more than 50%. These are Logistic Regression (LR) with 67%, Random Forest (RF) with 67%, and Support 

Vector Classifier (SVC) with 78% test recall scores (see Figure 99). 

 

 

Figure 9. Confusion matrices of the training results (top) and test results (bottom), for the three top performing ML algorithm 
models according to recall score when considering the combined geological and operational features dataset. 

 

4.1.2.  Model Interpretation  
Interpretability in machine learning refers to the ability to understand and explain how a model makes 

its predictions or decisions. It is an important aspect of ML because it allows us to identify correlations 

and understand why the model is making specific predictions. There is no mathematical definition of 

interpretability. However, one widely cited definition of interpretability in ML is by Miller (2017), who 

defines it as "the degree to which a human can understand the cause of a decision."  

Logistic Regression Random ForestSVC

Logistic Regression
Random ForestSVC



UBC Report on induced seismic susceptibility mapping – Rev 1 – 18th July 2023 
 

20 
 

One of the widely used ML techniques in such interpretation is to review the strength (and the direction 

for linear-based models) of the influence of each feature in predicting the target classes. Thus, to 

thoroughly understand and interpret the performance of each model, we used three techniques, which 

are briefly reviewed in the following sub sections. It must be noted again that these interpretations are 

evaluated using a recall metric, and more importantly, correlations determined through ML outputs do 

not establish a cause‐and‐effect relationship (i.e., “correlation is not causation”). 

Feature Importance, Coefficients, and SHAP Interpretation 

For the top three performing models (i.e., LR, SVC, RF), we first reviewed the feature coefficient and 

importance of the models themselves. For the linear models (LR and SVC), the “feature coefficients” 

were analyzed. In these models, each feature is assigned a coefficient that represents the strength and 

direction of its influence on the target variable. Features with larger coefficients (absolute values) are 

considered more important in the model's decision-making process, as they have a stronger impact on 

the target variable. For the tree-based model (RF), feature importance refers to the measure of the 

contribution of each feature in the decision-making process of the model. Features with higher 

importance scores are considered more important in the model's decision-making process, as they have 

a greater impact on the score of the model's predictions. However, it should be noted that these 

coefficients do not have any physical meaning and are used as relative values for comparison and not as 

absolute values.  

Figure 10 shows the feature importance plots resulting from the LR, SVC and RF analyses for OP1.  

Table 3 lists the top five important features for each of these models. These show that the lineament 

orientation (AverageDipDir) and its size (TraceLength_(m)) are the most important features. For the 

linear models (LR, SVC), the larger these values, the higher the likelihood the model will predict the 

stage as being seismogenic (i.e., ≥MW1). Similar trends and correlations between these features and the 

prediction of seismogenic stages can be seen for the non-linear RF model outputs in Figure 11. 

Comparing the dip direction orientation of the lineaments (Figure 5) with the orientation of SHmax (Figure 4), 

these observation suggest that these sub-vertical structures will be more seismogenically active if they 

are striking parallel with SHmax.    In addition, the findings of these models are similar to the results from 

Amini et al. (2021) that the geological features generally rank higher than operational features with 

respect to importance.  

 

Table 3. The top five ranked features when considering all geological and operational features with respect to importance in 
predicting induced seismicity likelihood for the hydraulic fracturing stages of the OP1 well pad, for each of the top three 
performing ML classifier models. See  

Table 1 for full descriptions of the features. 

Rank Logistic Regression Support Vector Classifier Random Forest 

1 AverageDipDir AverageDipDir TraceLength_(m) 

2 TraceLength_(m) TraceLength_(m) AverageDipDir 

3 Formation_ord_enc Formation_ord_enc rake_degree 
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4 Total_Injected_(m3) Slip_tendency number_labels 

5 number_labels Prdyn Total_Injected_(m3) 

 

 

 

 

Figure 10. Importance ranking of geological and operational features for the top three performing ML classifier models applied 
to the OP1 dataset. Note that these coefficients do not have any physical meaning and are used as relative values for 
comparison and not as absolute values. See  

Table 1 for full descriptions of the features.  
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Since the tree-based RF model is non-linear, to interpret the features we use SHapley Additive 

exPlanations (SHAP) analyses tool (Lundberg and Lee, 2017) for in-depth interpretation of the results.  

SHAP utilizes a game theory approach to help interpret predictions from complex model output. SHAP 

assigns each data point a SHAP value, which is used for the model interpretation. The SHAP value 

represents the estimated impact of a particular feature on the model's prediction for a given instance. A 

positive SHAP value indicates that the feature has a positive impact on the model's prediction (i.e., 

higher feature values increase the prediction), while a negative SHAP value indicates that the feature 

has a negative impact on the prediction (i.e., higher feature values decrease the prediction). The swarm 

plot consists of a scatterplot, where each point represents a single instance in the dataset. The position 

of the point on the x-axis represents the SHAP value for a particular feature, while the y-axis indicates 

the index of the instance in the dataset. By default, the points are arranged in a way that avoids 

overlapping, creating a "swarm" effect. The SHAP swarm summary plot for the RF model is provided in 

Figure 11.    

 

 

Figure 11. SHAP swarm summary plot for the Random Forest model considering both geological and operational features. 

 

For all results (Figure 1010 and Figure 11), it can be seen that the depth of the formation correlates with 

the prediction of seismogenic class: strongly for the LR and SVC models, moderately for the RF model. 

These suggest that the deeper the lineament the larger the seismic moment release. As would be 

expected, with increasing depth, a higher amount of elastic strain energy would be stored along 

structures and released upon slip. 
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The number of lineaments that are connected to the HF stage (fracture intensity) is also amongst the 

more important geological features. Figure 10 and Figure 11 show an inverse relationship between the 

prediction of seismogenic class and the values of this feature. In other words, the larger the number of 

intersected lineaments the lower the probability of a seismogenic response. This was a key finding in the 

empirical and numerical results from the first part of the larger study for BC OGRIS (WSP 2023). In 

summary, we learned from the data that the injection into a highly fractured reservoir results in lower 

pressure buildup due to the higher storage capacity of the connected network of fractures. Considering 

the hydraulic diffusivity, fracture intensity, pressure and seismic response of the reservoir to fluid 

injection collectively, we concluded that there exists an inverse relationship between the hydraulic 

diffusivity and the number of connected structures, whereby higher-pressure buildup and larger event 

magnitudes are associated with higher hydraulic diffusivity values. This can also be seen in the ML 

results. Figure 12 isolates the SHAP results showing its correlation with fracture intensity and hydraulic 

diffusivity. 

 

 

Figure 12. SHAP interpretation of the dependent correlation between fracture intensity (number_lables), hydraulic diffusivity 
(Diff_m2s-1), and the SHAP values. 

 

Further analysis of Figure 10 indicates that for the linear model interpretations (LR, SVC), higher dynamic 

Poisson’s ratio values correlate with the prediction of seismogenic class. Poisson’s ratio describes how a 

material deforms when it is subjected to stress. It is closely related to the volume of the rock that 

undergoes deformation, and therefore to the amount of stored elastic strain energy. In general, rocks 

with high Poisson's ratios tend to deform more in response to stress, and therefore store more elastic 

strain energy than rocks with lower Poisson's ratios. Thus, a larger portion of stored elastic energy can 

be seismically released. Similarly, these models indicate that breakdown pressure as well as fracturing 

gradient, both proxies for formation rock strength, are among the important influential features. Again, 

the higher the yield strength of the rock, the larger the amount of elastic strain energy that can be 

stored by the rock, and hence, the increased likelihood of larger seismic moment release. It should be 
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noted that these features by themselves aren’t lone predictors but depend on other conditional factors 

related to the geology and operations (e.g., the depth and stress environment).   

For all three models, slip tendency is also considered an important feature. The larger this value, the 

higher the likelihood of shear slip and potentially larger seismic moment release. This is dependent on 

other features, for instance the trace length, which corresponds with rupture length potential. 

Finally, the RF model results show that rake-angle is among the most top important features unlike the 

linear models. This again points to the importance lineament with regard to the in-situ stress. However, 

since the in-situ stress state is transform (i.e., SHmax > SV > Shmin), and the structures are vertical, the 

resulting rake-angles are closely generates strike-slip movement (i.e., left-lateral movement, see Aki and 

Richards, 2002). Mehrabifard and Eberhardt (2023) studied a global dataset of induced seismicity and 

concluded that the transform stress regime corresponds with a larger induced seismic hazard potential. 

Therefore, the presence of sub-vertical structures in the area with combination of transform stress 

regime lead to high seismic hazard potential, which is confirmed by observation of rake angle among the 

important features in this model. 

The above highlights the importance of geological features. With respect to the most important 

operational features, the results point to the total injected fluid volume, where high injection volumes 

have a positive impact on model prediction of seismogenic response. This is in agreement with our 

regional Montney induced seismicity susceptibility study (Amini et al., 2021). The influence of injection 

volume is well studied and has been shown to have a positive correlation with induced seismicity (e.g., 

McGarr, 2014; Schultz et al., 2018).   

Permutation Importance 

Permutation importance analyses (Breiman, 2001) measure the increase in the prediction error of a 

model if the feature’s values are permuted. In other words, a feature is deemed important if shuffling 

and reordering its values increases the model error as this indicates the model relies on the feature for a 

correct prediction. If shuffling and reordering the feature’s values leaves the model error unchanged, 

then the feature did not have any significant influence on the model’s ability to correctly predict and is 

unimportant. This procedure breaks the relationship between the feature and the target prediction, and 

thus any decrease in the model score is indicative of how much the model depends on the feature.  

Figure 13 plots the results of the permutation importance analysis performed. The y-axis shows the 

features, and the x-axis shows the model score loss (i.e., increase in model error). These values do not 

have any physical meaning and simply provide a relative measure for comparison. The error values for 

each feature are reported as a box plot where the lower and upper edges of the box indicate the 25th 

and 75th percentiles, respectively, and the central mark indicates the median. The whiskers extend to 

the most extreme data points not considered to be outliers. Outliers are plotted as individual points (i.e., 

open circles in this case).  

Overall, the results from the permutation importance analysis supports the finding from the previous 

technique. The results show that the lineament orientation (AverageDipDir) and its size 

(TraceLength_(m)) are among the most important features, the latter having the highest importance 

scores. Similarly, the models agree that number of connected structures (number_labels), slip tendency 

of the lineaments, and Poisson’s ratio are also important features. The total injection volume is one of 

the most important operational features among both linear models (LR and SVC).  
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The fact that the non-linear RF model is sensitive to a smaller number of features compared to the linear 

SVC and LR models, suggests that this model is focusing on the most relevant and informative features 

in the dataset. This can be a sign of a well-generalized and interpretable model. Therefore, the findings 

of this analysis may indicate that Random Forest is a more reliable model between the three. 

 

 

Figure 13. Permutation importance plots for the top three performing machine learning models when considering geological and 
operational features. See text for explanation. 

  

Recursive Feature Elimination 

Recursive feature elimination is a technique for selecting the most important features in a ML model. It 

works by repeatedly fitting the model with a subset of the features and eliminating the least important 

Logistic Regression Random ForestSVC

Logistic Regression Random ForestSVC
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feature at each iteration. The importance of each feature is measured using a model-specific metric, 

such as feature coefficients (for LR) or feature importance (for RF). This technique provides a ranked list 

of feature importance that can be used to interpret the performance of each model. 

Table 4 lists the top five ranked features using this technique. It should be noted that the features with 

the same amount of importance are assigned the same rank. Comparing the results to Table 3, it can be 

seen that the lineament orientation (AverageDipDir) and its size (TraceLength_(m)) continue to be 

consistently ranked at the top. The two linear models (LR, SVC) also agree that the number of connected 

structures (number_labels) and hypocentral depth (Formation_ord_enc) are amongst the most 

important features, with the former also continuing to rank in the top five for the RF model. New to the 

top five for the LR and RF models is the slip tendency of the lineaments (Slip_tendency). The formation 

permeability (perm_m2) also newly appears in the top five for the RF model, ranking amongst the top 

important features from the recursive feature elimination analysis. It is interesting that the total 

injection volume is the only important operating feature that appears for the RF classifier in both the 

feature importance and recursive feature elimination analyses (Tables 3 and 4, respectively). Generally 

speaking, these results are consistent with the findings of the previous techniques. 

 

Table 4. The top five recursive feature elimination ranked features when considering all geological and operational features with 
respect to importance in predicting induced seismicity likelihood for the hydraulic fracturing stages of the OP1 well-pad, for each 
of the top three performing ML classifier models. See  

Table 1 for full descriptions of the features. Repetitive ranking means the features are equally important. 

Logistic Regression Support Vector Classifier Random Forest 

Features Rank Feature Rank Feature Rank 

AverageDipDir 1 AverageDipDir 1 TraceLength_(m) 1 

TraceLength_(m) 1 TraceLength_(m) 1 AverageDipDir 1 

Formation_ord_enc 1 number_labels 1 Slip_tendency 1 

number_labels 1 Formation_ord_enc 2 perm_m2 1 

Slip_tendency 2 shear_stress_MPa 3 rake_degree 2 

Frac_Gradient_(kPa/m) 3 Slip_tendency 4 Total_Injected_(m3) 3 

ISIP_(MPa) 4 normal_stress_MPa 5 number_labels 4 

Total_Injected_(m3) 5 DTCO[hrs/m] 6 time_diff_hr 5 

 

4.2. Feature Importance (Geological Data)  

Susceptibility maps are created by combining different features that contribute to a hazard, indicating 

where the hazard is more likely to occur spatially. However, as previously noted, not all features lend 

themselves to spatial susceptibility. Already in the previous section, where ML importance analyses 

considered both geological and operational features, the results were dominated by the importance of 

several geological features. The next step specified by Amini et al. (2021) in generating a ML-derived 

induced seismicity susceptibility map involves repeating the feature importance analysis, but with a 

focus on only those features that can be used to assess susceptibility. Included are all geological features 
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and any operational features that serve as a proxy for formation properties; these are indicated as type 

“G” in  

Table 1). 

 

4.2.1.  Model Training and Testing Results 
The same procedures as explained in Section 4.1.1. were followed in order to train and test the 

susceptibility-focused classification models. Again, a 70%-30% split was used for the training and testing 

sets, respectively. Figure 144 represents the confusions matrices for the top performing models. The 

testing recall scores for the LR, SVC and RF models are 55%, 67%, and 67%, respectively. Comparing the 

two sets of confusion matrices (Figure 9 and Figure 144), it seems that removing the operational 

features not related to the susceptibility, slightly reduces the recall scores. 

 

 

Figure 14. Confusion matrices of the training results (top) and test results (bottom), for the three top performing ML algorithm 
models when only considering the susceptibility-focused features dataset. 

 

4.2.2.  Model Interpretation 

Feature Importance, Coefficients, and SHAP Interpretation 

The training results for the three models were further analyzed to investigate their ranking of feature 

importance with respect to induced seismicity susceptibility. Figure 15 shows the feature importance 

plots resulting for these models, and Table 5 lists the top five important susceptibility features. The 

structural orientation and dimensions remain the most important features. These are followed by 

hypocentral depth, number of connected structures to the HF stage, stresses on the structures (i.e., slip-

Logistic Regression Random ForestSVC
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tendency and rake angle), and Poisson’s ratio. These are consistent with the findings of Section 4.1.2. 

Among these the inverse relation between the seismogenic class and the number of connected 

structures (i.e., number_labels), can be seen by the negative coefficients in Figure 155 for the linear 

models (LR and SVC), and the SHAP swarm summary plot in Figure 16 for the RF model (where the red 

dots in the plot correspond to the prediction of the non-seismogenic class; i.e., negative SHAP values). 

 

 
Figure 15. Importance ranking of susceptibility features for the top three performing ML models. Note that the coefficients do 
not have any physical meaning and are used as relative values for comparison and not as absolute values. 

Table 5. The top five ranked susceptibility features with respect to importance in predicting induced seismicity likelihood for the 
hydraulic fracturing stages of the OP1 well-pad, for each of the top three performing ML classifier models. 

Rank Logistic Regression Support Vector Classifier Random Forest 

1 AverageDipDir AverageDipDir TraceLength_(m) 

Logistic Regression Random ForestSVC
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2 TraceLength_(m) TraceLength_(m) AverageDipDir 

3 Formation_ord_enc Formation_ord_enc rake_degree 

4 number_labels Slip_tendency Slip_tendency 

5 Prdyn Prdyn number_labels 

 

Figure 16. SHAP swarm summary plot of Random Forest model considering only the susceptibility features. 

 

Permutation Importance 

The permutation importance analyses of the susceptibility features are shown in Figure 177. Generally, 

the results support the findings of the feature importance analysis. The LR model is seen to be more 

sensitive to the slip tendency and the resultant stresses on the lineaments, whereas the RF model is 

most sensitive to the orientation and the dimension of the structures. The SVC model is most sensitive 

to the stresses on the lineaments, and their orientation and dimensions. In addition, the fact that all 

three models are sensitive to a similar number of features may suggest that the models are equally 

reliable.  
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Figure 17. Permutation importance plots for the top three performing machine learning models when considering only the 
susceptibility features.  

 

Recursive Feature Elimination 

Table 6 lists the top five ranked susceptibility features using this technique. It should be noted that the 

features with similar importance have the same rank. The importance of the features agrees with the 

previous findings that the fracture intensity, the size and orientation of the structures, the stresses 

acting on these structures, and the hypocentral depth of the shear slip events are the most important 

features. Using this method, the RF model places a larger importance on the fluid pathway permeability, 

which agrees with the SHAP analysis in Figure 16 that shows the model predicting the seismogenic class 

for highly permeable fluid pathways. This again is consistent with the findings reported in WSP 2023. 
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The combination of such high permeable corridors and low fracture intensity can result in large induced 

seismic events in response to fluid injection (also see Figure 12). 

 
Table 6. The top five recursive feature elimination ranked features when considering only the susceptibility features with respect 
to importance in predicting induced seismicity likelihood for the hydraulic fracturing stages of the OP1 well-pad, for each of the 
top three performing ML classifier models. See  

Table 1 for full descriptions of the features. Repetitive ranking means the features are equally important. 

Logistic Regression Support Vector Classifier Random Forest 

Features Rank Feature Rank Feature Rank 

AverageDipDir 1 AverageDipDir 1 AverageDipDir 1 

TraceLength_(m) 1 TraceLength_(m) 1 TraceLength_(m) 1 

number_labels 1 number_labels 1 perm_m2 1 

Formation_ord_enc 2 Formation_ord_enc 2 Slip_tendency 2 

Slip_tendency 3 shear_stress_MPa 3 number_labels 3 

Frac_Gradient_(kPa/m) 4 Slip_tendency 4 rake_degree 4 

ISIP_(MPa) 5 normal_stress_MPa 5 Diff_m2s-1 5 

Prdyn 5 DTCO[hrs/m] 6 Prdyn 6 

 

5. Induced Seismicity Susceptibility Maps and Interpretation 

Machine learning results from the top two performing classification models, Linear Regression (LR) and 

Random Forest (RF), were used to generate induced seismicity susceptibility maps for the well pad-scale 

OP1 case study area in KSMMA. The Support Classifier Vector (SVC) models were not used as they are 

not naturally probabilistic models and do not output a prediction score between 0 and 1. (Instead, SVC 

models output a binary decision boundary that separates the data into two classes).  

The generation of the susceptibility maps involved applying the trained models to the well-pad areal 

extent to calculate the probability of induced seismicity for a grid of spatial points. The models were 

only trained on the 70% split of the data (training set) using the features of the test dataset. It should be 

noted that the output of the classification model is the probability of a given point being seismogenic. In 

other words, the probability of observing an induced seismicity event of moment magnitude one or 

greater (≥MW1). In addition, susceptibility maps only report the spatial probability of a hazard, in this 

case a well location being seismogenic; they do not report the temporal probability or related level of 

hazard (i.e., expected magnitude of the induced seismicity event).  

To facilitate the comparison, both maps generated (LR and RF) are shown together in Figure 18. The 

network of interpreted lineaments are superimposed over these susceptibility maps. Both models 

predict almost identical induced seismicity hotspots with minor differences. As can be seen, where the 

number of connected structures to the active HF stage is low, the models predict a higher probability of 

seismogenic response to fluid injection. 
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Figure 18. Induced seismicity susceptibility maps for the OP1 well-pad area in KSMMA. The color bar represents the probability 
of experiencing induced seismicity with ≥ MW1. Included is the superimposed interpreted network of structures. 

 

To evaluate the performance of the generated induced seismicity susceptibility maps, Figure 19 

reproduces these with the locations of induced events with ≥MW1 superimposed on top. This 

comparison shows that there is a good match between the locations of these events and areas 

identified by the susceptibility maps as having high probabilities of seismic potential. For both models, 
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there are a few small areas where the model predicts an increased potential for larger induced 

seismicity events for which none were recorded. This might be indicative of the parts of the reservoir 

where the geological conditions are unfavorable but there might be operational factors that have 

contributed to avoiding a seismogenic response to fluid injection.  

 

 

 

Figure 19. Locations of induced seismicity events (≥MW1) superimposed on the susceptibility maps generated from the Logistic 
Regression and Random Forest classification ML models. 
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6. Discussion and Conclusions 

Results were presented from a machine learning analysis aimed at identifying the connection between 

geological and operational features and the occurrence of relatively large induced seismic events 

(≥MW1) in the Kiskatinaw Seismic Monitoring and Mitigation Area (KSMMA). To this end, we conducted 

two types of classification modeling: 

1) a classification analysis to identify important features by combining all geological and 

operational features for each hydraulic fracturing stage. 

2) a classification analysis to determine spatial susceptibility by only using geological and relevant 

operational features. 

The results of these analyses suggest that the geological features correlate more strongly with fluid 

injection induced seismicity. This was observed in the results of the feature importance analyses 

considering both geological and operational features and validated through the generated susceptibility 

maps superimposed with the interpreted network of structures. However, we acknowledge that this 

conclusion is subject to the limitations of the operational data made available and used.  

Amongst all features, the dimension (trace length) and orientation of the structures were seen to impact 

the predictions of the machine learning models most. This is expected as the dimension of the 

structures (i.e., the potential shear rupture area, A) is linearly proportional to the seismic moment 

release, 𝑀𝑜, by means of 𝑀𝑜 = 𝐺𝐴𝐷̅ (where G is the shear modulus of the formation and 𝐷̅ is the 

average shear displacement of the structure). The orientation of the fault strongly impacts the resultant 

shear and effective normal stresses acting on the fault and therefore its stability state relative to shear 

failure. The structural intensity was another important feature that consistently appeared in our 

machine learning results. This agrees with the findings reported in WSP 2023, which were explained 

mechanistically as the structural intensity influencing the storage capacity and therefore the pressure 

buildup and invaded zone. Lower fracture intensities were observed to be associated with larger 

pressure buildups that were more narrowly focused in their travel path to distal structures.  

The Poisson’s ratio and the formation depth were also commonly observed as being important features 

in the machine learning results. The higher stress environments at greater depths and increased elastic 

deformability of the rock (with higher Poisson’s ratios) would both contribute to larger stored elastic 

strain energy and therefore larger magnitude events if triggered and released through shear slip.  

Among the operational parameters, the injection volume was consistently seen to be an important 

feature. This is in agreement with our regional Montney induced seismicity susceptibility study (Amini et 

al., 2021). The influence of injection volume is well studied and has been shown to have a positive 

correlation with induced seismicity (e.g., McGarr, 2014; Schultz et al., 2018).   

Using the results of the machine learning analyses, well pad-scale susceptibility maps were generated 

based on the probability outcomes of the Logistic Regression and Random Forest models for large 

induced seismicity events (i.e., ≥MW1). The maps showed higher susceptibilities for an area of the 

reservoir footprint characterized as having low structural intensity. These findings are helpful in 

explaining the observation of frequent large induced seismicity in response to hydraulic fracturing 

operations in the Kiskatinaw area and can be useful in planning the mitigation induced seismicity hazard 

measures in NEBC.   



UBC Report on induced seismic susceptibility mapping – Rev 1 – 18th July 2023 
 

35 
 

Finally, we compared the approximate location of well-pad OP1 with the regional susceptibility map 

generated by Amini et al. (2021) for induced seismicity with magnitude 1.1 or higher. To facilitate direct 

comparison, focus was placed on the map versions derived using the Random Forest machine learning 

algorithm. The location of the well-pad is bounded by a large red circle in Figure 20 (large to maintain 

OP1’s anonymity). This falls within an area on the regional map with a probability of 50% and higher of 

experiencing a Mw1.1 or larger induced seismicity event.  

 

Figure 20. Induced seismicity susceptibility map developed for the Montney region by Amini et al. (2021) for events with a 
minimum magnitude of 1.1. This map was generated based on results from a Random Forest machine learning model. The red 
circle shows the approximate location of the OP1 well pad. To the right is the well pad-scale induced seismicity susceptibility 
map for OP1 for events with magnitude 1 or higher generated in this study.  
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