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EXECUTIVE SUMMARY 

Oil and gas wells are engineered with barriers to prevent fluid movement along the wellbore. If the 

integrity of one or more of these barriers fails, it may result in subsurface leakage of natural gas outside 

the well casing, a process termed fugitive gas migration (GM). Knowledge of the occurrence and causes 

of GM is essential for effective management of the potential risks of GM. In the province of British 

Columbia, Canada (BC), oil and gas producers are required to report well drilling, completion, 

production, and abandonment records for all oil and gas wells to the British Columbia Oil and Gas 

Commission (BCOGC). These well data provide a unique opportunity to identify well characteristics with 

higher probabilities for GM to develop. Here we conduct statistical analyses to identify the associations 

between various well attributes and occurrences of GM, which have been reported at 0.6% of the 25,000 

oil and gas wells in BC.  

A study database was developed by compiling data for relevant well attributes, selected based on the 

availability of data, theory presented in the GM literature, inclusion in previous studies and interviews 

with regulators and industry members. Additional data attributes were added to the study database for a 

subset of 1,456 wells located to the east of Fort Nelson, BC, in an area we refer to as the Jean Marie Area. 

Two sets of statistical modeling analyses were conducted: (1) the regional analysis included all 23,859 

wells in the regional database, located across Northeast BC, and (2) the localized analysis included the 

1,456 wells in Jean Marie Area database, which had additional data attributes to use as explanatory 

variables.  

The probability of the presence or absence of GM was modeled using Bayesian multilevel logistic 

regression. In multilevel models, observations are assigned categorical group membership, and the 

models identify effects at both the population-level, based on all observations (i.e., all wells), and the 

group-level, based on groups or clusters of wells. During the regional analysis, we considered distinct 

geographical regions by grouping wells into oil and gas areas with unique geological environments. By 

considering group-level model effects that varied between areas, we allowed for (1) comparison of GM 

occurrence between areas/geological environments, (2) interaction between areas/geology and other 

effects, and (3) reduced adverse effects of spatial correlation. The imbalance between the number of GM 

occurrences and wells without reported GM created challenges for the model fitting. The databases were 

balanced with respect to the number of wells with and without GM to a ratio of 1:1 through a combination 

of random undersampling and random oversampling, which improved some aspects of the model fits. 

Overall the relationships between GM and individual well attributes were consistent between models fit to 

the balanced dataset and the unbalanced dataset.  

Based on the results of the statistical models, along with descriptive statistics, data exploration and Gm 

theory, we made interpretations and hypotheses regarding the occurrence of GM in BC. The main 

findings, implications and recommendations of the project are: 

1. Rigorous statistical analysis did not reveal strong predictors of GM in the oil and gas well data 

analyzed in this study. The presented statistical models were not able to discriminate known 

individual cases of GM from similar or adjacent wells, with high likelihood, as the attributes or 

combinations of attributes associated with GM are not unique to GM wells. Therefore, a statistical 

model will have a low likelihood of successfully predicting unidentified GM cases using data in the 

study databases. Field inspections will be the most effective approach for detecting GM cases and 

reducing uncertainty around GM occurrence. 

2. The statistical models identified the strongest association between GM and other indicators of 

compromised well integrity such as surface casing vent flow (SCVF), remedial treatments (cement 

squeeze or remedial casing), or blowouts. For prioritizing sites for field inspections, this study 

supports putting a higher priority on wells with SCVF, blowouts, or remedial treatments. 
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3. Sub-regional areas of higher GM occurrence have been observed across North American 

jurisdictions, which may warrant geographically targeted monitoring for indicators of GM presence. 

This study found that in BC there is spatial clustering of wells with GM in the Fort Nelson Plains 

area, including the local area we referred to as the Jean Marie Area. We have inferred that this 

geographic clustering has underlying geological influences, which increase the likelihood of GM. 

Systematic monitoring for GM in this area may be beneficial.  

4. Based on available reservoir gas pressure data we estimated that the gas in the intermediate Lower 

Debolt and Elkton Formations is locally overpressured relative to hydrostatic pressure in the Jean 

Marie Area. We speculate that these formations represent possible local sources of GM and SCVF 

gas. These hypotheses could be further investigated through isotopic and compositional analyses of 

the gases. 

5. Most of GM wells in the Jean Marie Area have fully cemented surface and intermediate casings, 

suggesting that uncemented well annulus intervals or low cement tops are not likely contributing to 

higher GM occurrence. There was limited digital information available to evaluate the quality of 

cement in well annuli in BC. An academic review of cement bond logs, cement bond log 

interpretations, or other potential cement quality indicators relevant to GM may be useful to identify 

specific cement-related indicator data useful in supporting future analysis of GM (and SCVF) 

occurrence.   
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INTRODUCTION 

Although there is a long history of oil and gas development in North America, the relatively recent 

increase in unconventional production has provoked questions about the effects of the unintentional 

release of gas into the subsurface (Council of Canadian Academies, 2014). If a well’s initial construction 

is inadequate or it later suffers a failure of integrity, natural gas may be unintentionally mobilized and has 

the potential to reach the shallow subsurface. When gas migrates outside of the well casing the process is 

referred to as gas migration (GM) which can impact the critical zone including potable groundwater 

resources and contribute to greenhouse gas emissions. A comprehensive understanding of the causes and 

conditions that lead to GM is important to inform the detection, monitoring, and management of GM and 

to assess the associated potential risks. In this study, we use public well records to assess potential factors 

associated with known occurrences of GM at oil and gas wells in the Province of British Columbia, 

Canada (BC).  

For GM to occur there needs to be a migration pathway, a gas source, and a pressure imbalance (Bonett 

and Pafitis, 1996; T. Watson and Bachu, 2009; Zare Bezgabadi, 2018), and it is hypothesized that some 

wells are inherently more susceptible to GM than others. The susceptibility of a given well to developing 

GM is controlled by a complex interplay of factors related to drilling, cementing and completion, gas 

properties, geology, intermediate or shallow gas sources, among others. Previous studies have provided 

analyses of well integrity failures using public well records in Alberta, Pennsylvania and Colorado 

(Bachu, 2017; Considine et al., 2013; Ingraffea et al., 2014; Lackey et al., 2017; Montague et al., 2018; 

Vidic et al., 2013; T. Watson and Bachu, 2009; Watson and Bachu, 2008; Wisen et al., 2019; Appendix 

A). However, no conclusive causal relationships were identified and there appear to be regional variations 

in the factors associated with GM such as local, geology, drilling practices or operational practices. 

Consequently, further research is needed to understand the general and local causes and GM in oil and gas 

producing regions across North America, including BC (Cahill et al., 2019).  

As of January 2018, GM had been identified and reported in 145 (0.6%) of approximately 25,000 oil and 

gas wells in BC. To date, there has been little research investigating the occurrence of GM in the 

province, and no rigorous statistical data analysis of the factors associated with GM has been conducted 

(Cahill et al., 2019). There is a need to identify and evaluate the factors associated with the highest 

likelihood of GM in BC, as it is fundamental to inform future research needs and regulatory 

enhancements.  

In BC, oil and gas producers are required to submit well drilling, completion, production, and 

abandonment records to the provincial regulator, the British Columbia Oil and Gas Commission 

(BCOGC). We were able to access and mine this valuable public dataset to identify well conditions that 

pose the highest likelihood for GM in BC. Here, we aim to identify the associations between observed 

occurrences of GM and various local well constructions, geological environments, and operational 

practices. This study included a compilation of public wellbore records into a database, data exploration 

and description, and development of statistical models to explain the presence or absence of GM at 

wellbores in BC. A contemporary approach was taken to statistical modeling; drawing on Bayesian 

inference and hierarchical model structures. This approach allowed us to reduce the effects of spatial 

correlation within the data, as well as investigate the variations in effects between different groups of 

wells, rather than making generalized conclusions at the provincial scale.  

This report is intended to provide a brief project overview. A more detailed discussion can be found in: 

1. Our submitted journal publication [Sandl, E., Cahill, A.G., Welch, L., Beckie, R., Submitted. 

Investigating factors associated with fugitive gas migration at oil and gas wells in Northeast 

British Columbia, Canada. Science of the Total Environment.] 
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2. The master thesis of Elyse Sandl [Sandl, E., 2020. Investigating factors associated with fugitive 

gas migration in Northeast British Columbia, Canada. University of British Columbia, 

Vancouver, Canada, https://open.library.ubc.ca/collections/24/items/1.0389605.] 
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METHODS 

STUDY DATABASE DEVELOPMENT 

BC oil and gas well data was obtained from both the IHS Markit database accessed through the software 

AccuMap (IHS Markit, 2018) and from the BCOGC data downloads online portal (BCOGC, 2018). A 

study well population was selected to include 24,911 production, injection, disposal, and observation 

wells located in Northeast BC, cased or completed between 1948 and January 2018. 

We obtained records of GM and surface casing vent flows (SCVF) through personal communication with 

the BCOGC. As of January 2018, the BCOGC had records of GM at 145 wells or 0.6% of wells drilled. 

For every well in the study well population, GM was recorded as present or absent, with the assumption 

that GM was absent at wells without associated GM reports. Although 12 cases of GM were repaired, we 

assumed that GM was “present” at all wells that have developed GM at any time. 

A study database was then developed for the study well population by compiling data for selected 

relevant well attributes (Table 1). Attributes were selected based on the availability of data, the theory 

presented in the GM literature, inclusion in previous studies and interviews with regulators and industry 

members (Appendix A).  Following data compilation and quality control, the final study database 

included 23,859 wells with complete data, including 143 wells with GM.  

Additional data attributes were added to the study database for a subset of 1,456 wells located to the east 

of Fort Nelson, BC, within BC NTS 250K Mapsheet 94I. We refer to the area as the Jean Marie Area, 

which was selected because of the higher density of GM wells and the availability of bedrock topography 

data (Figure 1). Additional drilling and cementing related attributes (Table 1) were manually retrieved 

from original drilling records on file with the BCOGC for wells in the Jean Marie Area. We refer to two 

subsets of the study database (1) the regional database containing complete data for the base set of 

attributes for all 23,859 wells, and (2) the Jean Marie Area database containing complete data for all base 

and additional attributes for the subset of 1,456 wells in the Jean Marie Area.  
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Table 1 List of well attributes in the Regional and Jean Marie Area well attribute databases used as 

explanatory variables in statistical models.  

Regional Database Base Attributes  Jean Marie Area Additional Attributes 

Well Orientation  Surface Casing Cement Returns at Surface 

Fluid Type  Intermediate Casing Cement Returns at Surface 

Well Age  Cement Location 

Well Status Underbalanced Drilling (UBD) 

Well Type  Location within Paleovalley 

Hydraulically Fractured  Distance to Paleovalley Centerline 

Acid Treatments Lost Circulation 

SCVF Intersection of the Lower Debolt Formation 

Remedial Treatments 

Number of Drilling or Completion Events  

Number of Potentially Gas-bearing Formations Intersected 

(Gas-bearing Formations) 

Number of Potentially Overpressured Gas-bearing Formations 

Intersected (Overpressured Formations) 

Kicks 

Blowouts 

Surface Casing Depth  

Well True Vertical Depth  

Well Total Depth (Length)  

Well Density  

Oil and Gas Areas 

 

DATA ANALYSIS AND STATISTICAL MODELLING  

Statistical model building is an iterative, multistep exercise that begins with exploratory data analysis 

(Tong, 2019). Prior to statistical modelling, exploratory data analysis was used to: 

• Screen the data; 

• Identify collinearity in the data; 

• Examine the spatial distribution of data; 

• Assist in the selection of relevant attributes to be used as explanatory variables in the statistical 

models; and 

• Develop hypotheses. 

 

Initial data exploration indicated that there is a spatial cluster of GM wells in the Fort Nelson Plains Area 

and 79 of these GM cases are located within the Jean Marie Area, which was therefore selected for a 

localized analysis (Figure 1). Data exploration revealed correlations among several well attributes, often 

referred to as collinearity. Several of the attributes in the study database were also spatially correlated 

(e.g., wells tend to be deeper to the east and shallower to the west based on the geological structure of the 

WCSB). Wells within a given field tend to be drilled by a limited number of operators, during a 

regulatory or operational era, using methods suited to the resource and geology. These types of 

correlations can be misleading in a regional-scale analysis. The observed spatial correlation in attributes 
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motivated the Bayesian, multilevel logistic regression model for our analysis. Further discussion of the 

challenges and limitations associated with the correlations identified during the data exploration are 

included in the Challenges and Limitations section below. 
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Figure 1 Map of oil and gas well distribution and locations of reported occurrences of GM and SCVF in 

Northeast BC. Oil and gas areas modified from British Columbia Ministry of Energy, Mines and Petroleum 

Resources (2006). Interpolated bedrock contours and paleovalley centerlines from Hickin et al. (2008). Base 

map features retrieved from the Province of British Columbia (2018). Source Sandl et al. (Submitted). 
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Statistical Modelling 

The probability of the presence or absence of GM was modeled using multilevel logistic regression, with 

the statistical package Rethinking (McElreath, 2016) in the R programming language. Logistic regression 

is appropriate when the model outcome is binary – here the presence of GM. Model explanatory variables 

were selected from the attributes in the study database, and probabilistic models were proposed and fit to 

the data. Model parameters were fit to the data using Hamiltonian Markov Chain Monte Carlo (MCMC) 

from the Bayesian inference package Stan (Stan Development Team, 2018). A comprehensive discussion 

of the Bayesian underpinnings of the approach and the mechanics of the model fitting are in McElreath’s 

text (McElreath, 2015).  

Bayesian inference allows for the fitting of multilevel models, where observations are assigned 

categorical group membership, and the models identify effects at both the population-level, based on all 

observations (i.e., all wells), and the group-level, based on groups or clusters of wells (Gelman and Hill, 

2007, p. 237). We followed an iterative approach to statistical modelling, gradually increasing model 

complexity from single variate logistic regression to multivariate logistic regression and then multilevel 

logistic regression. Interaction terms were added to the models systematically to explore the interactions 

between different explanatory variables. 

Two sets of statistical modeling analyses were conducted: (1) the regional analysis included the base 

attributes for all 23,859 wells in the regional database, located across Northeast BC, and (2) the localized 

analysis included the 1456 wells in Jean Marie Area database, which had additional data attributes to use 

as explanatory variables. During the regional analysis, we considered distinct geographical regions by 

grouping wells into oil and gas areas with unique geological environments as defined by British Columbia 

Ministry of Energy, Mines and Petroleum Resources (2006) (Figure 1). By considering group-level model 

effects that varied between areas, we allowed for (1) comparison of GM occurrence between 

areas/geological environments, (2) interaction between areas/geology and other effects, and (3) reduced 

adverse effects of spatial correlation (Zuur et al., 2009, p. 481).  

The imbalance between the number of GM occurrences and wells without reported GM creates challenges 

for the model fitting (Kubat et al., 1998; Montague et al., 2018). This is a common difficulty in data 

analysis aimed at predicting/understanding a rare but important event, such as well integrity failure. The 

databases were balanced with respect to the number of wells with and without GM through a combination 

of random undersampling and random oversampling (Fernández et al., 2018). As a large number of the 

database attributes are categorical variables, this method was selected over generation of synthetic GM 

wells using a nearest neighbors method such as synthetic minority oversampling (SMOTE, Chawla et al., 

2002), which is most applicable to continuous variables. A comparison of random oversampling and 

synthetic sample generation through SMOTE-NC, a SMOTE variant which accommodates some 

categorical variables, indicated that the random oversampling preserved the original structure of the data 

better than SMOTE-NC. Sensitivity analysis was used to select the final balance and sample size of the 

datasets. A ratio of 1:1 GM well to wells without GM was selected. The regional database was randomly 

under- and oversampled to a final sample size of 20, 000 wells (10,000 GM wells and 10,000 wells 

without GM). The localized database was randomly under- and oversampled to a final sample size of 2 

000 wells (1000 GM wells and 1000 wells without GM). 

A more detailed discussion of the statically modelling methodology is included in Appendix B. 
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RESULTS AND DISCUSSION  

Following contemporary statistical modeling (Tong, 2019) and model comparison (Appendix B, e.g., 

Johnson and Omland, 2004; McElreath, 2015, p. 196; Vehtari et al., 2017; Watanabe, 2010) we selected 

several models as the “best” models from each analysis. For the regional analysis which included all 

23,859 wells in the regional database, three top models were selected (NEBC_1 through NEBC_3). Model 

NEBC_1 included the variables: oil and gas areas; well status; SCVF; treatments; blowouts; well age; 

well density; and number of potentially overpressured gas-bearing formations intersected (overpressured 

formations). Model NEBC_2 had the well type variables removed, and model NEBC_3 had well 

orientation variables added (Table 2).  

Four models were selected as the “best” models from the localized analysis of the Jean Marie Area 

(JMA_1 through JMA_4). All four models included explanatory variables for SCVF, remedial treatments, 

number of potentially gas-bearing formations intersected (gas-bearing formations), well status, 

underbalanced drilling (UBD), and location within a paleovalley. Models JMA_3 and JMA_4 also 

included the intersection of the Lower Debolt Formation and models JMA_2 and JMA_4 included an 

interaction term between remedial treatments and suspended well status (Table 2).  

A qualitative description of each model variables relationship to the probability of GM occurring at a well 

is summarized in Table 2. For quantitative results of the probability distributions of model coefficients, 

including means (most likely value representing the relationship) and width (describing the uncertainty of 

the relationship) see Sandl, (2020) for the unbalanced data results and Sandl et al. (Submitted) for the 

balanced data results.  

Table 2 Summary of statistical relationships between GM and well attributes identified by statistical 

modelling. 

Category Variable Results 
 Regional Analysis Jean Marie Area Analysis 

N/A 

SCVF 
Significant positive relationship. 

Effects vary between well statuses 
Significant positive relationship 

Remedial Activities Significant positive relationship Significant positive relationship 

Acid Treatments Significant negative relationship - 

Hydraulic Fracturing Significant negative relationship - 

Overpressured 

Formations 
Significant positive relationship - 

Gas-bearing 

Formations 
- Significant positive relationship 

Well Density 

Significant negative relationship 

Effects vary between oil and gas 

areas** 

- 

Age 

Negative relationship. Effects vary 

between oil and gas areas and well 

statuses** 

- 

Blowouts 

Positive relationship. Effects vary 

between oil and gas areas and well 

statuses** 

- 

UBD - Significant positive relationship 

Paleovalleys - Significant positive relationship 

Lower Debolt 

Formation 
- Positive relationship 

Well 

Types 

Undefined  Reference level - 

Producing 
No relationship relative to undefined 

well type 
- 
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Category Variable Results 
 Regional Analysis Jean Marie Area Analysis 

Injection 
Negative relationship relative to 

undefined well type 
- 

Disposal 
Significant negative relationship 

relative to undefined well type 
- 

Observation 
Positive relationship relative to 

undefined well type 
- 

Well 

Orientation 

Vertical  Reference level - 

Horizontal 
Positive relationship relative to vertical 

wells 
- 

Deviated 
No relationship relative to vertical 

wells 
- 

Multiple 
Significant positive relationship 

relative to vertical wells 
- 

Oil and 

Gas Area* 

Liard Basin Negative relationship - 

Fort Nelson Plains Significant positive relationship - 

Fort St. John Negative relationship - 

Deep Basin Negative relationship - 

Southern Foothills No relationship - 

Northern Foothills Negative relationship - 

Well 

Status* 

Active No relationship Reference level 

Abandoned Negative relationship 
Significant negative relationship 

relative to active status  

Suspended Positive relationship 
Negative relationship relative to 

active status 

Completed Negative relationship 
Negative relationship relative to 

active status 

Notes: Significant relationships indicate stronger associations where posteriors distributions that do not include zero 

within 95% of the high probability density interval (McElreath, 2015, p 56), but are not necessarily causal 

relationships. 

* Group-level variables assigned to wells grouped by area or well status in multilevel models. 

** Interactions with group-level variables, where effects of a variables well age, well density, SCVF and blowouts 

vary between groups of wells, divided by oil and gas area or well status. 

 

Despite grouping data into oil and gas areas some spatial autocorrelation of covariates remained within 

areas during the regional analysis. For example, the regional association between GM and well density 

and well age were opposite of what was expected; that is, well density had a negative association rather 

than a positive one. This is likely the effect of spatial correlation and clustering of the GM wells rather 

than a causal effect, highlighting the need for caution when assigning causality in observational datasets.  

Spatial overlap of well attributes and collinearity was also a challenge during the Jean Marie Area 

analysis. For example, there is some redundancy between the Lower Debolt Formation explanatory 

variable and the gas-bearing formations variable such that the effect of the Lower Debolt Formation 

variable is less significant (posterior probability distribution of the coefficient is closer to zero) when both 

variables are included in the model. Over 50% of the GM wells in the area intersect 12 gas-bearing 

formations, including the production zone. Typically, these wells produce gas from the Jean Marie 

Formation and intersect the Lower Debolt Formation. The Lower Debolt Formation is discussed in 

greater detail below.  

MODEL PREDICTIVE CHECKS 

The statistical models take as input the values of various attributes and output a probability that a well 

with those attributes would have GM. To assess model fits, the model-averaged predicted probability of 
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GM was generated for every well in the dataset. Ideally, the predicted probabilities for wells with GM 

would approach 1. Consistent with the discussion of Montague et al. (2018), models fit to the unbalanced 

dataset effectively predicted the low probability of GM at wells without observed GM but were less 

effective at predicting a high probability at wells with observed GM.  

Models fit to the balanced dataset had produced increased predicted probabilities of GM and overall 

greater difference in predicted probabilities between wells with and without GM, i.e. higher predictive 

accuracy. The relationships between GM and individual well attributes were consistent between models 

fit to the balanced dataset and the unbalanced dataset. We felt that the statistical models, along with 

descriptive statistics, data exploration and theoretical relationships, were suitable to support the 

interpretations and speculations made about GM in BC discussed below.  

GENERAL INTERPRETATION OF RESULTS 

Appendix A includes findings from statistical modelling and comparison to previous research, including 

assessment of each of the strongest explanatory variables relationship to GM, both on statistical and 

physical grounds.  

The inspection of the model coefficients shows that several variables are correlated with GM. However, 

as the attributes or combinations of attributes (i.e. explanatory variables) associated with GM are not 

unique to GM wells, the models have limited power to predict individual occurrences of GM in BC. 

Regional models effectively assigned an increased probability of GM to many wells within the Fort 

Nelson Plains Area and Jean Marie Area. However, as many of the wells in the Jean Marie Areahave 

similar characteristics it was challenging for models to discriminate individual GM wells from the 

adjacent wells. 

Our analysis shows that typical GM wells in the Jean Marie Area tend to be active gas production wells 

that are less than 20 years old. They typically produce from the Jean Marie Formation by horizontal legs 

drilled with UBD. The wells most often intersect 12 gas-bearing formations, of which two or more are 

potentially overpressured (locally the Elkton and Lower Debolt Formations). Within Jean Marie Area, the 

wells’ surface casings are typically 250 m to 300 m deep and fully cemented. The intermediate casings 

are also fully cemented to surface and around 1440 m deep (down to the producing zone). The wells may 

have SCVF or remedial treatments and are unlikely to be hydraulically fractured or acid treated. A 

graphical representation of an average Jean Marie Area GM well is presented in Figure 2.  

The analyses identified the strongest association between GM and other indicators of compromised well 

integrity such as SCVF, remedial treatments (cement squeeze or remedial casing), or blowouts. 

Approximately 50% of the wells with GM also have reported SCVF. Forde et al. (2019) found that 9/10 

inspected well pads in the Fort Nelson Plains/Jean Marie Area had GM isotopic signatures matching 

SCVF gas with variable degrees of oxidation. To exhibit both GM and SCVF from the same source, the 

gas source is most likely located below the surface casing. The statistical models also identified 

significant correlations between oil and gas areas and the occurrence of GM. Although the data does not 

explicitly explain this spatial variation, we hypothesize that it is related to local geological conditions.  

INFERENCES REGARDING JEAN MARIE AREA GM CLUSTER 

There is spatial overlap between the Jean Marie Area GM wells, paleovalleys, the use of UBD, the 

occurrence of the Lower Debolt Formation, and other well attributes. We hypothesize that the statistical 

association between paleovalleys, UBD, and GM may be an artifact of spatial correlations rather than a 

causal relationship, and we speculate that the intersection of the Lower Debolt Formation may have a 

causal relationship with GM occurrence.  
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The review of original drilling records for the subset of wells in the Jean Marie database indicated that 

most often UBD is only used to drill the horizontal leg of a well, typically through the Jean Marie 

Formation around 1400 m to 1500 m depth. Therefore, we hypothesize that the use of UBD is unlikely to 

influence the integrity of the vertical section of the well, which is of the highest interest for the formation 

of GM (Figure 2). The locations of paleovalleys were included in the analysis as a proxy for shallow gas 

occurrence. The occurrence of both GM and SCVF suggests a gas source is present below the surface 

casing, which is required to extend into competent bedrock in BC (Drilling and Production Regulation, 

B.C. Reg. 282/2010, Last amended by B.C. Reg. 103/2019, 2010). Therefore, we believe that potential 

shallow gas within paleovalleys is not likely the gas source for the wells with both GM and SCVF.  

Using initial reservoir pressure data, we estimated the local gas pressure in the formations intersected by 

the Jean Marie Area wells relative to hydrostatic pressure (Appendix C). Although GM wells in the Jean 

Marie Area typically intersect 12 gas-bearing formations, according to our estimates many of them are 

underpressured relative to hydrostatic (Appendix C). Locally, the Lower Debolt and Elkton Formations 

have gas pressures exceeding hydrostatic, and the overlying Bullhead Group hosts normally pressured to 

overpressured gas (Appendix C). We propose that this sequence of formations (Bullhead Group, Lower 

Debolt, and Elkton) presents a potential intermediate gas source in the Jean Marie Area, based on gas 

pressures and formation depth below the surface casing shoe, typically between 500 and 650 m.  

Overpressured gas in the Lower Debolt Formation not only represents a potential source of GM, but it 

also poses a theoretical risk to cement quality during well construction as discussed below. The review of 

original drilling records indicated gas kicks and lost circulation during drilling have been reported 

associated with the Lower Debolt Formation in the Jean Marie Area. Local karstic porosity within the 

Lower Debolt Formation (British Columbia Ministry of Energy, Mines and Petroleum Resources, 2006) 

could make the formation susceptible to lost circulation. With higher formation gas pressures, even a 

small loss of annular pressure through volume reduction or loss of cement to the formation can allow 

invasion of gas into the cement (kick) (e.g., Bannister et al., 1984; Bonett and Pafitis, 1996; Sabins et al., 

1982). Gas invasion can lead to channels, micro–annuli, and poor zonal isolation, making the well more 

susceptible to GM (e.g., Bannister et al., 1984; Bonett and Pafitis, 1996; Dusseault and Jackson, 2014; 

Kiran et al., 2017). Based on the identified statistical association, the formation depth below the surface 

casing, gas pressures and karstic porosity, we speculate that the Lower Debolt Formation (and overlying 

Bullhead Group and underlying Elkton Formation) may be potential intermediate gas source(s) for the 

GM and SCVF in the Jean Marie Area, warranting further investigation. The source of GM in these cases 

can be constrained through isotopic fingerprinting.  

The localized Jean Marie Area analysis did not identify a significant relationship between GM and 

cement location or cement returns at surface (a potential indicator of a low cement top). The majority of 

GM wells in the Jean Marie Area have fully cemented surface and intermediate casings, suggesting that 

uncemented well annulus intervals or low cement tops are not likely contributing to higher GM 

occurrence, such as was suggested for other regions (Lackey et al., 2017; T. Watson and Bachu, 2009). 

The occurrence of GM and SCVF is, therefore, more likely attributed to cement quality than cement 

location. In future analyses, including additional cement related data, unavailable in the current digital 

records, may improve understanding of cement failures or microannulus formation related to GM and 

SCVF. 
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Figure 2 Typical stratigraphy and well construction in Jean Marie Area. Stratigraphy based on well logs and 

British Columbia Ministry of Natural Gas Development (2011). Conceptual model of pressure conditions for 

fluid movement (red) that can lead to GM and / or SCVF. A) a shallow gas source intersected by the surface 

casing enters and migrates through a permeable outer surface casing annulus B) casing leak (e.g., due to a 

hole or leaking casing connection) allows production gas to leak into and migrate through the outer annulus 

C) an intermediate gas source is intersected by the well casing, gas enters and migrates through a permeable 

outer annulus, and D) gas migrating in an outer well annulus enters an aquifer in gas phase or dissolved 

phase. Potential gas sources include 1) production gas, 2) intermediate-depth gas-bearing formation, and 3) 

shallow depth gas-bearing formation. Source Sandl et al. (Submitted).  
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CONCLUSION AND RECOMMENDATIONS 

To date, there has been little research investigating the occurrence or attributes associated with GM in BC 

(Cahill et al., 2019). Wisen et al. (2019b) provide a descriptive analysis of fugitive gas cases in BC, with a 

focus on SCVF. However, to date, no rigorous statistical data analysis of the factors associated with GM 

in BC has been conducted. This study included a compilation of public wellbore records into a database, 

rigorous data exploration and description, and development of robust statistical models to provide insights 

for describing and explaining the presence or absence of GM at wellbores in BC. We used a 

contemporary statistical modeling methodology, drawing on Bayesian inference and hierarchical model 

structures, to evaluate those attributes associated with the highest likelihood for GM. This approach 

allowed us to reduce the effects of spatial correlation within the data, as well as investigate the variations 

between different groups of wellbores, rather than making generalized conclusions at the provincial scale. 

The main findings, challenges and limitations, and conclusions and recommendations of this study are 

described below.  

FINDINGS 

Detailed findings from statistical models and comparison to previous research are presented in Appendix 

A, Sandl (2020), and Sandl et al. (Submitted). The main findings of this research are summarized below.  

1. Rigorous statistical analysis did not reveal strong predictors of GM in the oil and gas well data 

analyzed in this study. The presented statistical models, based upon available data, were not able 

to discriminate known individual cases of GM from similar or adjacent wells, with high 

likelihood, as the attributes or combinations of attributes (i.e. explanatory variables) associated 

with GM are not unique to GM wells. Therefore, a statistical model will have a low likelihood of 

successfully predicting unidentified GM cases using data in the study databases.  

2. The statistical models identified the strongest association between GM and other indicators of 

compromised well integrity such as SCVF, remedial treatments (cement squeeze or remedial 

casing), or blowouts. The statistical models also identified a significant relationship between oil 

and gas areas and the occurrence of GM. The Fort Nelson Plains area has the highest occurrence 

of GM and therefore the highest statistical probability of GM at a well. Although the data does 

not explicitly explain this spatial variation, we hypothesized that it is related to local geological 

conditions.   

3. Within the Fort Nelson Plains area, there is a higher occurrence of GM in wells located to the east 

of Fort Nelson, in an area we have referred to as the Jean Marie Area (Figure 1). Within this area, 

GM wells tend to be active gas production wells that are less than 20 years old. They typically 

produce from the Jean Marie Formation by horizontal legs drilled with UBD. These wells most 

often intersect 12 gas-bearing formations, of which two or more are potentially overpressured. 

Within Jean Marie Area, the wells’ surface casings are typically 250 m to 300 m deep and fully 

cemented. The intermediate casings are also fully cemented to surface and around 1440 m deep 

(down to the producing zone). The wells may have SCVF or remedial treatments and are unlikely 

to be hydraulically fractured or acid-treated (Figure 2).  

4. Both regionally and within the Jean Marie Area, over 50% of the wells with GM also have 

reported SCVF, suggesting, where isotopic signatures of the gas match, that the gas source 

originates below the surface casing for many GM cases. Based on available reservoir pressure 

data, we estimated that the gas in the intermediate Lower Debolt and Elkton Formations is locally 

overpressured relative to hydrostatic pressure, and we speculate that these formations represent 

possible sources of GM and SCVF gas in the Jean Marie Area. These hypotheses could be further 

investigated through isotopic and compositional analyses of the gases. 
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5. The localized Jean Marie Area analysis did not identify a significant relationship between GM 

and cement location or cement returns at surface (a potential indicator of a low cement top). The 

majority of GM wells in the Jean Marie Area have fully cemented surface and intermediate 

casings, suggesting that uncemented well annulus intervals or low cement tops are not likely 

contributing to higher GM occurrence, as suggested for other regions (Lackey et al., 2017; T. 

Watson and Bachu, 2009). The occurrence of GM and SCVF is, therefore, more likely attributed 

to cement quality than cement location.  

6. Multilevel models are an effective tool for analyzing large complex data sets. In this study, 

dividing wells into hierarchical groups aided the analysis by reducing some of the correlation 

within a data set and by comparing effects between groups (McElreath, 2015, p 14; Zuur et al., 

2009, p 313).  

CHALLENGES AND LIMITATIONS 

1. In BC and many other jurisdictions, GM inspections and monitoring are done only when there is 

observed evidence of GM. Further, records and results of the inspections are typically only 

reported when results indicate the presence of GM. Due to the dataset uncertainty with respect to 

the number of inspections and the rate of GM detection, it is difficult to estimate or constrain the 

true rate of GM occurrence in BC.   

2. A challenge in the analysis of observational datasets, such as public records for existing oil and 

gas wells, is that explanatory variables cannot been controlled or randomized, which has the 

effect that collinearity and spatial autocorrelation are commonly encountered. This  can lead to 

coefficients that are hard to interpret as independent effects, underestimation of standard errors, 

and increased false positives (Legendre, 1993; Ramsey and Schafer, 2013; Zuur et al., 2009, p 

21). Consequently, cause and effect relationships generally cannot be determined (Kutner, 2005). 

Despite grouping data into oil and gas areas in our analysis, some spatial autocorrelation of 

covariates remained within areas, which can lead to inaccurate model results (Legendre, 1993; 

Zuur et al., 2009, p 21). For example, the regional association between GM and well density and 

well age were opposite of the expected effects (i.e., well density had a negative association rather 

than positive). This is likely the effect of spatial correlation and clustering of the GM wells rather 

than a causal effect, highlighting the need for caution when analyzing observational datasets. 

3. The imbalance between the number of GM occurrences (145) and wells without reported GM 

(23,859) creates challenges for the model fitting. This is a common challenge in data analysis 

aimed at predicting/understanding a rare but important event, such as well integrity failure (Kubat 

et al., 1998). Data balancing with random oversampling and random undersampling improved 

some aspects of the model fits and increased the predictive probabilities of GM. However, 

random oversampling can lead to overfitting in some cases (Fernández et al., 2018). The 

relationships between GM and individual well attributes were consistent between models fit to 

the balanced dataset and the unbalanced dataset.  

 

IMPLICATIONS AND RECOMMENDATIONS 

1. Negative Inspection Results 

In many jurisdictions, GM monitoring is done only when there is observed evidence of GM, and negative 

results may not be reported. The collection and reporting of both positive and negative GM detection 

results would strengthen certainty in the general statistics related to the occurrence rate for cases of GM 

and the effectiveness of GM detection. Further, these additional data would support improvements for 
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future statistical data analysis and other GM research initiatives. This knowledge gap could be supported 

by a dedicated study with pre-registration involving random sampling with rigorous detection methods, to 

assess the GM detection error in BC oil and gas fields.  

2. Targeted Monitoring  

Rigorous statistical analysis did not reveal strong predictors of GM in the oil and gas well data analyzed 

in this study. Therefore, a statistical model will have a low likelihood of successfully predicting 

unidentified GM cases using data in the study databases. As the attributes for this study were selected 

based on a solid foundation of previous research, theoretical associations, and insights from the regulator, 

these results suggest that for NEBC, field inspections will be the most effective approach for detecting 

GM cases and reducing uncertainty around GM occurrence. For prioritizing sites for field inspections, 

which may be necessary for remote areas of NEBC, this study supports putting a higher priority on wells 

with SCVF, blowouts, or remedial treatments, and wells in areas of high GM occurrence.  

3. Intermediate Geology and Gas Characterization 

Sub-regional areas of higher GM occurrence have been observed across North American jurisdictions 

(Bachu, 2017; Ingraffea et al., 2014; Lackey et al., 2017), which may warrant geographically targeted 

monitoring for indicators of GM presence. This study found that in BC there is spatial clustering of wells 

with GM in the Fort Nelson Plains area, including the local area we referred to as the Jean Marie Area 

(Figure 1). We have inferred that this geographic clustering has underlying geological influences, which 

increase the likelihood of GM. Systematic monitoring for GM in this area may be beneficial.  

It may be possible to further define GM risks in this area through additional research focusing on 

potential shallow and intermediate gas sources, including the Lower Debolt and Elkton Formations. These 

formations are locally overpressured (Appendix C) and speculated that they are potential local fugitive 

gas sources. Comparison of GM, SCVF, and intermediate formation gas samples and isotopic analysis 

may provide additional insights into the sources and pathways of fugitive gas in the Jean Marie Area.  

4. Cement Data 

A good quality cement seal is critical to preventing pathway formation in a well annulus (e.g., Davies et 

al., 2014; King, 2012; Kiran et al., 2017). We found that wells in the Jean Marie Area typically have fully 

cemented surface casings and intermediate casings. Therefore, the occurrence of GM and SCVF is more 

likely attributed to cement quality than to uncemented intervals of the well annulus or low cement tops. 

There was limited digital information available to evaluate the quality of cement in well annuli in BC, 

consequently, it was not considered in this analysis. An academic review of cement bond logs, cement 

bond log interpretations, or other potential cement quality indicators relevant to GM may be useful to 

identify specific cement-related indicator data useful in supporting future analysis of GM (and SCVF) 

occurrence.   
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Appendix A Attributes Rational, Findings or Previous Data Analysis and Comparison to 
Current Results 
Table 3 Summary statistical model findings and comparison to previous research 

 Rational Findings of Previous Studies Model Result Discussion 

W
e
ll
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r
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n
ta

ti
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n
 

It has been proposed that wellbore deviation can 
create more challenging conditions for cementing 

and well completion due to eccentricity and drill 
mud filter cake (Kiran et al., 2017; T. Watson and 

Bachu, 2009). The effect of orientation would be 

dependent on the depth of the deviation and the 
location of cement; however, this data is not 

digitally available for BC (personal communication 

BCOGC).  

Watson and Bachu (2009) and 
Montague et al. (2018) found 

deviated wellbores in Alberta 
exhibit GM and SCVF more 

frequently than vertical wells. 

However, Bachu (2017) found that 
deviation was not conclusively 

associated with GM. In Colorado, 

Lackey et al. (2017) found a 
correlation between SCP and 

deviated and horizontal wells.   

Well orientation was not a strong predictor 
of GM but including coefficients did 

improve deviance (WAIC) of some models. 
When orientation was included, model 

results indicated that horizontal, deviated, 

and multiple orientations all have an 
increased probability of GM over vertical 

wells. 

Initial hypotheses developed during data 
exploration predicted that well orientation 

might be a strong predictor or GM. Results did 
not confirm this expectation. Consistent with 

previous studies, which found that directionally 

drilled wells experience well integrity issues 
more frequently than vertical wells.  

W
e
ll

 S
ta

tu
s 

Well barriers such as cement undergo strength 

reduction and chemical degradation over time 
(Ingraffea et al., 2014; Kiran et al., 2017). It is 

hypothesized that aged or abandoned wells may 

have a higher frequency of integrity issues. 
However, it is noted in other jurisdictions that older 

or abandoned wells often received significantly 

fewer well integrity inspections, which may bias 
results (Ingraffea et al., 2014; T. Watson and Bachu, 

2009; Wisen et al., 2019). 

Bachu (2017) identified that 

abandoned wells in Alberta 
frequently exhibit GM, which he 

attributed to older well construction 

and abandonment practices.  

Including group-level effects for well status 

significantly improved the performance of 
regional models. Wells with active and 

suspended status, had a higher probability 

of GM occurrence than wells with 
abandoned or completed statuses. (As our 

study considered repaired GM wells to have 

GM occurrence, the well status variable is 
considered unaffected by whether GM was 

previously repaired). The effects of other 

variables also vary depending on the status 
of the well.  

The lower probability of GM for wells 

abandoned status, may be related to detection 
bias due to less frequent inspections of 

abandoned wells. In 2017, the BCOGC 

instituted an aerial monitoring program for 
abandoned wells (BCOGC, 2019b, 2019c, 

2017), and found that 1% to 3% of surveyed 

decommissioned wells were emitting methane 
however, previously systematic monitoring of 

abandoned wells was not conducted (Wisen et 

al., 2019).  
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 Rational Findings of Previous Studies Model Result Discussion 

W
e
ll

 A
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e 
In Colorado, well era (pre/post-

2010) was found to be more 
significant for predicting SCP than 

well age (Lackey et al., 2017). 

Whereas, Ingraffea et al. (2014) 
found that the influence of well era 

varied geographically within 

Pennsylvania. 

Regionally, a negative relationship between 

well age and GM was identified, indicating 
that younger wells have a higher probability 

of exhibiting GM than older wells. The 

negative relationship between well age and 
GM varied across oil and gas areas and well 

statuses. Conventional resource areas such 

as the Southern Foothills host older wells, 
and the negative relationship is less 

significant. For abandoned and suspended 

wells well statuses, which tend to include 

older wells, the negative relationship is less 

significant. 

The negative relationship is counterintuitive 

based on the theory that cement and well 
components degrade over time, leading to a 

higher risk of failure in older wells. In addition 

to the potential detection bias mentioned above, 
this effect may also be driven by the spatial 

clustering of GM cases within fields that were 

developed primarily between 2000 and 2010 in 
the Fort Nelson Plains Area. 
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The operational application of wells may influence 

the risk of well integrity failures due to the 
variations in temperatures, pressure regimes, 

treatments, and downhole procedures. Duguid et al. 

(2017) predicted that injection wells have the 
highest risk due to high-pressure gradients. 

However, the operation of each well type may vary 

between jurisdictions. 

In Alberta, Watson and Bachu 

(2009) noted that well type did not 
have a strong effect on wellbore 

leakage, but Bachu (2017) found 

that thermal wells leak most 
frequently. 

Well type was not a strong predictor of GM, 

but including coefficients did improve 
deviance (WAIC) of some models. When 

well type was included in models, 

observation wells had the strongest 
association with GM, and injection and 

disposal wells have the lowest probability 

of GM.  

Our findings are consistent with those of  

Watson and Bachu (2009).  In BC, injection and 
disposal wells are held to higher construction 

standards than other wells types for this reason 

(personal communication, BCOGC).  
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Hydraulic fracturing and acidizing are the two 

treatments with the greatest potential to affect well 

integrity (Watson and Bachu, 2008). Hydraulic 
fracturing induces severe downhole pressure 

conditions and commonly used acids, such as 

hydrochloric and hydrofluoric, can be damaging to 
cement (Kiran et al., 2017).  

Lackey et al. (2017) found no 

relationship between SCP and the 

degree of hydraulic fracturing. 
Watson and Bachu (2008) identified 

a minor effect of hydraulic 

fracturing and acidizing on SCVF 
and GM.  

Regionally there is a negative association 

between GM and hydraulic fracturing and 

acid treatments. As wells in the Jean Marie 
tend not to be hydraulically fractured, no 

significant relationship was identified 

during the localized analysis.  

Hydraulic fracturing and acid treatments usually 

occur in the producing formations at the bottom 

of the well and are not linked to the outer 
annulus permeability and gas movement in the 

shallow vertical portion of the well (Dusseault 

and Jackson, 2014). My findings were 
consistent with the findings of Lackey et al. 

(2017). 
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It is anticipated that wells with GM may exhibit 

other indicators of well integrity loss such as SCVF 

or remedial workovers such as cement squeezes, 

remedial casing, or casing patches.  

Bachu (2017) found that a 

significant number of wells with 

GM in Alberta also exhibited 

SCVF. 

Both regionally and within Jean Marie 

Area, there was a strong positive 

association between SCVF and GM. Over 

50% of the wells which have reported GM 

also have reported SCVF. The predicted 
probability of GM is greater for active and 

completed wells with SCVF than suspended 
and abandoned wells. 

Consistent with the findings of Bachu (2017).  

 

This relationship is likely not causal, rather 

paired symptoms of the same underlying well 

integrity issues. The relationship is likely 
meaningful for detection as SCVF is more 

readily observed than GM.  
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It is anticipated that wells with GM may exhibit 

other indicators of well integrity loss such as SCVF 
or remedial workovers such as cement squeezes, 

remedial casing, or casing patches. 

Ingraffea et al. (2014) investigated 

records of remedial treatments as 
indicators of well integrity failures. 

Regionally and within Jean Marie Area, 

remedial treatments represent one of the 
strongest predictors of GM.  

The majority of the remedial treatments 

reported for GM wells are remedial cement 
squeezes, with some remedial casings. As some 

remedial treatments may be associated with GM 

or SCVF repair, there is some redundancy 
between these variables (collinearity in 

statistical parlance). Only 12 GM wells in the 

dataset have a repaired status (BCOGC, 
Personal Communication, 2018); however, 

BCOGC data about remedial treatments 

associated with SCVF repair was not retrieved 

for this study. 

N
u

m
b

er
 o

f 

P
o

te
n

ti
a

ll
y

 G
a

s-

b
e
a

ri
n

g
 F

o
rm

a
ti

o
n

s 

a
n

d
 O

v
e
r
p

r
e
ss

u
r
e
d

 

G
a

s 
F

o
r
m

a
ti

o
n

s 

In
te

r
se

c
te

d
 

Intermediate and shallow gas-bearing formations 

are commonly the sources of gas for GM (Bachu, 

2017; King and King, 2013). Overpressured 
formations (gas pressure exceeding hydrostatic) can 

create vertical pressure gradients that drive fluid 

flow (Davies et al., 2014; Kiran et al., 2017) and 
hydrostatically pressured formations can source 

leaking wells through buoyancy and diffusion-

driven migration (Davies et al., 2014).  

Lackey et al. (2017) found an 

association between high formation 

pressures and SCP. They 
hypothesized that high-pressure 

gradients across the cement make 

installation more challenging. 
Bachu (2017) identified that the 

source gas for GM is Alberta was 

above the producing reservoir in 
95% of cases investigated. 

Regionally, there is a positive relationship 

between the overpressured formations and 

GM. Regionally the highest occurrence of 
GM was associated with the intersection of 

two potentially overpressured formations. 

Within Jean Marie Area there was a 
positive association between gas formations 

and GM.  

Over 50% of the GM wells in the Jean Marie 

area intersect 12 gas formations. Typically, 

these wells produce from the Jean Marie 
Formation. 
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Within Jean Marie Area, there is a positive 
association between GM and the 

intersection of the Lower Debolt Formation. 

There is some redundancy between the 
Lower Debolt Formation explanatory 

variable and the gas formations variable 

such that the effect of the Lower Debolt 
Formation variable is less significant 

(posterior probability distribution of the 

coefficient is closer to zero) when both 
variables are included in the model. 

The karstic porosity in the Lower Debolt 
Formation presents a drilling challenge, which 

may also create cementing challenges. In the 

Jean Marie Area, we estimate that gas pressures 
in the Lower Debolt Formation exceed 

hydrostatic, suggesting that it could be a 

potential source of migrating gas. Based on 
localized analysis model results and other 

observational data, we predict that the Lower 

Debolt Formation may be a potential gas source 
for some of the GM cases in the Jean Marie 

Area and warrants further investigation. 
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Blowouts are the results of overpressured formation 
fluids that have invaded the wellbore during drilling 

or cementing. Blowouts generate elevated 

subsurface pressures, which may damage the 
borehole and surrounding formations, resulting in 

enhanced vertical pathways along the well (Schout 

et al., 2018; Walters, 1991).  

Schout et al. (2018) identified 
ongoing gas migration from the 

reservoir to the subsurface in a well 

with a previous underground 
blowout.  

Regional modeling identified a positive 
relationship between blowouts and GM; 

however, due to the low sample size of 

wells with reported blowouts, there is a 
wide predicted posterior probability 

distribution, indicating high uncertainty in 

this estimate. In the Deep Basin Area, there 
was a stronger association with blowouts, as 

there are only 8 GM wells and one of them 

had a reported blowout.  

The positive relationship identified between 
blowouts and GM was consistent with 

hypothesized results and findings of Schout et 

al. (2018). 
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It is hypothesized that the probability of 

interwellbore communication (IWC) increases with 
a higher density of nearby wells. IWC can create a 

source of pressurized fluids which could migrate 

along a wellbore with compromised integrity 
(Montague and Pinder, 2015).  

Watson and Bachu's (2009) results 

indicated that there was little 
correlation between GM and well 

density in Alberta. This finding was 

supported by the work of Lackey et 
al. (2017) and Montague et al. 

(2018). 

Regional models identified a negative 

association between well density and GM. 
The effects of well density varied between 

oil and gas areas. The effect of well density 

was more strongly negative in the Fort St. 
John Area, which has very high well density 

and few cases of GM, with less of an effect 

in the Fort Nelson Plains Area, which has 
lower well density.  

The identified negative relationship is 

counterintuitive based on the theory that higher 
well density increases the probability of IWC. 

The results are likely attributable to spatial 

clustering of GM cases in a lower well density 
area, rather than being a causal association. This 

is supported by the findings of Lackey et al. 

(2017, Montague et al. (2018), and  Watson and 
Bachu (2009), who did not identify significant 

relationships between well density and well 

integrity.  

O
il

 a
n

d
 G

a
s 

A
r
ea

s There may be variation in the occurrence of known 
GM between areas of BC due to geologic factors 

and potential variation in the operational factors, 

which may be influenced by local geology and 
geography, the era of development, or local 

operators. Previous work found geographic 

clustering of well integrity issues. 

Previous work by Bachu (2017), 
Ingraffea et al. (2014), Lackey et al. 

(2017) found geographic clustering 

of well integrity issues  

Including group-level effects for oil and gas 
areas significantly improved the 

performance of models during the regional 

analysis.  The wells in the Fort Nelson 
Plains Area have the highest probability of 

GM, after accounting for the other variables 

in the model.  

These group-level effect terms account for 
variations between areas that are not accounted 

for by other data attributes, such as localized 

geological effects. This is consistent with 
previous studies that found local geology are 

correlated with GM/well integrity (Bachu, 

2017; Ingraffea et al., 2014; Lackey et al., 
2017).  
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UBD is a technique that intentionally designs the 

hydrostatic head of drilling fluids to be lower than 
the pressure of the formation being drilled by using 

compressed gases or aerated fluids (Ojha et al., 

2019). UBD has disadvantages that can prove 
detrimental to the outcome of the drilling process, 

including a higher risk of blowout or explosion 

(Ojha et al., 2019).    
The use of low-density drilling fluids may reduce 

the cushioning between the drill pipe and the 

casing, potentially damaging the cement (BCOGC, 
2013). Additionally, the well casing may be 

exposed to repeated pressure fluctuations during 

drilling, which could weaken the cement bond 
(BCOGC, 2013).  

The BCOGC (2013) identified that 

a high proportion of the GM wells 
in the Fort Nelson Plains of BC 

were drilled using UBD.  

Within Jean Marie Area, models identified 

a positive association between GM and 
UBD. It was noted in several scanned well 

reports that UBD was typically only used to 

drill the horizontal leg of the wells. 

The use of UBD in this area appears to be 

correlated with production from the Jean Marie 
Formation, and UBD methods are therefore 

typically employed between 1400 m and 1500 

m depth. It is difficult to draw conclusions 
about these relationships.  
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Paleovalleys are known to be a source of artesian 

groundwater and pressurized shallow gas (Hickin et 
al., 2008). Shallow gas in the valley-fill sediments 

may be associated with GM in BC. A well in 

northeast BC blew out as the result of a gas kick 
from quaternary gravel deposits at 140 m depth 

(BCOGC, 2005).  

NA During the localized analysis, models 

identified a positive association with the 
location of paleovalleys, indicating an 

increased probability of GM for wells 

located within the paleovalleys. 

The locations of paleovalleys are roughly 

delineated by interpolating the bedrock surface 
between available borehole logs and included in 

the model as a proxy for shallow gas, which 

likely does not extend throughout the 
paleovalleys. Further, there is spatial overlap 

between paleovalleys, the use of UBD, the 

overpressured Lower Debolt Formation, and 
other well attributes.  
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Kicks are the results of overpressured formation 

fluids that have invaded the wellbore during drilling 
or cementing. As gas invasion during cement setting 

can compromise cement quality (Kiran et al., 2017), 

we expect there may be a correlation between kicks 
and GM.  

NA Not a significant predictor of GM in BC. NA 
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I hypothesize that it is more complex to complete 
and operate wells with multiple 

producing/perforated intervals, which may increase 

the risk of reduced well integrity. It has also been 
hypothesized that multiple completions or 

perforated intervals provide a higher potential for 

crossflow between discrete geologic zones (Watson 
and Bachu, 2009).  

Lackey et al. (2017) found that the 
relationship between SCP and 

multiple completions was not 

significant in Colorado.  

Not a significant predictor of GM in BC. Consistent with the findings of Lackey et al. 
(2017). 
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Deeper surface casing increases the probability that 

shallow or intermediate gas-bearing formations, if 

present, will be intersected above the surface casing 
shoe. Any mobile fluid would not be captured by 

the surface casing and could migrate as GM.  

Watson and Bachu (2009) found 

that in Alberta, “generally as the 

surface casing depth increases the 
occurrence of SCVF decreases and 

the occurrence of GM increases.” 

Not a significant predictor of GM in BC. Consistent with the findings of Watson and 

Bachu (2009). 
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 Deeper wells experience higher temperature and 

pressure conditions and potentially intersect a 
greater number of intermediate gas-bearing 

formations.  

Lackey et al. (2017) found that the 

relationship between well depth and 
SCP was not significant.  

Not a significant predictor of GM in BC. Consistent with the findings of Lackey et al. 

(2017). 
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) Well completion may be challenging for deeper 

wells with longer annuli and cement intervals 
(Watson and Bachu, 2009).  

Watson and Bachu (2009) found 

that total depth had a minor 
association with GM and SCVF in 

Alberta. 

Not a significant predictor of GM in BC. Consistent with the findings of Watson and 

Bachu (2009). 
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e Although not anticipated to be a strong predictor of 
GM, the fluid type was included in the analysis. As 

a source of gas is required for GM, we expect that 

wells that produce gas may have a higher 
occurrence of GM.  

Montague et al. (2018) found that 
fluid properties did not significantly 

improve the predictive accuracy of 

their models.  

Not a significant predictor of GM in BC. Consistent with the findings of Montague et al. 
(2018). 
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As cement is one of the primary barriers to fluid 

movement in the well annulus, the presence and 
quality of cement are expected to be linked to the 

probability of GM. Cement returns at surface serve 

as visual indicators of downhole conditions. If full 
and good quality cement is not returned at the 

completion of the cement job, it indicates losses to 

the formation and there is typically an open, 
uncemented interval above the thief zone (Lavrov, 

2017). For the surface casing, this zone is typically 

filled with cement by a top job, where cement is 

filled into the open annulus from the surface, which 

has some challenges and disadvantages such as 

water getting trapped between the two cement 
intervals.  

Watson and Bachu (2009) found 

that a low cement top or exposed 
casing was the most important 

factor for predicting SCVF and GM 

in Alberta.  

Not a significant predictor of GM in Jean 

Marie Area. 

The localized Jean Marie Area analysis did not 

identify a significant relationship between GM 
and cement location or cement returns at 

surface (a potential indicator of a low cement 

top). The majority of GM wells in the Jean 
Marie Area have fully cemented surface and 

intermediate casings, suggesting that 

uncemented well annulus intervals or low 
cement tops are not likely contributing to higher 

GM occurrence, such as was suggested for other 

regions (Lackey et al., 2017; Watson and 

Bachu, 2009).  
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When fluids are lost to the formation, the bottom-

hole pressure may be insufficient to balance the 
fluid pressure in the formation. This may lead to 

difficulties such as blowouts or wellbore collapse 

(Feng and Gray, 2017). Further, if a so-called thief 
zone is not adequately sealed during drilling, 

circulation also can be lost during cementing, and 

the height of the cement column may be shorter 
than expected, compromising quality (Lavrov, 

2017).  

NA Not a significant predictor of GM in Jean 

Marie Area. 

NA 
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Appendix B Statistical Modelling Methods 

To determine factors recorded in public data associated with GM, we took a contemporary 

approach to the statistical analysis, which relies on Bayesian inference and multilevel model 

structures. My approach allowed us to reduce the effects of spatial correlation within the data, as 

well as investigate the variations in effects between different groups of wellbores, rather than 

making generalized conclusions at the provincial scale.  

BACKGROUND 

The Bayesian approach to statistical inference focusses on probability as a subjective degree of 

belief, which can be updated as new data is acquired (Lambert, 2018; Tong, 2019). A Bayesian 

analysis includes the specification of prior probability distributions for the model parameters, 

then updating these probabilities in light of the data (Tong, 2019). The result is a posterior 

probability distribution, which is used to make predictions on new observations and evaluate the 

model against the current data (Gelman, 2014). This process is referred to as Bayesian updating 

(McElreath, 2015. p. 29) 

Bayesian Updating:  Prior Probability + Data → Posterior Probability 

Bayesian inference is based on probability theory. In simplified terms, it is a way of estimating 

the probability of an event by adding up all the ways something can happen, relative to all of the 

possible things that could happen, conditional on the assumptions. Events that can happen in 

more ways have a higher probability of occurrence (McElreath, 2015). In Bayesian statistics, 

explicitly describing uncertainty is central and done through probability distributions, diverging 

from the conventional frequentist approaches of hypothesis testing and p-values (Lambert, 2018).  

Several concepts and terms that are found in Bayesian statistics are described below: 

1. Likelihood Function – The is a mathematical formula that expresses the plausibility of 

parameter values given the data sample. Many conventional likelihood functions may be 

used, such as Gaussian or binomial, to express the plausibility of the data (McElreath, 

2015, p 33).  

2. Prior Probability Distribution (or “the prior”) – The prior states the initial set of 

plausibilities for every parameter. The prior may be flat, indicating that there is an equal 

probability for any possibility. More preferably, it may be regularizing or weakly 

informative, which gently nudges the model towards and more reasonable range of 

values. The goal of a regularizing prior is to spread the probability density over the 

widest distribution (least informative) to reduce overfitting, while staying consistent with 

any particular existing knowledge about the parameter (McElreath, 2015, p 186). 

3. Posterior Probability Distribution – The posterior distribution represents the updated, 

current understanding about the parameters and is the product of the prior and the 

likelihood function, conditional on the data (Hosmer et al., 2013, p 411; McElreath, 2015, 

p 36). 

4. Markov Chain Monte Carlo – MCMC is the most popular computational method used 

to compute posterior distributions in Bayesian statistics (Hosmer et al., 2013, p. 409). 

MCMC can be described as a ‘random walk’ around the posterior distribution of 

parameters, where a sequence of values are selected in sequence from an approximate 
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distribution, with each selection depending on the previous value. The approximate 

distributions are improved at each step in the simulation, in the sense of converging to the 

target distribution (Gelman, 2014). It is only through a robust solver such as MCMC that 

most multilevel regression and Bayesian inference is possible (Hosmer et al., 2013, p 

409; McElreath, 2015, p 360). 

5. Logistic Regression – A form of regression model where the response variable to be 

explained or predicted is discrete and takes a binary or dichotomous form. The methods 

for logistic regression follow the same general principle as linear regression, with 

changes to the form of the model and its assumptions. For example, a binomial 

distribution rather than a Gaussian distribution describes the distribution of the errors. 

The link function for logistic regression is the logit link function or logistic transform 

(Equation 2which maps the binomially distributed probability density (𝑝𝑖) onto a linear 

model by taking the log of the odds of the event. 

6. Multilevel Model – Multilevel or hierarchical models are not unique to Bayesian 

statistics, but they are easily implemented under a Bayesian approach. They allow for 

analysis of hierarchical data by including parameters to model variations at different 

levels of data. Observations are assigned categorical group membership, and the models 

identify effects at both the population-level, based on all observations, and the group-

level, based on groups or clusters of wells (Gelman and Hill, 2007, p 237).  Some of the 

benefits of multilevel models include their ability to adjust estimates for repeated or 

imbalanced sampling, and to study variation between groups of individuals to avoid 

averaging across groups (McElreath, 2015, p 14). 

7. Information Criteria – Information criteria metrics such as AIC, DIC, and WAIC, are 

used to compare the predictive accuracy of several models trained on the same data, by 

estimating their out of sample deviance (Gelman, 2014, p 173; Vehtari et al., 2017). 

Information criteria are commonly used for model selection or model averaging. During 

model selection, the model with the lowest information criteria is typically selected as the 

“best” model (McElreath, 2015, p. 196). Model averaging means using information 

criteria to construct a posterior distribution based on several models and knowledge of 

their relative accuracy Model averaging involves averaging of predictions, rather than 

averaging parameter values (McElreath, 2015, p. 196). This method allows the 

uncertainty of each model to be carried through, avoiding overconfidence in results. By 

using information criteria to focus on the relative accuracy of models, Bayesian statistics 

are able to move away from traditional methods of model evaluation such as significance 

testing or goodness of fit tests.  

MODEL DESCRIPTION 

A logit link function was used to estimate the binomially distributed probability (𝑝𝑖) of the 

presence of GM (𝑦𝑖) at a given well (𝑖) (Equation 1). The response was modeled with a 

multilevel linear model, which included population-level intercepts (𝛼), group level-intercepts 

(𝛼𝑘), population-level effects (𝛽𝑗) for each exploratory variable (𝑗), and group-level effects (𝛽𝑗,𝑘) 

for select explanatory variables (𝑗) and each group (𝑘). The group-level effects (𝛼𝑘 , 𝛽𝑗,𝑘) are 

defined by a multivariate Gaussian distribution, and covariance defined by a matrix including 

variances (𝜎𝛼,𝑘, 𝜎𝛽,𝑘) and a correlation matrix with the correlation between the intercepts and 

slopes (𝜌). The logit link function maps the probability density onto the linear model by taking 

the log of the odds of the event, the odds being the ratio of the probability of an event occurring 

to the probability of it not occurring (Equation 2). 
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Equation 1. Example of a generic multilevel model with a two-dimensional covariance matrix (for 

one group-level explanatory variable) 

 
𝑦𝑖 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1; 𝑝𝑖) (2.1.1) 

 
𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛼 + 𝛼𝑘 + (𝛽𝑗 + 𝛽𝑗,𝑘)𝑥𝑖,𝑘 (2.1.2) 

 

[
𝛼𝑘[𝑖]

𝛽𝑘[𝑖]
] ∼ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙([

0
0

] , 𝑆) (2.1.3) 

 

𝑆 = (
𝜎𝛼,𝑘 0

0 𝜎𝛽,𝑘
) (

1 𝜌
𝜌 1

) (
𝜎𝛼,𝑘 0

0 𝜎𝛽,𝑘
) (2.1.4) 

Equation 2. Logit link function 
 

 
𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑙𝑜𝑔

𝑝𝑖

1 − 𝑝𝑖
 (2.2) 

 

Weakly informative or regularizing prior probability distributions were assigned to each model 

parameter, to help constrain the parameter estimates within a reasonable range and improve the 

efficiency of the MCMC sampling process. Continuous variables were centered and scaled prior 

to analysis so that coefficients could be interpreted on the same scale. Markov chains were run 

with 5000 samples each, including 1000 warmup samples. MCMC convergence was assessed 

based on diagnostic parameters and visual inspection of plotted chains.  

To assess and compare different models of GM, we used the Widely Accepted Information 

Criterion (WAIC; (Watanabe, 2010)). A model’s WAIC value is a measure of its expected out of 

sample deviance, which is a widely adopted model comparison metric in Bayesian analysis 

(Gelman, 2014, p. 173; Vehtari et al., 2017). Model fits were compared using WAIC values, and 

the mean and 95% prediction intervals of the coefficients’ posterior probability distributions were 

reviewed and plotted to assess effects and significance.  

Based on the WAIC values, an Akaike weight was determines for the preferable models, which is 

interpreted as an estimate of the likelihood that a given model makes the best predictions on new 

data. Akaike weights are normalized across the set of candidate models to sum to one and are 

interpreted as probabilities (Johnson and Omland, 2004; McElreath, 2015, p 199). Rather than 

selecting a single final model, the information and uncertainty from several models was 

maintained by generating model-averaged predictions (Dunson, 2006; McElreath, 2015, p. 203). 

The model-averaged predictions of the probability of GM were generated by sampling from the 

posterior probability distributions of each of the best models in proportion to their assigned 

Akaike weights using the inverse logit-link function. Predictions were used (1) to compare the 

observed proportion of wells with GM to the predicted probability of GM for each explanatory 

variable (2) to predict the probability of GM for each well in the dataset to compare to its reported 

GM status. 
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Weakly informative or regularizing prior probability distributions were assigned to each model 

parameter, to help constrain the parameter estimates within a reasonable range (Table 4). 

Examples provided in McElreath’s text (McElreath, 2015) were used to inform the selection of 

prior probability distributions. Priors that center the probability around zero are considered weak, 

and when posterior distributions have non-zero probabilities, it indicates that the empirical data 

provides contravening evidence to the weak prior. When the posterior distributions are close to 

zero, reflecting the weak prior, it indicates that the data is not informative about the parameters 

(Koster and McElreath, 2017). Priors also improve the efficiency of the MCMC sampling process 

by preventing the MCMC from considering highly implausible values (Koster and McElreath, 

2017). 

Table 4 Summary of Prior Probability Distributions assigned to Model Parameters 

Model Parameter 
Type of 

Distribution 

Prior 

Parameterization 
Prior Probability Distribution 

Population-level 

intercept (𝛼) 

Normal or 

Gaussian 

Mean (𝜇𝛼) = 0 

Variance (𝜎𝛼) = 5 

Generic: 𝛼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼 , 𝜎𝛼) 

Final: 𝛼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,5) 

Population-level 

effects (𝛽𝑗) 

Normal or 

Gaussian 

Mean (𝜇𝛽) = 0 

Variance (𝜎𝛽,𝑗) = 5 

Generic: 𝛽𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛽 , 𝜎𝛽,𝑗) 

Final: 𝛽𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,5) 

Standard deviations 

within covariance 

matrix (𝜎𝛼,𝑘, 𝜎𝛽,𝑘) 

Half Cauchy Location (𝑥|𝑥0) = 0 

Scale (𝛾)  = 2 

Generic: 𝜎𝛼,𝑘 , 𝜎𝛽,𝑘 ∼

𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(𝑥|𝑥0, 𝛾 ) 

Final: 𝜎𝛼,𝑘 , 𝜎𝛽,𝑘 ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0,2) 

Correlation matrix   

R = (
1 𝜌
𝜌 1

) 

LKJ 

Correlation 

Shape (𝜂) = 2 Generic: 𝑅 ∼ 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(𝜂) 

Final: 𝑅 ∼ 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(2) 
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Appendix C Reservoir Gas Pressure Data 

Reservoir pressure test data was obtained from Accumap, and data was filtered for pressure tests 

performed within a single unit, with complete information, shut-in time greater than 36 hours, and 

the first test performed in each well completion (indicating the initial reservoir pressure at that 

location).  

The test depth was used to establish the pressure gradient from the formation to the ground 

surface in kPa/m. Initial pressure gradient estimates were summarized by formation and oil and 

gas area are plotted in Figure 3 below. Initial pressure gradient estimates for wells within the Jean 

Marie Area are plotted in Figure 4 below. Initial Pressure gradient estimates for individual wells 

in the Jean Marie Area and the surrounding area are plotted in Figure 5 below. Formation codes 

can be found in  

Under the assumption that the groundwater table is near the ground surface, formations that had 

more than one test in each area and mean pressure gradients above 9.8 kPa/m were considered 

overpressured, relative to hydrostatic pressure, in that area.  

The potentially overpressured formations identified in each oil and gas area were: 

• Liard Basin:   Besa River, Evie Lake, Kotcho, Muskwa, Otter Park.  

• Fort Nelson Plains:  Elkton, Evie Lake, Klua, Lower Debolt, Muskwa, Otter Park.  

• Fort St. John:   Banff, Montney, Slave Point, Shunda.  

• Deep Basin:   Doig, Montney.  

• North Foothills:  Doig, Charlie Lake, Montney.  

• South Foothills:  Doig, Kiskatinaw, Montney.  
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Figure 3 Formation Pressure Gradients to Ground Surface in Each Oil and Gas Area. Formation 

abbreviations correspond to formations in British Columbia Oil and Gas Commission, (2018b). 

 

Figure 4 Formation Pressure Gradients to Ground Surface in the Jean Marie Area. Formation 

abbreviations correspond to formations in British Columbia Oil and Gas Commission (2018b). 
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Figure 5 Lower Debolt Formation initial reservoir gas pressure measurements in the Jean Marie 

Area and the surrounding area.  
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